CYT2B63CADQ0AZEGS [INFINEON]

TRAVEO™ T2G CYT2B6 Series;
CYT2B63CADQ0AZEGS
型号: CYT2B63CADQ0AZEGS
厂家: Infineon    Infineon
描述:

TRAVEO™ T2G CYT2B6 Series

文件: 总162页 (文件大小:1183K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYT2B6  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
General description  
CYT2B6 is a family of TRAVEO™ T2G microcontrollers targeted at automotive systems such as body control units.  
CYT2B6 has an Arm® Cortex®-M4 CPU for primary processing and an Arm® Cortex®-M0+ CPU for peripheral and  
security processing. These devices contain embedded peripherals supporting Controller Area Network with  
Flexible Data rate (CAN FD), and Local Interconnect Network (LIN). TRAVEO™ T2G devices are manufactured on  
an advanced 40-nm process. CYT2B6 incorporates a low-power flash memory, multiple high-performance analog  
and digital peripherals, and enables the creation of a secure computing platform.  
Features  
Dual CPU subsystem  
- 80-MHz (max) 32-bit Arm® Cortex®-M4F CPU with  
• Single-cycle multiply  
• Single-precision floating point unit (FPU)  
• Memory protection unit (MPU)  
- 80-MHz (max) 32-bit Arm® Cortex®-M0+ CPU with  
• Single-cycle multiply  
• Memory protection unit  
- Inter-processor communication in hardware  
- Three DMA controllers  
• Peripheral DMA controller #0 (P-DMA0) with 54 channels  
• Peripheral DMA controller #1 (P-DMA1) with 26 channels  
• Memory DMA controller #0 (M-DMA0) with 2 channels  
Integrated memories  
- 576 KB of code-flash with an additional 64 KB of work-flash  
• Read-While-Write (RWW) allows updating the code-flash/work-flash while executing from it  
• Single- and dual-bank modes (specifically for Firmware update Over The Air [FOTA])  
• Flash programming through SWD/JTAG interface  
- 64 KB of SRAM with selectable retention granularity  
Crypto engine[1]  
- Supports enhanced Secure Hardware Extension (eSHE) and Hardware Security Module (HSM)  
- Secure boot and authentication  
• Using digital signature verification  
• Using fast secure boot  
- AES: 128-bit blocks, 128-/192-/256-bit keys  
- 3DES[2]: 64-bit blocks, 64-bit key  
- Vector unit[2] supporting asymmetric key cryptography such as Rivest-Shamir-Adleman (RSA) and Elliptic  
Curve (ECC)  
- SHA-1/2/3[2]: SHA-512, SHA-256, SHA-160 with variable length input data  
- CRC[2]: supports CCITT CRC16 and IEEE-802.3 CRC32  
- True random number generator (TRNG) and pseudo random number generator (PRNG)  
- Galois/Counter Mode (GCM)  
Notes  
1. The Crypto engine features are available on select MPNs.  
2. This feature is not available in “eSHE only” parts; for more information, refer to Ordering information.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Features  
Functional safety for ASIL-B  
- Memory protection unit (MPU)  
- Shared memory protection unit (SMPU)  
- Peripheral protection unit (PPU)  
- Watchdog timer (WDT)  
- Multi-counter watchdog timer (MCWDT)  
- Low-voltage detector (LVD)  
- Brown-out detector (BOD)  
- Overvoltage detection (OVD)  
- Clock supervisor (CSV)  
- Hardware error correction (SECDED ECC) on all safety-critical memories (SRAM, flash)  
Low-power 2.7-V to 5.5-V operation  
- Low-power Active, Sleep, Low-power Sleep, DeepSleep, and Hibernate modes for fine-grained power  
management  
- Configurable options for robust BOD  
• Two threshold levels (2.7 V and 3.0 V) for BOD on VDDD and VDDA  
• One threshold level (1.1 V) for BOD on VCCD  
Wakeup support  
- A GPIO pin to wakeup from Hibernate mode  
- Up to 78 GPIO pins to wakeup from Sleep modes  
- Event Generator, SCB, Watchdog Timer, RTC alarms to wake from DeepSleep modes  
Clock sources  
- Internal main oscillator (IMO)  
- Internal low-speed oscillator (ILO)  
- External crystal oscillator (ECO)  
- Watch crystal oscillator (WCO)  
- Phase-locked loop (PLL)  
- Frequency-locked loop (FLL)  
Communication interfaces  
- Up to four CAN FD channels  
• Increased data rate (up to 8 Mbps) compared to classic CAN, limited by physical layer topology and  
transceivers  
• Compliant to ISO 11898-1:2015  
• Supports all the requirements of Bosch CAN FD Specification V1.0 for non-ISO CAN FD  
• ISO 16845:2015 certificate available  
- Up to six runtime-reconfigurable SCB (serial communication block) channels, each configurable as I2C, SPI,  
or UART  
- Up to five independent LIN channels  
• LIN protocol compliant with ISO 17987  
Datasheet  
2
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Features  
Timers  
- Up to 50 16-bit and two 32-bit timer/counter pulse-width modulator (TCPWM) blocks  
• Up to four 16-bit counters for motor control  
• Up to 46 16-bit counters and two 32-bit counters for regular operations  
• Supports timer, capture, quadrature decoding, pulse-width modulation (PWM), PWM with dead time (PW-  
M_DT), pseudo-random PWM (PWM_PR), and shift-register (SR) modes  
- Up to 11 Event Generation (EVTGEN) timers supporting cyclic wakeup from DeepSleep  
• Events trigger a specific device operation (such as execution of an interrupt handler, a SAR ADC conversion,  
and so on)  
Real time clock (RTC)  
- Year/Month/Date, Day-of-week, Hour:Minute:Second fields  
- 12- and 24-hour formats  
- Automatic leap-year correction  
I/O  
- Up to 78 programmable I/Os  
- Two I/O types  
• GPIO Standard (GPIO_STD)  
• GPIO Enhanced (GPIO_ENH)  
Regulators  
- Generates 1.1-V nominal core supply from a 2.7-V to 5.5-V input supply  
- Two types of regulators  
• DeepSleep  
• Core internal  
Programmable analog  
- Three SAR A/D converters with up to 35 external channels (32 I/Os + 3 I/Os for motor control)  
• ADC0 supports 11 logical channels, with 11 + 1 physical connections  
• ADC1 supports 13 logical channels, with 13 + 1 physical connections  
• ADC2 supports 8 logical channels, with 8 + 1 physical connections  
• Any external channel can be connected to any logical channel in the respective SAR  
- Each ADC supports 12-bit resolution and sampling rates of up to 1 Msps  
- Each ADC also supports up to six internal analog inputs like  
• Bandgap reference to establish absolute voltage levels  
• Calibrated diode for junction temperature calculations  
• Two AMUXBUS inputs and two direct connections to monitor supply levels  
- Each ADC supports addressing of external multiplexers  
- Each ADC has a sequencer supporting autonomous scanning of configured channels  
- Synchronized sampling of all ADCs for motor-sense applications  
Smart I/O  
- Up to three Smart I/O blocks, which can perform Boolean operations on signals going to and from I/Os  
- Up to 16 I/Os (GPIO_STD) supported  
Debug interface  
- JTAG controller and interface compliant to IEEE-1149.1-2001  
- Arm® SWD (serial wire debug) port  
- Supports Arm® Embedded Trace Macrocell (ETM) Trace  
• Data trace using SWD  
• Instruction and data trace using JTAG  
Datasheet  
3
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Features  
Compatible with industry-standard tools  
- GHS/MULTI or IAR EWARM for code development and debugging  
Packages  
- 64-LQFP, 10 × 10 × 1.7 mm (max), 0.5-mm lead pitch  
- 80-LQFP, 12 × 12 × 1.7 mm (max), 0.5-mm lead pitch  
- 100-LQFP, 14 × 14 × 1.7 mm (max), 0.5-mm lead pitch  
Datasheet  
4
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Table of contents  
Table of contents  
General description ...........................................................................................................................1  
Features ...........................................................................................................................................1  
Table of contents...............................................................................................................................5  
1 Features list ...................................................................................................................................6  
1.1 Communication peripheral instance list ...............................................................................................................8  
2 Blocks and functionality..................................................................................................................9  
Block diagram...................................................................................................................................9  
3 Functional description ..................................................................................................................10  
3.1 CPU subsystem .....................................................................................................................................................10  
3.2 System resources..................................................................................................................................................11  
3.3 Peripherals ............................................................................................................................................................13  
3.4 I/Os.........................................................................................................................................................................17  
4 CYT2B6 address map .....................................................................................................................19  
5 Flash base address map.................................................................................................................21  
6 Peripheral I/O map........................................................................................................................22  
7 CYT2B6 clock diagram ...................................................................................................................24  
8 CYT2B6 CPU start-up sequence ......................................................................................................25  
9 Pin assignment .............................................................................................................................26  
10 High-speed I/O matrix connections...............................................................................................32  
11 Package pin list and alternate functions .......................................................................................33  
12 Power pin assignments................................................................................................................35  
13 Alternate function pin assignments ..............................................................................................36  
14 Pin mux descriptions...................................................................................................................39  
15 Interrupts and wake-up assignments............................................................................................41  
16 Core interrupt types....................................................................................................................50  
17 Trigger multiplexer .....................................................................................................................51  
18 Triggers group inputs ..................................................................................................................52  
19 Triggers group outputs................................................................................................................63  
20 Triggers one-to-one.....................................................................................................................64  
21 Peripheral clocks ........................................................................................................................67  
22 Faults.........................................................................................................................................69  
23 Peripheral protection unit fixed structure pairs.............................................................................72  
24 Bus masters................................................................................................................................80  
25 Miscellaneous configuration ........................................................................................................81  
26 Development support..................................................................................................................82  
26.1 Documentation ...................................................................................................................................................82  
26.2 Tools ....................................................................................................................................................................82  
27 Electrical specifications...............................................................................................................83  
27.1 Absolute maximum ratings ................................................................................................................................83  
27.2 Device-level specifications .................................................................................................................................87  
27.3 DC specifications.................................................................................................................................................88  
27.4 Reset specifications ............................................................................................................................................92  
27.5 I/O ........................................................................................................................................................................93  
27.6 Analog peripherals............................................................................................................................................100  
27.7 AC specifications...............................................................................................................................................105  
27.8 Digital peripherals.............................................................................................................................................106  
27.9 Memory..............................................................................................................................................................116  
27.10 System resources............................................................................................................................................118  
27.11 Debug ..............................................................................................................................................................129  
27.12 Clock specifications ........................................................................................................................................131  
28 Ordering information ................................................................................................................ 139  
Datasheet  
5
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Table of contents  
28.1 Part number nomenclature..............................................................................................................................140  
29 Packaging ................................................................................................................................ 142  
30 Appendix.................................................................................................................................. 146  
30.1 Bootloading or End-of-line Programming.......................................................................................................146  
30.2 External IP revisions..........................................................................................................................................147  
31 Acronyms ................................................................................................................................. 148  
32 Errata ...................................................................................................................................... 150  
Revision history ............................................................................................................................ 159  
Revision history change log............................................................................................................ 160  
Datasheet  
6
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Features list  
1
Features list  
Table 1-1  
CYT2B6 feature list for all packages  
Packages  
80-LQFP  
Features  
64-LQFP  
100-LQFP  
CPU  
Core  
32-bit Arm® Cortex®-M4F CPU and 32-bit Arm® Cortex®-M0+ CPU  
Functional safety  
Operating voltage  
Core voltage  
ASIL-B  
2.7 V to 5.5 V  
1.05 V to 1.15 V  
Arm® Cortex®-M4 80 MHz (max) and Arm® Cortex®-M0+ 80 MHz (max),  
related by integer frequency ratio (that is, 1:1, 1:2, 1:3, and so on)  
Operating frequency  
MPU, PPU  
Supported  
FPU  
Single precision (32-bit)  
DSP-MUL/DIV/MAC  
Memory  
Supported by Arm® Cortex®-M4F CPU  
Code-flash  
Work-flash  
SRAM (configurable for retention)  
ROM  
576 KB (448 KB + 128 KB)  
64 KB (48 KB + 16 KB)  
64 KB  
32 KB  
Communication interfaces  
CAN 0 (CAN FD: Up to 8 Mbps)  
CAN 1 (CAN FD: Up to 8 Mbps)  
CAN RAM  
2 ch  
1 ch  
2 ch  
24 KB per instance (2 ch), 48 KB in total  
Serial communication block  
(SCB/UART)  
6 ch  
Serial communication block (SCB/I2C)  
Serial communication block (SCB/SPI)  
LIN0  
5 ch  
3 ch  
6 ch  
6 ch  
5 ch  
Timers  
RTC  
1 ch  
4 ch  
46 ch  
2 ch  
63  
TCPWM (16-bit) (Motor Control)  
TCPWM (16-bit)  
TCPWM (32-bit)  
External interrupts  
Analog  
49  
78  
3 Units (SAR0/11, SAR1/13, SAR2/8 logical channels)  
22 external channels 28 external channels  
32 external channels  
12-bit, 1 Msps SAR ADC  
(SAR0 8 ch, SAR1 7 ch,  
SAR2 7 ch)  
(SAR0 10 ch,  
(SAR0 11 ch, SAR1 13 ch,  
SAR2 8 ch)  
SAR1 10 ch, SAR2 8 ch)  
18 ch (6 per ADC) Internal sampling  
Motor control input  
3 ch (synchronous sampling of one channel on each of the 3 ADCs)  
Security  
Datasheet  
7
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Features list  
Table 1-1  
CYT2B6 feature list for all packages (continued)  
Features  
Packages  
80-LQFP  
64-LQFP  
100-LQFP  
Flash security (program/work read  
protection)  
Supported  
Flash chip erase enable  
eSHE  
Configurable  
By separate firmware[3]  
System  
P-DMA0 with 54 channels (16 general purpose), P-DMA1 with 26  
channels (8 general purpose), and M-DMA0 with 2 channels  
DMA controller  
Internal main oscillator  
Internal low-speed oscillator  
PLL  
8 MHz  
32.768 kHz (nominal)  
Input frequency: 3.988 to 33.34 MHz, PLL output frequency: up to 80 MHz  
Input frequency: 0.25 to 80 MHz, FLL output frequency: up to  
80 MHz  
FLL  
Watchdog timer and multi-counter  
watchdog timer  
Supported  
Clock supervisor  
Cyclic wakeup from DeepSleep  
GPIO_STD  
Supported  
Supported  
45  
59  
74  
GPIO_ENH  
4
3 blocks,  
9 I/Os  
3 blocks,  
14 I/Os  
3 blocks,  
16 I/Os  
Smart I/O (Blocks)  
Low-voltage detect  
Maximum ambient temperature  
Debug interface  
Two, 26 selectable levels  
105 °C for S-grade and 125 °C for E-grade  
SWD/JTAG  
Debug trace  
Arm® Cortex® -M4 ETB size of 8 KB, Arm® Cortex®-M0+ MTB size of 4 KB  
Note  
3. Enhanced Secure Hardware Extension (eSHE) is enabled by third-party firmware.  
Datasheet  
8
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Features list  
1.1  
Communication peripheral instance list  
The following table lists the instances supported under each package for communication peripherals, based on  
the minimum pins needed for the functionality.  
Table 1-2  
Module  
CAN0  
Peripheral instance list  
64-LQFP  
80-LQFP  
100-LQFP  
Minimum pin functions  
TX, RX  
TX, RX  
0/1  
0/1  
0/1  
0/1  
0/1  
CAN1  
0
LIN0  
0/1/2/3/4  
0/1/3/4/5/7  
0/3/4/5/7  
0/3/4  
0/1/2/3/4  
0/1/2/3/4  
TX, RX  
TX, RX  
SCB/UART  
SCB/I2C  
SCB/SPI  
0/1/3/4/5/7  
0/1/3/4/5/7  
0/1/3/4/5/7  
0/1/3/4/5/7  
0/1/3/4/5/7  
0/1/3/4/5/7  
SCL, SDA  
MISO, MOSI, SCK, SELECT0  
Datasheet  
9
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Blocks and functionality  
2
Blocks and functionality  
Block diagram  
CPU Subsystem  
CYT2B6  
MXS40-HT  
SWJ/ETM/ITM/CTI  
SWJ/MTB/CTI  
eCT Flash  
576 KB Code Flash +  
64 KB Work Flash  
CRYPTO  
AES, SHA, CRC,  
TRNG, RSA,  
ECC  
ASIL-B  
SRAM0  
64 KB  
ROM  
32 KB  
Arm®  
Cortex®-M4  
80 MHz  
Arm®  
Cortex®-M0+  
80 MHz  
8 KB $  
8 KB $  
System Resources  
SRAM Controller  
Initiator/MMIO  
ROM Controller  
FPU, NVIC, MPU  
MUL, NVIC, MPU  
Flash Controller  
Power  
Sleep Control  
POR  
OVD  
BOD  
LVD  
System Interconnect (Multi Layer AHB, IPC, MPU/SMPU)  
Peripheral Interconnect (MMIO, PPU)  
REF  
PWRSYS-HT  
LDO  
PCLK  
Clock  
Clock Control  
Prog.  
Analog  
2xILO  
WDT  
ECO  
CSV  
IMO  
FLL  
SAR  
ADC  
(12-bit)  
1xPLL  
Reset  
Reset Control  
XRES  
Test  
TestMode Entry  
Digital DFT  
x3  
Analog DFT  
SARMUX  
32 ch  
WCO  
RTC  
Power Modes  
Active/Sleep  
LowePowerActive/Sleep  
High Speed I/O Matrix, Smart I/O, Boundary Scan  
3x Smart I/O  
DeepSleep  
Up to 74x GPIO_STD, 4x GPIO_ENH  
Hibernate  
I/O Subsystem  
The Block diagram shows the CYT2B6 architecture, giving a simplified view of the interconnection between  
subsystems and blocks. CYT2B6 has four major subsystems: CPU, system resources, peripherals, and I/O[4, 5]. The  
color-coding shows the lowest power mode where the particular block is still functional.  
CYT2B6 provides extensive support for programming, testing, debugging, and tracing of both hardware and  
firmware.  
Debug-on-chip functionality enables in-system debugging using the production device. It does not require  
special interfaces, debugging pods, simulators, or emulators.  
The JTAG interface is fully compatible with industry-standard third-party probes such as I-jet, J-Link, and GHS.  
The debug circuits are enabled by default.  
CYT2B6 provides a high level of security with robust flash protection and the ability to disable features such as  
debug.  
Additionally, each device interface can be permanently disabled for applications concerned with phishing  
attacks from a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash  
programming sequences. All programming, debug, and test interfaces are disabled when maximum device  
security is enabled.  
Notes  
4. GPIO_STD supporting 2.7 V to 5.5 V VDDIO range.  
5. GPIO_ENH supporting 2.7 V to 5.5 V VDDIO range with higher currents at lower voltages.  
Datasheet  
10  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Functional description  
3
Functional description  
CPU subsystem  
CPU  
3.1  
3.1.1  
The CYT2B6 CPU subsystem contains a 32-bit Arm® Cortex®-M0+ CPU with MPU and a 32-bit Arm® Cortex®-M4F  
CPU with MPU, and single-precision FPU. This subsystem also includes P-/M-DMA controllers, a cryptographic  
accelerator, 576 KB of code-flash, 64 KB of work-flash, 64 KB of SRAM, and 32 KB of ROM.  
The Cortex®-M0+ CPU provides a secure, un-interruptible boot function. This guarantees that, following  
completion of the boot function, system integrity is valid and privileges are enforced. Shared resources (flash,  
SRAM, peripherals, and so on) can be accessed through bus arbitration, and exclusive accesses are supported by  
an inter-processor communication (IPC) mechanism using hardware semaphores.  
3.1.2  
DMA controllers  
CYT2B6 has three DMA controllers: P-DMA0 with 16 general-purpose and 38 dedicated channels, P-DMA1 with 8  
general-purpose and 18 dedicated channels, and M-DMA0 with two channels. P-DMA is used for  
peripheral-to-memory and memory-to-peripheral data transfers and provides low latency for a large number of  
channels. Each P-DMA controller uses a single data-transfer engine that is shared by the associated channels.  
General-purpose channels have a rich interconnect matrix including P-DMA cross triggering, which enables  
demanding data-transfer scenarios. Dedicated channels have a single triggering input (such as an ADC channel)  
to handle common transfer needs. M-DMA is used for memory-to-memory data transfers and provides high  
memory bandwidth for a small number of channels. M-DMA uses a dedicated data-transfer engine for each  
channel. They support independent accesses to peripherals using the AHB multi-layer bus.  
3.1.3  
Flash  
CYT2B6 has 576 KB (448 KB with a 32-KB sector size, and 128 KB with an 8-KB sector size) of code-flash with an  
additional work-flash of up to 64 KB (48 KB with 2-KB sector size, and 16 KB with 128-B sectors size). Work-flash  
is optimized for reprogramming many more times than code-flash. Code-flash supports Read-While-Write (RWW)  
operation allowing flash to be updated while the CPU is active. Both the code-flash and work-flash areas support  
dual-bank operation for over-the-air (OTA) programming.  
3.1.4  
SRAM  
CYT2B6 has 64 KB of SRAM. The SRAM0 controller provides DeepSleep retention in 32-KB increments.  
3.1.5  
ROM  
CYT2B6 has 32-KB ROM that contains boot and configuration routines. This ROM enables secure boot and authen-  
tication of user flash to guarantee a secure system.  
3.1.6  
Cryptography accelerator for security  
The cryptography accelerator implements (3)DES block cipher, AES block cipher, SHA hash, cyclic redundancy  
check, pseudo random number generation, true random number generation, galois/counter mode, and a vector  
unit to support asymmetric key cryptography such as RSA and ECC.  
Depending on the part number, this block is either completely or partially available or not available at all. See  
Ordering information for more details.  
Datasheet  
11  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Functional description  
3.2  
System resources  
Power system  
3.2.1  
The power system ensures that the supply voltage levels meet the requirements of each power mode, and  
provides a full-system reset when these levels are not valid. Internal power-on reset (POR) guarantees full-chip  
reset during the initial power ramp.  
Three BOD circuits monitor the external supply voltages (VDDD, VDDA, VCCD). The BOD on VDDD and VCCD are initially  
enabled and cannot be disabled. The BOD on VDDA is initially disabled and can be enabled by the user. For the  
external supplies VDDD and VDDA, BOD circuits are software configurable with two settings; a 2.7-V minimum  
voltage that is robust for all internal signaling and a 3.0-V minimum voltage, which is also robust for all I/O  
specifications (which are guaranteed at 2.7 V). The BOD on VCCD is provided as a safety measure and is not a  
robust detector.  
Three overvoltage detection (OVD) circuits are provided for monitoring external supplies (VDDD, VDDA, VCCD), and  
overcurrent detection circuits (OCD) for monitoring internal and external regulators. OVD thresholds on VDDD and  
VDDA are configurable with two settings; a 5.0-V and 5.5-V maximum voltage. Two voltage-detection circuits are  
provided to monitor the external supply voltage (VDDD) for falling and rising levels, each configurable for one of  
the 26 selectable levels.  
All BOD, OVD, and OCD circuits on VDDD and VCCD generate a reset, because these protect the CPUs and fault logic.  
The BOD and OVD circuits on VDDA can be configured to generate either a reset or a fault.  
3.2.2  
Regulators  
CYT2B6 contains two regulators that provide power to the low-voltage core transistors: DeepSleep and core  
internal. These regulators accept a 2.7–5.5-V VDDD supply and provide a low-noise 1.1-V supply to various parts  
of the device. These regulators are automatically enabled and disabled by hardware and firmware when  
switching between power modes. The core internal and core external regulators operate in active mode, and  
provide power to the CPU subsystem and associated peripherals.  
3.2.2.1  
DeepSleep  
The DeepSleep regulator is used to maintain power to a small number of blocks when in DeepSleep mode. These  
blocks include the ILO and WDT timers, BOD detector, SCB0, SRAM memories, Smart I/O, and other configuration  
memories. The DeepSleep regulator is enabled when in DeepSleep mode, and the core internal regulator is  
disabled. It is disabled when XRES_L is asserted (LOW) and when the core internal regulator is disabled.  
3.2.2.2  
Core internal  
The core internal regulator supports load currents up to 150 mA, and is operational during device start-up (boot  
process) and in Active/Sleep modes.  
3.2.3  
Clock system  
The CYT2B6 clock system provides clocks to all subsystems that require them, and glitch-free switching between  
different clock sources. In addition, the clock system ensures that no metastable conditions occur.  
The clock system for CYT2B6 consists of the 8-MHz IMO, two ILOs, three watchdog timers, a PLL, an FLL, five clock  
supervisors (CSV), a 3.988- to 33.34 MHz ECO, and a 32.768-kHz WCO.  
The clock system supports two main clock domains: CLK_HF and CLK_LF.  
• CLK_HFx are the Active mode clocks. Each can use any of the high-frequency clock sources including IMO,  
EXT_CLK, ECO, FLL, or PLL  
• CLK_LF is a DeepSleep domain clock and provides a reference clock for the MCWDT or RTC modules. The  
reference clock for the CLK_LF domain is either disabled or selectable from ILO0, ILO1, or WCO  
Datasheet  
12  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Functional description  
Table 3-1  
Name  
CLK_HF Destinations  
Description  
CLK_HF0  
CLK_HF1  
CPUSS clocks, PERI, and AHB infrastructure  
Event Generator, also available in HSIOM as an output  
3.2.3.1  
IMO clock source  
The IMO is the frequency reference in CYT2B6 when no external reference is available or enabled. The IMO  
operates at a frequency of around 8 MHz.  
3.2.3.2  
ILO clock source  
An ILO is a low-power oscillator, nominally 32.768 kHz, which generates clocks for a watchdog timer when in  
DeepSleep mode. There are two ILOs to ensure clock supervisor (CSV) capability in DeepSleep mode. ILO-driven  
counters can be calibrated to the IMO, WCO, or ECO to improve their accuracy. ILO1 is also used for clock super-  
vision.  
3.2.3.3  
PLL and FLL  
A PLL or FLL may be used to generate high-speed clocks from the IMO, the ECO, or EXT_CLK. The FLL provides a  
much faster lock than the PLL (5 µs instead of 35 µs) in exchange for a small amount (±2%) of frequency error[6]  
.
3.2.3.4  
Clock supervisor (CSV)  
Each CSV allows one clock (reference) to supervise the behavior of another clock (monitored). Each CSV has  
counters for both the monitored and reference clocks. Parameters for each counter determine the frequency of  
the reference clock as well as the upper and lower frequency limits of the monitored clock. If the frequency range  
comparator detects a stopped clock or a clock outside the specified frequency range, an abnormal state is  
signaled and either a reset or an interrupt is generated.  
3.2.3.5  
EXT_CLK  
One of the two GPIO_STD I/Os can be used to provide an external clock input of up to 80 MHz. This clock can be  
used as the source clock for either the PLL or FLL, or can be used directly by the CLK_HF domain.  
3.2.3.6  
ECO  
The ECO provides high-frequency clocking using an external crystal connected to the ECO_IN and ECO_OUT pins.  
It supports fundamental mode (non-overtone) quartz crystals, in the range of 3.988 to 33.34 MHz. When used in  
conjunction with the PLL, it generates CPU and peripheral clocks up to device’s maximum frequency. ECO  
accuracy depends on the selected crystal. If the ECO is disabled, the associated pins can be used for any of the  
available I/O functions.  
3.2.3.7  
WCO  
The WCO is a low-power, watch-crystal oscillator intended for real-time-clock applications. It requires an external  
32.768-kHz crystal connected to the WCO_IN and WCO_OUT pins. The WCO can also be configured as a clock  
reference for CLK_LF, which is the clock source for the MCWDT and RTC.  
Note  
6. Operation of reference-timed peripherals (like a UART) with an FLL-based reference is not recommended due the allowed frequency  
error.  
Datasheet  
13  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Functional description  
3.2.4  
Reset  
CYT2B6 can be reset from a variety of sources, including software. Reset events are asynchronous and guarantee  
reversion to a known state. The reset cause (POR, BOD, OVD, overcurrent, XRES_L, WDT, MCWDT, software reset,  
fault, CSV, Hibernate wakeup, debug) is recorded in a register, which is sticky through reset and allows software  
to determine the cause of the reset. An XRES_L pin is available for external reset.  
3.2.5  
Watchdog timers  
CYT2B6 has one watchdog timer (WDT) and two multi-counter watchdog timers (MCWDT).  
The WDT is a free-running counter clocked only by ILO0, which allows it to be used as a wakeup source from  
Hibernate. Watchdog operation is possible during all power modes. To prevent a device reset from a WDT  
timeout, the WDT must be serviced during a configured window. A watchdog reset is recorded in the reset cause  
register.  
An MCWDT is available for each of the CPU cores. These timers provide more capabilities than the WDT, and are  
only available in Active, Sleep, and DeepSleep modes. These timers have multiple counters that can be used  
separately or cascaded to trigger interrupts and/or resets. They are clocked from ILO0 or the WCO.  
3.2.6  
Power modes  
CYT2B6 has the following power modes:  
• Active – all peripherals are available  
• Low-Power Active (LPACTIVE) – Low-power profile of Active mode where all peripherals and the CPUs are  
available, but with limited capability  
• Sleep – all peripherals except the CPUs are available  
• Low-Power Sleep (LPSLEEP) – Low-power profile of Sleep mode where all peripherals except the CPUs are  
available, but with limited capability  
• DeepSleep – only peripherals which work with CLK_LF are available  
• Hibernate – the device and I/O states are frozen, and the device resets on wakeup  
3.3  
Peripherals  
3.3.1  
Peripheral clock dividers  
Integer and fractional clock dividers are provided for peripheral and timing purposes.  
Table 3-2 Clock dividers  
Divider  
Count  
32  
16  
Description  
div_8  
div_16  
div_24_5  
Integer divider, 8 bits  
Integer divider, 16 bits  
8
Fractional divider, 24.5 bits (24 integer bits, 5 fractional bits)  
3.3.2  
Peripheral protection unit  
The Peripheral Protection Unit (PPU) controls and monitors unauthorized access from all masters (CPU,  
P-/M-DMA, Crypto, and any enabled debug interface) to the peripherals. It allows or restricts data transfers on the  
bus infrastructure. The access rules are enforced based on specific properties of a transfer, such as an address  
range for the transfer and access attributes (such as read/write, user/privilege, and secure/non-secure).  
Datasheet  
14  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Functional description  
3.3.3  
12-bit SAR ADC  
CYT2B6 contains three 1-Msps SAR ADCs. These ADCs can be clocked at up to 26.67 MHz and provide a 12-bit result  
in 26 clock cycles.  
The references for all three SAR ADCs come from a dedicated pair of inputs: VREFH and VREFL[7]  
.
CYT2B6 devices support up to 53 logical ADC channels, and external inputs from up to 35 I/Os. Each ADC also  
supports six internal connections for diagnostic and monitoring purposes. The number of ADC channels (per ADC  
and package type) are listed in Table 1-1.  
Each ADC has a sequencer, which autonomously cycles through the configured channels (sequencer scan) with  
zero-switching overhead (that is, the aggregate sampling bandwidth, when clocked at 26.67 MHz, is equal to 1  
Msps whether it is for a single channel or distributed over several channels). The sequencer switching is  
controlled through a state machine or firmware. The sequencer prioritizes trigger requests, enables the  
appropriate analog channel, controls ADC sampling, initiates ADC data conversion, manages results, and initiates  
subsequent conversions for repetitive or group conversions without CPU intervention.  
Each SAR ADC has an analog multiplexer used to connect the signals to be measured to the ADC. It has 32  
GPIO_STD inputs, one special GPIO_STD input for motor-sense, and six additional inputs to measure internal  
signals such as a band-gap reference, a temperature sensor, and power supplies. The device supports  
synchronous sampling of one motor-sense channel on each of the three ADCs.  
CYT2B6 has one temperature sensor that is shared by all three ADCs. The temperature sensor must only be  
sampled by one ADC at a time. Software post processing is required to convert the temperature sensor reading  
into kelvin or Celsius values.  
To accommodate signals with varying source impedances and frequencies, it is possible to have different sample  
times programmed for each channel. Each ADC also supports range comparison, which allows fast detection of  
out-of-range values without having to wait for a sequencer scan to complete and for the CPU firmware to evaluate  
the measurement for out-of-range values.  
The ADCs are not usable in DeepSleep and Hibernate modes as they require a high-speed clock. The ADC input  
reference voltage VREFH range is 2.7 V to VDDA and VREFL is VSSA  
.
3.3.4  
Timer/counter/PWM (TCPWM) block  
The TCPWM block consists of 16-bit (50 channels) and 32-bit (two channels) counters with a user-programmable  
period. Four of the 16-bit counters include extra features to support motor control operations. Each TCPWM  
counter contains a capture register to record the count at the time of an event, a period register (used to either  
stop or auto-reload the counter when its count is equal to the period register), and compare registers to generate  
signals that are used as PWM duty-cycle outputs.  
Each counter within the TCPWM block supports several functional modes such as timer, capture, quadrature,  
PWM, PWM with dead-time insertion (PWM_DT, 8-bit), pseudo-random PWM (PWM_PR), and shift-register.  
In motor-control applications, the counter within the TCPWM block supports enhanced quadrature mode with  
features such as asymmetric PWM generation, dead-time insertion (16-bit), and association of different dead  
times for PWM output signals.  
The TCPWM block also provides true and complement outputs, with programmable offset between them, to  
allow their use as deadband complementary PWM outputs. The TCPWM block also has a kill input (only for the  
PWM mode) to force outputs to a predetermined state; for example, this may be used in motor-drive systems  
when an overcurrent state is detected and the PWMs driving the FETs need to be shut off immediately (no time  
for software intervention).  
Note  
7. VREF_L prevents IR drops in the VSSIO and VSSA paths from impacting the measurements. VREF_L, when properly connected, reduces  
or removes the impact of IR drops in the VSSIO and VSSA paths from measurements.  
Datasheet  
15  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Functional description  
3.3.5  
Serial communication blocks (SCB)  
CYT2B6 contains up to six serial communication blocks, each configurable to support I2C, UART, or SPI.  
3.3.5.1  
I2C interface  
An SCB can be configured to implement a full I2C master (capable of multi-master arbitration) or slave interface.  
Each SCB configured for I2C can operate at speeds of up to 1 Mbps (Fast-mode Plus[8]) and has flexible buffering  
options to reduce the interrupt overhead and latency of the CPU. In addition, each SCB supports FIFO buffering  
for receive and transmit data, which, by increasing the time for the CPU to read the data, reduces the need for  
clock stretching. The2I2C interface is compatible with Standard, Fast-mode, and Fast-mode Plus devices as  
specified in the NXP I C-bus specification and user manual (UM10204). The I2C-bus I/O is implemented with GPIO  
in open-drain modes[9, 10]  
.
3.3.5.2  
UART interface  
When configured as a UART, each SCB provides a full-featured UART with maximum signaling rate determined  
by the configured peripheral-clock frequency and over-sampling rate. It supports infrared interface (IrDA) and  
SmartCard (ISO 7816) protocols, which are minor variants of the UART protocol. It also supports the 9-bit multi-  
processor mode that allows the addressing of peripherals connected over common Rx and Tx lines. Common  
UART functions such as parity, number of stop bits, break detect, and frame error are supported. FIFO buffering  
of transmit and receive data allows greater CPU service latencies to be tolerated.  
The LIN protocol is supported by the UART. LIN is based on a single-master multi-slave topology. There is one  
master node and multiple slave nodes on the LIN bus. The SCB UART supports only LIN slave functionality.  
Compared to the dedicated LIN blocks, an SCB/UART used for LIN requires a higher level of software interaction  
and increased CPU load.  
3.3.5.3  
SPI interface  
The SPI configuration supports full Motorola SPI, TI Synchronous Serial Protocol (SSP, essentially adds a start  
pulse that is used to synchronize SPI-based Codecs), and National Microwire (a half-duplex form of SPI). The SPI  
interface can use the FIFO. The SPI interface operates with up to a 12.5-MHz SPI Clock. SCB also supports EZSPI[11]  
mode.  
SCB0 supports the following additional features:  
• Operable as a slave in DeepSleep mode  
• I2C slave EZ (EZI2C[12]) mode with up to 256-B data buffer for multi-byte communication without CPU  
intervention  
• I2C slave externally-clocked operations  
• Command/response mode with a 512-B data buffer for multi-byte communication without CPU intervention  
Notes  
8. I/Os drive level does not support the full bus capacitance in Fast-mode Plus speeds.  
9. This is not 100% compliant with the I2C-bus specification; I/Os are not over-voltage tolerant, do not support the 20-mA sink require-  
ment of Fast-mode Plus, and violate the leakage specification when no power is applied.  
10.Only Port 0 with the slew rate control enabled meets the minimum fall time requirement.  
11.The Easy SPI (EZSPI) protocol is based on the Motorola SPI operating in any mode (0, 1, 2, or 3). It allows communication between  
master and slave reduces the need for CPU intervention.  
12.The Easy I2C (EZI2C) protocol is a unique communication scheme built on top of the I2C protocol by Infineon. It uses a meta protocol  
around the standard I2C protocol to communicate to an I2C slave using indexed memory transfers. This reduces the need for CPU  
intervention.  
Datasheet  
16  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Functional description  
3.3.6  
CAN FD  
CYT2B6 supports two CAN FD controller blocks, each supporting up to two CAN FD channels. All CAN FD  
controllers are compliant with the ISO 11898-1:2015 standard; an ISO 16845:2015 certificate is available. It also  
implements the time-triggered CAN (TTCAN) protocol specified in ISO 11898-4 (TTCAN protocol levels 1 and 2)  
completely in hardware.  
All functions concerning the handling of messages are implemented by the Rx and Tx handlers. The Rx handler  
manages message acceptance filtering, transfer of received messages from the CAN core to a message RAM, and  
provides receive-message status. The Tx handler is responsible for the transfer of transmit messages from the  
message RAM, to the CAN core, and provides transmit-message status.  
3.3.7  
Local interconnect network (LIN)  
CYT2B6 contains up to five LIN channels. Each channel supports transmission/reception of data following the LIN  
protocol according to ISO standard 17987. Each LIN channel connects to an external transceiver through a 3-pin  
interface (including an enable function) and supports master and slave functionality. Each channel also supports  
classic and enhanced checksum, along with break detection during message reception and wake-up signaling.  
Break detection, sync field, checksum calculations, and error interrupts are handled in hardware.  
3.3.8  
One-time-programmable (OTP) eFuse  
CYT2B6 contains a 1024-bit OTP eFuse memory that can be used to store and access a unique and unalterable  
identifier or serial number for each device. eFuses are also used to control the device life-cycle (manufacturing,  
programming, normal operation, end-of-life, and so on) and the security state. Of the 1024 bits, 192 are available  
for user purposes.  
3.3.9  
Event generator  
The event generator supports generation of interrupts and triggers in Active mode and interrupts in DeepSleep  
mode. The event generators are used to trigger a specific device operation (execution of an interrupt handler, a  
SAR ADC conversion, and so on) and to provide a cyclic wakeup mechanism from DeepSleep mode. They provide  
CPU-free triggers for device functions, and reduce CPU involvement in triggering device functions, thus reducing  
overall power consumption and processing overhead.  
3.3.10  
Trigger multiplexer  
CYT2B6 supports connecting various peripherals using trigger signals. Triggers are used to inform a peripheral of  
the occurrence of an event or change of state. These triggers are used to affect or initiate some action in other  
peripherals. The trigger multiplexer is used to route triggers from a source peripheral to a destination. Triggers  
provide active logic functionality and are typically supported in Active mode.  
Datasheet  
17  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Functional description  
3.4  
I/Os  
CYT2B6 has up to 78 programmable I/Os.  
The I/Os are organized as logical entities called ports, which are a maximum of 8 bits wide. During power-on, and  
reset, the I/Os are forced to the High-Z state. During the Hibernate mode, the I/Os are frozen.  
Every I/O can generate an interrupt (if enabled) and each port has an interrupt request (IRQ) and interrupt service  
routine (ISR) associated with it.  
I/O port power source mapping is listed in Table 3-3. The associated supply determines the VOH, VOL, VIH, and VIL  
levels when configured for CMOS and Automotive thresholds.  
Table 3-3  
I/O port power source  
Supply  
Ports  
VDDD  
VDDIO_1  
VDDIO_2  
P0, P2, P3, P5, P17, P18, P19, P21, P22, P23  
P6, P7, P8[13]  
P11, P12, P13, P14  
Note  
13.The I/Os in VDDIO_1 domain are referred to the VDDD domain in 64-LQFP package.  
Datasheet  
18  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Functional description  
3.4.1  
Port nomenclature  
Px.y describes a particular bit “y” available within an I/O port “x.”  
For example, P4.2 reads “port 4, bit 2”.  
Each I/O implements the following:  
• Programmable drive mode  
- High impedance  
- Resistive pull-up  
- Resistive pull-down  
- Open drain with strong pull-down  
- Open drain with strong pull-up  
- Strong pull-up or pull-down  
- Weak pull-up or pull-down  
CYT2B6 has two types of programmable I/Os: GPIO standard and GPIO Enhanced.  
3.4.2  
GPIO Standard (GPIO_STD)  
Supports standard automotive signaling across the 2.7-V to 5.5-V VDDIO range. GPIO Standard I/Os have multiple  
configurable drive levels, drive modes, and selectable input levels.  
3.4.3  
GPIO Enhanced (GPIO_ENH)  
Supports extended functionality automotive signaling across the 2.7-V to 5.5-V VDDIO range with higher currents  
at lower voltages (full I2C timing support, slew-rate control).  
Both GPIO_STD and GPIO_ENH implement the following:  
• Configurable input threshold (CMOS, TTL, or Automotive)  
• Hold mode for latching previous state (used for retaining the I/O state in DeepSleep mode)  
• Analog input mode (input and output buffers disabled)  
3.4.4  
Smart I/O  
Smart I/O allows Boolean operations on signals going to the I/O from the subsystems of the chip or on signals  
coming into the chip. CYT2B6 has three Smart I/O blocks. Operation can be synchronous or asynchronous and  
the blocks operate in all device power modes except for the Hibernate mode.  
Datasheet  
19  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
CYT2B6 address map  
4
CYT2B6 address map  
The CYT2B6 microcontroller supports the memory spaces shown in Figure 4-1.  
• 576 KB (448 KB + 128 KB) of code-flash, used in the single- or dual-bank mode based on the associated bit in the  
flash control register  
- Single-bank mode - 576 KB  
- Dual-bank mode - 288 KB per bank  
• 64 KB (48 KB + 16 KB) of work-flash, used in the single- or dual-bank mode based on the associated bit in the  
flash control register  
- Single-bank mode - 64 KB  
- Dual-bank mode - 32 KB per bank  
• 64 KB of SRAM (First 2 KB is reserved for internal usage)  
• 32 KB of secure ROM  
Datasheet  
20  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
CYT2B6 address map  
0xFFFF FFFF  
ARM System  
Space  
CPU & Debug Registers  
0xE000 0000  
0x43FF FFFF  
Reserved  
Peripheral  
Mainly used for on-chip peripherals  
e.g., AHB or APB Peripherals  
Interconnect or  
Memory map  
0x4000 0000  
Reserved  
Reserved  
Reserved  
Alternate Flash  
Supervisory Region  
0x1780 7FFF  
0x1780 0000  
Used to store manufacture specific  
data like flash protection settings, trim  
settings, device addresses, serial numbers,  
calibration data, etc.  
Flash Supervisory  
Region  
0x1700 7FFF  
0x1700 0000  
0x1400 FFFF  
16 KB  
(128 B Small Sectors)  
0x1400 C000  
0x1400 BFFF  
Work flash used for long  
term data retention  
Work flash  
48 KB  
(2 KB Large Sectors)  
0x1400 0000  
0x1008 FFFF  
Reserved  
128 KB  
(8 KB Small Sectors)  
0x1007 0000  
0x1006 FFFF  
Mainly used for user program code  
Code flash  
448 KB  
(32 KB Large Sectors)  
0x1000 0000  
0x0800 FFFF  
Reserved  
62 KB  
General purpose RAM,  
mainly used for data  
SRAM0  
ROM  
0x0800 0800  
0x0800 0000  
2 KB  
Secured Boot ROM to set user specified  
protection levels, trim and configuration  
data, code authentication, jump to user mode etc.  
Reserved  
0x0000 7FFF  
0x0000 0000  
32 KB  
Figure 4-1  
CYT2B6 address map[14, 15]  
Notes  
14.The size representation is not up to scale.  
15.First 2 KB of SRAM is reserved, not available for users. User must keep the power of first 32KB block of SRAM0 in enabled or retained  
in all Active, LP Active, Sleep, LP Sleep, DeepSleep modes.  
Datasheet  
21  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Flash base address map  
5
Flash base address map  
Table 5-1 through Table 5-6 give information about the sector mapping of the code- and work-flash regions  
along with their respective base addresses.  
Table 5-1  
Code-flash Address Mapping in Single Bank Mode  
Code-flash Size Large Sectors Small Sectors  
Large Sector Base Address Small Sector Base Address  
(KB)  
(LS)  
(SS)  
576  
32 KB × 14  
8 KB × 16  
0x1000 0000  
0x1007 0000  
Table 5-2  
Work-flash Address Mapping in Single Bank Mode  
Work-flash Size  
(KB)  
Large Sectors Small Sectors Large Sector Base Address Small Sector Base Address  
64  
2 KB × 24  
128 B × 128  
0x1400 0000  
0x1400 C000  
Table 5-3  
Code-flash Address Mapping in Dual Bank Mode (Mapping A)  
Second  
Half  
Second  
First Half First Half  
Code-flash  
Size (KB)  
First  
First  
Second  
Half LS  
Second  
Half SS  
Half SS  
Base  
LS Base  
Address  
SS Base  
Address  
Half LS  
Half SS  
LS Base  
Address  
Address  
576  
32 KB × 7  
8 KB × 8  
32 KB × 7  
8 KB × 8  
0x1000  
0000  
0x1003  
8000  
0x1200  
0000  
0x1203  
8000  
Table 5-4  
Code-flash Address Mapping in Dual Bank Mode (Mapping B)  
Second  
Half  
Second  
Half SS  
Base  
First Half First Half  
Code-flash  
Size (KB)  
First  
First  
Second  
Half LS  
Second  
Half SS  
LS Base  
Address  
SS Base  
Address  
Half LS  
Half SS  
LS Base  
Address  
Address  
576  
32 KB × 7  
8 KB × 8  
32 KB × 7  
8 KB × 8  
0x1200  
0000  
0x1203  
8000  
0x1000  
0000  
0x1003  
8000  
Table 5-5  
Work-flash Address Mapping in Dual Bank Mode (Mapping A)  
Second  
Half  
Second  
Half SS  
Base  
First Half First Half  
Work-flash  
Size (KB)  
First  
First  
Second  
Half LS  
Second  
Half SS  
LS Base  
Address  
SS Base  
Address  
Half LS  
Half SS  
LS Base  
Address  
Address  
64  
2 KB × 12 128 B × 64 2 KB × 12 128 B × 64  
0x1400  
0000  
0x1400  
6000  
0x1500  
0000  
0x1500  
6000  
Table 5-6  
Work-flash Address Mapping in Dual Bank Mode (Mapping B)  
Second  
Half  
Second  
Half SS  
Base  
First Half First Half  
Work-flash  
Size (KB)  
First  
First  
Second  
Half LS  
Second  
Half SS  
LS Base  
Address  
SS Base  
Address  
Half LS  
Half SS  
LS Base  
Address  
Address  
64  
2 KB × 12 128 B × 64 2 KB × 12 128 B × 64  
0x1500  
0000  
0x1500  
6000  
0x1400  
0000  
0x1400  
6000  
Datasheet  
22  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Peripheral I/O map  
6
Peripheral I/O map  
Table 6-1  
Section  
CYT2B6 peripheral I/O map  
Description  
Base Address Instances Instance Size Group Slave  
Peripheral interconnect  
Peripheral group (0, 1, 2, 3, 5, 6, 9)  
Peripheral trigger group  
Peripheral 1:1 trigger group  
0x4000 0000  
0x4000 4000  
0x4000 8000  
0x4000 C000  
7
11  
11  
0x20  
0x400  
0x400  
PERI  
0
0
Peripheral interconnect, master interface 0x4001 0000  
PERI_MS PERI Programmable PPU  
PERI Fixed PPU  
0x4001 0000  
0x4001 0800  
0x4010 0000  
0x4020 0000  
0x4021 0000  
0x4021 0000  
0x4022 0000  
0x4022 0000  
0x4022 1000  
0x4023 0000  
6[16]  
458  
0x40  
0x40  
0
1
Crypto  
CPUSS  
Cryptography component  
CPU subsystem (CPUSS)  
Fault structure subsystem  
Fault structures  
1
2
0
0
FAULT  
2
1
4
0x100  
Inter process communication  
IPC structures  
IPC  
8
8
0x20  
0x20  
2
2
IPC interrupt structures  
Protection  
Shared memory protection unit struc-  
tures  
Memory protection unit structures  
PROT  
0x4023 2000  
16  
16  
0x40  
2
2
3
4
0x4023 4000  
0x4024 0000  
0x400  
FLASHC Flash controller  
System Resources Subsystem Core  
0x4026 0000  
Registers  
Clock Supervision High Frequency  
Clock Supervision Reference Frequency  
Clock Supervision Low Frequency  
Clock Supervision Internal Low Frequency 0x4026 1730  
Multi Counter WDT  
Free Running WDT  
SRSS Backup Domain/RTC  
Backup Register  
P-DMA0 Controller  
P-DMA0 channel structures  
P-DMA1 Controller  
P-DMA1 channel structures  
M-DMA0 Controller  
M-DMA0 channels  
eFUSE Customer Data (192 bits)  
High-Speed I/O Matrix (HSIOM)  
0x4026 1400  
0x4026 1710  
0x4026 1720  
3
1
1
1
2
1
0x10  
SRSS  
2
5
0x4026 8000  
0x4026 C000  
0x4027 0000  
0x4027 1000  
0x4028 0000  
0x4028 8000  
0x4029 0000  
0x4029 8000  
0x402A 0000  
0x402A 1000  
0x402C 0868  
0x4030 0000  
0x100  
BACKUP  
P-DMA  
2
2
2
2
6
7
8
9
4
0x04  
0x40  
0x40  
54  
26  
M-DMA  
2
6
0x100  
0x04  
0x10  
eFUSE  
HSIOM  
Note  
2
3
10  
0
17  
16.These six Programmable PPUs are configured by the Boot ROM and are available for the user based on the access rights. Refer to the  
device specific TRM to know more about the configuration of these programmable PPUs.  
Datasheet  
23  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Peripheral I/O map  
Table 6-1  
Section  
GPIO  
CYT2B6 peripheral I/O map (continued)  
Description  
Base Address Instances Instance Size Group Slave  
GPIO port control/configuration  
Programmable I/O configuration  
SMARTIO port configuration  
Timer/Counter/PWM 0 (TCPWM0)  
TCPWM0 Group #0 (16-bit)  
TCPWM0 Group #1 (16-bit, Motor control) 0x4038 8000  
TCPWM0 Group #2 (32-bit)  
Event generator 0 (EVTGEN0)  
Event generator 0 comparator structures 0x403F 0800  
Local Interconnect Network 0 (LIN0)  
LIN0 Channels  
CAN0 controller  
Message RAM CAN0  
CAN1 controller  
0x4031 0000  
0x4032 0000  
0x4032 0C00  
0x4038 0000  
0x4038 0000  
17  
0x80  
3
1
SMARTIO  
3
2
3
0x100  
46  
4
2
0x80  
0x80  
0x80  
TCPWM  
3
3
0x4039 0000  
0x403F 0000  
EVTGEN  
LIN  
3
5
5
5
4
0
1
2
11  
0x20  
0x4050 0000  
0x4050 8000  
0x4052 0000  
0x4053 0000  
0x4054 0000  
0x4055 0000  
5
2
0x100  
0x200  
0x5FFF  
0x200  
0x5FFF  
TTCANFD  
SCB  
2
6
Message RAM CAN1  
0-7  
[NA  
2, 6]  
Serial Communications Block  
(SPI/UART/I2C)  
0x4060 0000  
0x10000  
6
Programmable Analog Subsystem  
(PASS0)  
0x4090 0000  
SAR0 channel controller  
SAR1 channel controller  
SAR2 channel controller  
SAR0 channel structures  
SAR1 channel structures  
SAR2 channel structures  
0x4090 0000  
0x4090 1000  
0x4090 2000  
0x4090 0800  
0x4090 1800  
0x4090 2800  
PASS0  
SAR  
9
0
11  
13  
8
0x40  
0x40  
0x40  
Datasheet  
24  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
CYT2B6 clock diagram  
7
CYT2B6 clock diagram  
IMO  
EXT_CLK  
ECO  
WCO  
ILO0  
ILO1  
LEGEND 1:  
LEGEND 2:  
ECO  
Prescaler  
LS  
LS  
LS  
Active Domain  
DeepSleep Domain  
Hibernate Domain  
LS  
MUX  
LS  
MUX  
MUX  
MUX  
MUX  
MUX  
MUX  
FLL  
MUX  
PLL  
MUX  
MUX  
Relationship of Monitored Clock  
and Reference Clock  
CLK_ILO0  
WDT  
RTC  
MUX  
CLK_BAK  
Monitored Clock  
CSV  
CLK_  
PATH0  
CLK_  
PATH1  
CLK_  
PATH2  
CLK_  
PATH3  
CLK_REF_HF  
CLK_LF  
Reference Clock  
CLK_ILO0  
CSV  
MCWDT  
MUX  
MUX  
MUX  
Predivider  
(1/2/4/8)  
Predivider  
(1/2/4/8)  
Predivider  
(1/2/4/8)  
CSV  
CLK_ILO0  
CSV  
CLK_LF  
CSV  
CSV  
CSV  
CLK_HF2  
CLK_REF_HF  
Event Generator  
CLK_HF1  
CLK_HF0  
ROM/SRAM/FLASH  
Divider  
(1-256)  
Divider  
(1-256)  
CM4  
CLK_FAST  
CLK_SLOW  
CLK_PERI  
CPUSS Fast Infrastructure  
Divider  
(1-256)  
CM0+  
CPUSS Slow Infrastructure  
P-DMA / M-DMA  
CRYPTO  
PERI  
SRSS  
Divider  
(1-256)  
EFUSE  
CLK_GR3  
CLK_GR5  
Divider  
(1-256)  
IOSS  
TCPWM  
CAN FD  
LIN  
Divider  
(1-256)  
CLK_GR6  
CLK_GR9  
SCB[*]  
SCB[0]  
Serial interface clock  
Divider  
(1-256)  
SAR ADC  
PCLK_SMARTIOx_CLOCK  
PCLK_TCPWM_CLOCKSx  
CPUSS(Trace Clock)  
PCLK_CANFDx_CLOCK_CAN  
PCLK_LIN_CLOCK_CH_ENx  
Peripheral  
Clock Dividers  
PCLK_SCBx_CLOCK  
PCLK_PASS_CLOCK_SARx  
PCLK_CPUSS_CLOCK_TRACE_IN  
Figure 7-1  
CYT2B6 clock diagram  
Datasheet  
25  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
CYT2B6 CPU start-up sequence  
8
CYT2B6 CPU start-up sequence  
The start-up sequence is described in the following steps:  
1. System Reset (@0x0000 0000)  
2. CM0+ executes ROM boot (@0x0000 0004)  
i. Applies trims  
ii. Applies Debug Access port (DAP) access restrictions and system protection from eFuse and supervisory  
flash  
iii.Authenticates flash boot (only in SECURE life-cycle stage) and transfers control to it  
3. CM0+ executes flash boot (from Supervisory flash @0x1700 2000)  
i. Debug pins are configured as per the SWD/JTAG spec[17]  
ii. Sets CM0+ vector offset register (CM0_VTOR part of the Arm® system space) to the beginning of flash  
(@0x1000 0000)  
iii.CM0+ branches to its Reset handler  
4. CM0+ starts execution  
i. Moves CM0+ vector table to SRAM (updates CM0+ vector table base)  
ii. Sets CM4_VECTOR_TABLE_BASE (@0x0000 0200) to the location of CM4 vector table mentioned in flash  
(specified in CM4 linker definition file)  
iii.Releases CM4 from reset  
iv.Continues execution of CM0+ user application  
5. CM4 executes directly from either code-flash or SRAM  
i. CM4 branches to its Reset handler  
ii. Continues execution of CM4 user application  
Note  
17.Port configuration of SWD/JTAG pins will be changed from the default GPIO mode to support debugging after the boot process, refer  
to Table 11-1 for pin assignments.  
Datasheet  
26  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Pin assignment  
9
Pin assignment  
VSSD  
P0.0  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDDD  
P18.7  
P18.6  
P18.5  
P18.4  
P18.3  
P18.2  
P18.1  
P18.0  
P17.2  
P17.1  
P17.0  
P14.3  
P14.2  
P14.1  
P14.0  
P13.7  
P13.6  
P13.5  
P13.4  
P13.3  
P13.2  
P13.1  
P13.0  
VSSD  
2
P0.1  
3
P0.2  
4
P0.3  
5
P2.0  
6
P2.1  
7
P2.2  
8
P2.3  
9
P3.0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P3.1  
VDDD  
VSSD  
P5.0  
100-LQFP  
P5.1  
P5.2  
P5.3  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
VDDD  
VDDIO_1  
Figure 9-1  
100-LQFP pin assignment  
Datasheet  
27  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Pin assignment  
VSSD  
PWM_18/PWM_22_N/TC_18_TR0/TC_22_TR1/SCB0_RX/SCB7_SDA (1)/SCB0_MISO/LIN1_RX P0.0  
PWM_17/PWM_18_N/TC_17_TR0/TC_18_TR1/SCB0_TX/SCB7_SCL (1)/SCB0_MOSI/LIN1_TX P0.1  
PWM_14/PWM_17_N/TC_14_TR0/TC_17_TR1/SCB0_RTS/SCB0_SCL/SCB0_CLK/LIN1_EN/CAN0_1_TX P0.2  
PWM_13/PWM_14_N/TC_13_TR0/TC_14_TR1/SCB0_CTS/SCB0_SDA/SCB0_SEL0/CAN0_1_RX P0.3  
PWM_7/TC_7_TR0/SCB7_RX/SCB0_SEL1/SCB7_MISO/LIN0_RX/CAN0_0_TX/SWJ_TRSTN/TRIG_IN[2] P2.0  
PWM_6/PWM_7_N/TC_6_TR0/TC_7_TR1/SCB7_TX/SCB7_SDA (0)/SCB0_SEL2/SCB7_MOSI/LIN0_TX/CAN0_0_RX/TRIG_IN[3] P2.1  
PWM_5/PWM_6_N/TC_5_TR0/TC_6_TR1/SCB7_RTS/SCB7_SCL (0)/SCB0_SEL3/SCB7_CLK/LIN0_EN/TRIG_IN[4] P2.2  
PWM_4/PWM_5_N/TC_4_TR0/TC_5_TR1/SCB7_CTS/SCB7_SEL0/TRIG_IN[5] P2.3  
PWM_1/TC_1_TR0/TRIG_DBG[0] P3.0  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDDD  
2
P18.7 PWM_50/PWM_51_N/TC_50_TR0/TC_51_TR1/TRACE_DATA_3/ADC[2]_7  
P18.6 PWM_51/PWM_52_N/TC_51_TR0/TC_52_TR1/SCB1_SEL3/TRACE_DATA_2/ADC[2]_6  
P18.5 PWM_52/PWM_53_N/TC_52_TR0/TC_53_TR1/PWM_H_2_N/SCB1_SEL2/TRACE_DATA_1/ADC[2]_5  
P18.4 PWM_53/PWM_54_N/TC_53_TR0/TC_54_TR1/PWM_H_2/SCB1_SEL1/TRACE_DATA_0/ADC[2]_4  
P18.3 PWM_54/PWM_55_N/TC_54_TR0/TC_55_TR1/SCB1_CTS/SCB1_SEL0/TRACE_CLOCK/ADC[2]_3  
P18.2 PWM_55/TC_55_TR0/SCB1_RTS/SCB1_SCL/SCB1_CLK/ADC[2]_2  
P18.1 PWM_H_0_N/SCB1_TX/SCB1_SDA/SCB1_MOSI/FAULT_OUT_1/ADC[2]_1  
P18.0 PWM_H_0/SCB1_RX/SCB1_MISO/FAULT_OUT_0/ADC[2]_0  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P17.2 PWM_H_2_N  
PWM_0/PWM_1_N/TC_0_TR0/TC_1_TR1/TRIG_DBG[1] P3.1  
P17.1 PWM_H_2/CAN1_1_RX  
VDDD  
P17.0 CAN1_1_TX  
100-LQFP  
VSSD  
P14.3 PWM_51/PWM_50_N/TC_51_TR0/TC_50_TR1/ADC[1]_23  
P14.2 PWM_50/PWM_49_N/TC_50_TR0/TC_49_TR1/ADC[1]_22  
P14.1 PWM_49/PWM_48_N/TC_49_TR0/TC_48_TR1/CAN1_0_RX  
P14.0 PWM_48/PWM_47_N/TC_48_TR0/TC_47_TR1/CAN1_0_TX  
P13.7 PWM_47/TC_47_TR0/TRIG_IN[23]  
PWM_9/TC_9_TR0 P5.0  
PWM_10/PWM_9_N/TC_10_TR0/TC_9_TR1 P5.1  
PWM_11/PWM_10_N/TC_11_TR0/TC_10_TR1 P5.2  
PWM_12/PWM_11_N/TC_12_TR0/TC_11_TR1 P5.3  
PWM_M_0/TC_M_0_TR0/SCB4_RX/SCB4_MISO/LIN3_RX/ADC[0]_0 P6.0  
PWM_0/PWM_M_0_N/TC_0_TR0/TC_M_0_TR1/SCB4_TX/SCB4_SDA/SCB4_MOSI/LIN3_TX/ADC[0]_1 P6.1  
PWM_M_1/PWM_0_N/TC_M_1_TR0/TC_0_TR1/SCB4_RTS/SCB4_SCL/SCB4_CLK/LIN3_EN/ADC[0]_2 P6.2  
PWM_1/PWM_M_1_N/TC_1_TR0/TC_M_1_TR1/SCB4_CTS/SCB4_SEL0/LIN4_RX/CAL_SUP_NZ/ADC[0]_3 P6.3  
PWM_M_2/PWM_1_N/TC_M_2_TR0/TC_1_TR1/SCB4_SEL1/LIN4_TX/ADC[0]_4 P6.4  
PWM_2/PWM_M_2_N/TC_2_TR0/TC_M_2_TR1/SCB4_SEL2/LIN4_EN/ADC[0]_5 P6.5  
VDDD  
P13.6 PWM_46_N/TC_46_TR1/SCB3_SEL3/TRIG_IN[22]  
P13.5 PWM_46/TC_46_TR0/SCB3_SEL2/ADC[1]_17  
P13.4 PWM_45_N/TC_45_TR1/SCB3_SEL1/ADC[1]_16  
P13.3 PWM_45/TC_45_TR0/EXT_MUX[2]_EN/SCB3_CTS/SCB3_SEL0/ADC[1]_15  
P13.2 PWM_44_N/TC_44_TR1/EXT_MUX[2]_2/SCB3_RTS/SCB3_SCL/SCB3_CLK/ADC[1]_14  
P13.1 PWM_44/TC_44_TR0/EXT_MUX[2]_1/SCB3_TX/SCB3_SDA/SCB3_MOSI/ADC[1]_13  
P13.0 EXT_MUX[2]_0/SCB3_RX/SCB3_MISO/ADC[1]_12  
VSSD  
VDDIO_1  
Figure 9-2  
100-LQFP pin assignment with alternate functions  
Datasheet  
28  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Pin assignment  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
VDDD  
P18.7  
P18.6  
P18.5  
P18.4  
P18.3  
P18.2  
P18.1  
P18.0  
P14.1  
P14.0  
P13.7  
P13.6  
P13.5  
P13.4  
P13.3  
P13.2  
P13.1  
P13.0  
VSSD  
VSSD  
P0.0  
1
2
P0.1  
3
P0.2  
4
P0.3  
5
P2.0  
6
P2.1  
7
P2.2  
8
P2.3  
9
P5.0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
80-LQFP  
P5.1  
P5.2  
P5.3  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
VDDIO_1  
Figure 9-3  
80-LQFP pin assignment  
Datasheet  
29  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Pin assignment  
VSSD  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
VDDD  
2
P18.7 PWM_50/PWM_51_N/TC_50_TR0/TC_51_TR1/TRACE_DATA_3/ADC[2]_7  
P18.6 PWM_51/PWM_52_N/TC_51_TR0/TC_52_TR1/SCB1_SEL3/TRACE_DATA_2/ADC[2]_6  
P18.5 PWM_52/PWM_53_N/TC_52_TR0/TC_53_TR1/PWM_H_2_N/SCB1_SEL2/TRACE_DATA_1/ADC[2]_5  
P18.4 PWM_53/PWM_54_N/TC_53_TR0/TC_54_TR1/PWM_H_2/SCB1_SEL1/TRACE_DATA_0/ADC[2]_4  
P18.3 PWM_54/PWM_55_N/TC_54_TR0/TC_55_TR1/SCB1_CTS/SCB1_SEL0/TRACE_CLOCK/ADC[2]_3  
P18.2 PWM_55/TC_55_TR0/SCB1_RTS/SCB1_SCL/SCB1_CLK/ADC[2]_2  
P18.1 PWM_H_0_N/SCB1_TX/SCB1_SDA/SCB1_MOSI/FAULT_OUT_1/ADC[2]_1  
P18.0 PWM_H_0/SCB1_RX/SCB1_MISO/FAULT_OUT_0/ADC[2]_0  
P14.1 PWM_49/PWM_48_N/TC_49_TR0/TC_48_TR1/CAN1_0_RX  
P14.0 PWM_48/PWM_47_N/TC_48_TR0/TC_47_TR1/CAN1_0_TX  
P13.7 PWM_47/TC_47_TR0/TRIG_IN[23]  
PWM_18/PWM_22_N/TC_18_TR0/TC_22_TR1/SCB0_RX/SCB7_SDA (1)/SCB0_MISO/LIN1_RX P0.0  
PWM_17/PWM_18_N/TC_17_TR0/TC_18_TR1/SCB0_TX/SCB7_SCL (1)/SCB0_MOSI/LIN1_TX P0.1  
3
PWM_14/PWM_17_N/TC_14_TR0/TC_17_TR1/SCB0_RTS/SCB0_SCL/SCB0_CLK/LIN1_EN/CAN0_1_TX P0.2  
PWM_13/PWM_14_N/TC_13_TR0/TC_14_TR1/SCB0_CTS/SCB0_SDA/SCB0_SEL0/CAN0_1_RX P0.3  
4
5
PWM_7/TC_7_TR0/SCB7_RX/SCB0_SEL1/SCB7_MISO/LIN0_RX/CAN0_0_TX/SWJ_TRSTN/TRIG_IN[2] P2.0  
PWM_6/PWM_7_N/TC_6_TR0/TC_7_TR1/SCB7_TX/SCB7_SDA (0)/SCB0_SEL2/SCB7_MOSI/LIN0_TX/CAN0_0_RX/TRIG_IN[3] P2.1  
PWM_5/PWM_6_N/TC_5_TR0/TC_6_TR1/SCB7_RTS/SCB7_SCL (0)/SCB0_SEL3/SCB7_CLK/LIN0_EN/TRIG_IN[4] P2.2  
6
7
8
9
PWM_4/PWM_5_N/TC_4_TR0/TC_5_TR1/SCB7_CTS/SCB7_SEL0/TRIG_IN[5] P2.3  
PWM_9/TC_9_TR0 P5.0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
80-LQFP  
PWM_10/PWM_9_N/TC_10_TR0/TC_9_TR1 P5.1  
PWM_11/PWM_10_N/TC_11_TR0/TC_10_TR1 P5.2  
P13.6 PWM_46_N/TC_46_TR1/SCB3_SEL3/TRIG_IN[22]  
PWM_12/PWM_11_N/TC_12_TR0/TC_11_TR1 P5.3  
PWM_M_0/TC_M_0_TR0/SCB4_RX/SCB4_MISO/LIN3_RX/ADC[0]_0 P6.0  
PWM_0/PWM_M_0_N/TC_0_TR0/TC_M_0_TR1/SCB4_TX/SCB4_SDA/SCB4_MOSI/LIN3_TX/ADC[0]_1 P6.1  
PWM_M_1/PWM_0_N/TC_M_1_TR0/TC_0_TR1/SCB4_RTS/SCB4_SCL/SCB4_CLK/LIN3_EN/ADC[0]_2 P6.2  
PWM_1/PWM_M_1_N/TC_1_TR0/TC_M_1_TR1/SCB4_CTS/SCB4_SEL0/LIN4_RX/CAL_SUP_NZ/ADC[0]_3 P6.3  
PWM_M_2/PWM_1_N/TC_M_2_TR0/TC_1_TR1/SCB4_SEL1/LIN4_TX/ADC[0]_4 P6.4  
PWM_2/PWM_M_2_N/TC_2_TR0/TC_M_2_TR1/SCB4_SEL2/LIN4_EN/ADC[0]_5 P6.5  
VDDIO_1  
P13.5 PWM_46/TC_46_TR0/SCB3_SEL2/ADC[1]_17  
P13.4 PWM_45_N/TC_45_TR1/SCB3_SEL1/ADC[1]_16  
P13.3 PWM_45/TC_45_TR0/EXT_MUX[2]_EN/SCB3_CTS/SCB3_SEL0/ADC[1]_15  
P13.2 PWM_44_N/TC_44_TR1/EXT_MUX[2]_2/SCB3_RTS/SCB3_SCL/SCB3_CLK/ADC[1]_14  
P13.1 PWM_44/TC_44_TR0/EXT_MUX[2]_1/SCB3_TX/SCB3_SDA/SCB3_MOSI/ADC[1]_13  
P13.0 EXT_MUX[2]_0/SCB3_RX/SCB3_MISO/ADC[1]_12  
VSSD  
Figure 9-4  
80-LQFP pin assignment with alternate functions  
Datasheet  
30  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Pin assignment  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDDD  
P18.7  
P18.6  
P18.5  
P18.4  
P18.3  
P18.1  
P18.0  
P14.2  
P14.1  
P14.0  
P13.3  
P13.2  
P13.1  
P13.0  
VSSD  
P0.0  
P0.1  
P0.2  
P0.3  
P2.0  
P2.1  
1
2
3
4
5
6
P5.0  
P5.1  
7
8
64-LQFP  
9
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
10  
11  
12  
13  
14  
15  
16  
P6.6  
VDDD  
Figure 9-5  
64-LQFP pin assignment  
Datasheet  
31  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Pin assignment  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDDD  
1
2
3
4
5
6
PWM_18/PWM_22_N/TC_18_TR0/TC_22_TR1/SCB0_RX/SCB7_SDA (1)/SCB0_MISO/LIN1_RX P0.0  
PWM_17/PWM_18_N/TC_17_TR0/TC_18_TR1/SCB0_TX/SCB7_SCL (1)/SCB0_MOSI/LIN1_TX P0.1  
P18.7 PWM_50/PWM_51_N/TC_50_TR0/TC_51_TR1/TRACE_DATA_3/ADC[2]_7  
P18.6 PWM_51/PWM_52_N/TC_51_TR0/TC_52_TR1/SCB1_SEL3/TRACE_DATA_2/ADC[2]_6  
P18.5 PWM_52/PWM_53_N/TC_52_TR0/TC_53_TR1/PWM_H_2_N/SCB1_SEL2/TRACE_DATA_1/ADC[2]_5  
P18.4 PWM_53/PWM_54_N/TC_53_TR0/TC_54_TR1/PWM_H_2/SCB1_SEL1/TRACE_DATA_0/ADC[2]_4  
PWM_14/PWM_17_N/TC_14_TR0/TC_17_TR1/SCB0_RTS/SCB0_SCL/SCB0_CLK/LIN1_EN/CAN0_1_TX P0.2  
PWM_13/PWM_14_N/TC_13_TR0/TC_14_TR1/SCB0_CTS/SCB0_SDA/SCB0_SEL0/CAN0_1_RX P0.3  
PWM_7/TC_7_TR0/SCB7_RX/SCB0_SEL1/SCB7_MISO/LIN0_RX/CAN0_0_TX/SWJ_TRSTN/TRIG_IN[2] P2.0  
PWM_6/PWM_7_N/TC_6_TR0/TC_7_TR1/SCB7_TX/SCB7_SDA (0)/SCB0_SEL2/SCB7_MOSI/LIN0_TX/CAN0_0_RX/TRIG_IN[3] P2.1  
P18.3 PWM_54/PWM_55_N/TC_54_TR0/TC_55_TR1/SCB1_CTS/SCB1_SEL0/TRACE_CLOCK/ADC[2]_3  
P18.1 PWM_H_0_N/SCB1_TX/SCB1_SDA/SCB1_MOSI/FAULT_OUT_1/ADC[2]_1  
P18.0 PWM_H_0/SCB1_RX/SCB1_MISO/FAULT_OUT_0/ADC[2]_0  
P14.2 PWM_50/PWM_49_N/TC_50_TR0/TC_49_TR1/ADC[1]_22  
P14.1 PWM_49/PWM_48_N/TC_49_TR0/TC_48_TR1/CAN1_0_RX  
P14.0 PWM_48/PWM_47_N/TC_48_TR0/TC_47_TR1/CAN1_0_TX  
P13.3 PWM_45/TC_45_TR0/EXT_MUX[2]_EN/SCB3_CTS/SCB3_SEL0/ADC[1]_15  
P13.2 PWM_44_N/TC_44_TR1/EXT_MUX[2]_2/SCB3_RTS/SCB3_SCL/SCB3_CLK/ADC[1]_14  
P13.1 PWM_44/TC_44_TR0/EXT_MUX[2]_1/SCB3_TX/SCB3_SDA/SCB3_MOSI/ADC[1]_13  
P13.0 EXT_MUX[2]_0/SCB3_RX/SCB3_MISO/ADC[1]_12  
7
8
PWM_9/TC_9_TR0 P5.0  
PWM_10/PWM_9_N/TC_10_TR0/TC_9_TR1 P5.1  
64-LQFP  
9
PWM_M_0/TC_M_0_TR0/SCB4_RX/SCB4_MISO/LIN3_RX/ADC[0]_0 P6.0  
PWM_0/PWM_M_0_N/TC_0_TR0/TC_M_0_TR1/SCB4_TX/SCB4_SDA/SCB4_MOSI/LIN3_TX/ADC[0]_1 P6.1  
PWM_M_1/PWM_0_N/TC_M_1_TR0/TC_0_TR1/SCB4_RTS/SCB4_SCL/SCB4_CLK/LIN3_EN/ADC[0]_2 P6.2  
PWM_1/PWM_M_1_N/TC_1_TR0/TC_M_1_TR1/SCB4_CTS/SCB4_SEL0/LIN4_RX/CAL_SUP_NZ/ADC[0]_3 P6.3  
PWM_M_2/PWM_1_N/TC_M_2_TR0/TC_1_TR1/SCB4_SEL1/LIN4_TX/ADC[0]_4 P6.4  
10  
11  
12  
13  
14  
PWM_2/PWM_M_2_N/TC_2_TR0/TC_M_2_TR1/SCB4_SEL2/LIN4_EN/ADC[0]_5 P6.5  
15  
16  
PWM_2_N/TC_2_TR1/SCB4_SEL3/TRIG_IN[8] P6.6  
VDDD  
VSSD  
Figure 9-6  
64-LQFP pin assignment with alternate functions  
Datasheet  
32  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
High-speed I/O matrix connections  
10  
High-speed I/O matrix connections  
Table 10-1  
HSIOM connections reference  
Name  
Number  
0
Description  
HSIOM_SEL_GPIO  
HSIOM_SEL_GPIO_DSI  
HSIOM_SEL_DSI_DSI  
HSIOM_SEL_DSI_GPIO  
HSIOM_SEL_AMUXA  
HSIOM_SEL_AMUXB  
HSIOM_SEL_AMUXA_DSI  
HSIOM_SEL_AMUXB_DSI  
HSIOM_SEL_ACT_0  
HSIOM_SEL_ACT_1  
HSIOM_SEL_ACT_2  
HSIOM_SEL_ACT_3  
HSIOM_SEL_DS_0  
HSIOM_SEL_DS_1  
HSIOM_SEL_DS_2  
HSIOM_SEL_DS_3  
HSIOM_SEL_ACT_4  
HSIOM_SEL_ACT_5  
HSIOM_SEL_ACT_6  
HSIOM_SEL_ACT_7  
HSIOM_SEL_ACT_8  
HSIOM_SEL_ACT_9  
HSIOM_SEL_ACT_10  
HSIOM_SEL_ACT_11  
HSIOM_SEL_ACT_12  
HSIOM_SEL_ACT_13  
HSIOM_SEL_ACT_14  
HSIOM_SEL_ACT_15  
HSIOM_SEL_DS_4  
HSIOM_SEL_DS_5  
HSIOM_SEL_DS_6  
HSIOM_SEL_DS_7  
GPIO controls 'out'  
Reserved  
1
2
3
4
5
6
7
8
9
Active functionality 0  
Active functionality 1  
Active functionality 2  
Active functionality 3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
DeepSleep functionality 0  
DeepSleep functionality 1  
DeepSleep functionality 2  
DeepSleep functionality 3  
Active functionality 4  
Active functionality 5  
Active functionality 6  
Active functionality 7  
Active functionality 8  
Active functionality 9  
Active functionality 10  
Active functionality 11  
Active functionality 12  
Active functionality 13  
Active functionality 14  
Active functionality 15  
DeepSleep functionality 4  
DeepSleep functionality 5  
DeepSleep functionality 6  
DeepSleep functionality 7  
Datasheet  
33  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Package pin list and alternate functions  
11  
Package pin list and alternate functions  
Most pins have alternate functionality, as specified in Table 11-1.  
Port 11 has the following additional features,  
• Ability to pass full-level analog signals to the SAR without clipping to VDDD in cases where VDDD < VDDA  
• Ability to simultaneously capture all three ADC signals with highest priority (ADC[0:2]_M)  
• Lower noise, for the most sensitive sensors  
Table 11-1  
Pin selector and alternate pin functions in DeepSleep (DS) mode, Analog, Smart I/O[21]  
Package  
Name HCon#0[18] 100-LQFP 80-LQFP 64-LQFP HCon#14  
DeepSleep mapping[20]  
HCon#29  
HCon#30  
DS #2  
Analog/HV  
SMART I/O  
I/O Type  
Pin  
Pin  
Pin  
DS #0[19]  
DS #1  
P0.0  
P0.1  
P0.2  
P0.3  
P2.0  
P2.1  
P2.2  
P2.3  
P3.0  
P3.1  
P5.0  
P5.1  
P5.2  
P5.3  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
P6.6  
P7.0  
P7.1  
P7.2  
P7.3  
P7.4  
P7.5  
P8.0  
P8.1  
P8.2  
GPIO_ENH  
2
2
1
SCB0_MISO  
SCB0_MOSI  
SCB0_CLK  
SCB0_SEL0  
SCB0_SEL1  
SCB0_SEL2  
SCB0_SEL3  
GPIO_ENH  
GPIO_ENH  
GPIO_ENH  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
3
4
3
4
2
3
SCB0_SCL  
SCB0_SDA  
5
5
4
6
6
5
SWJ_TRSTN  
7
7
6
8
8
NA  
NA  
NA  
NA  
7
9
9
10  
11  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
NA  
29  
30  
31  
32  
33  
34  
35  
36  
37  
NA  
NA  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
NA  
22  
23  
24  
25  
NA  
NA  
26  
27  
28  
8
NA  
NA  
9
ADC[0]_0  
ADC[0]_1  
ADC[0]_2  
ADC[0]_3  
ADC[0]_4  
ADC[0]_5  
10  
11  
12  
13  
14  
15  
18  
19  
20  
NA  
NA  
NA  
21  
22  
NA  
ADC[0]_8  
ADC[0]_9  
ADC[0]_11  
ADC[0]_12  
ADC[0]_17  
Notes  
18.HCon refers to High Speed I/O matrix connection reference as per Table 10-1.  
19.DeepSleep ordering (DS #0, DS #1, DS #2) does not have any impact on choosing any alternate functions; the HSIOM module handles  
the individual alternate function assignment.  
20.All port pin functions available in DeepSleep mode are also available in Active mode.  
21.Refer to Table 14-1 for more information on pin multiplexer abbreviations used.  
Datasheet  
34  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Package pin list and alternate functions  
Table 11-1  
Pin selector and alternate pin functions in DeepSleep (DS) mode, Analog, Smart I/O[21]  
Package  
Name HCon#0[18] 100-LQFP 80-LQFP 64-LQFP HCon#14  
DeepSleep mapping[20]  
HCon#29  
HCon#30  
DS #2  
Analog/HV  
SMART I/O  
I/O Type  
GPIO_STD  
GPIO_STD  
Pin  
38  
Pin  
29  
Pin  
23  
DS #0[19]  
DS #1  
P11.0  
P11.1  
P11.2  
P12.0  
P12.1  
P12.2  
P12.3  
P12.4  
P13.0  
P13.1  
P13.2  
P13.3  
P13.4  
P13.5  
P13.6  
P13.7  
P14.0  
P14.1  
P14.2  
P14.3  
P17.0  
P17.1  
P17.2  
P18.0  
P18.1  
P18.2  
P18.3  
P18.4  
P18.5  
P18.6  
P18.7  
P19.0  
P19.1  
P19.2  
P19.3  
P21.0  
P21.1  
P21.2  
P21.3  
P21.5  
P22.0  
ADC[0]_M  
ADC[1]_M  
ADC[2]_M  
ADC[1]_4  
ADC[1]_5  
ADC[1]_6  
ADC[1]_7  
ADC[1]_8  
39  
30  
24  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
GPIO_STD  
40  
45  
46  
47  
48  
49  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
77  
78  
79  
80  
81  
82  
83  
84  
90  
91  
31  
36  
37  
38  
39  
NA  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
NA  
NA  
NA  
NA  
NA  
52  
53  
54  
55  
56  
57  
58  
59  
62  
63  
NA  
NA  
64  
65  
66  
67  
NA  
73  
25  
30  
31  
NA  
NA  
NA  
34  
35  
36  
37  
NA  
NA  
NA  
NA  
38  
39  
40  
NA  
NA  
NA  
NA  
41  
42  
NA  
43  
44  
45  
46  
47  
NA  
NA  
NA  
NA  
50  
51  
52  
53  
NA  
59  
SMARTIO12_0  
SMARTIO12_1  
SMARTIO12_2  
SMARTIO12_3  
SMARTIO12_4  
SMARTIO13_0  
SMARTIO13_1  
SMARTIO13_2  
SMARTIO13_3  
SMARTIO13_4  
SMARTIO13_5  
SMARTIO13_6  
SMARTIO13_7  
SMARTIO14_0  
SMARTIO14_1  
SMARTIO14_2  
ADC[1]_12  
ADC[1]_13  
ADC[1]_14  
ADC[1]_15  
ADC[1]_16  
ADC[1]_17  
ADC[1]_22  
ADC[1]_23  
ADC[2]_0  
ADC[2]_1  
ADC[2]_2  
ADC[2]_3  
ADC[2]_4  
ADC[2]_5  
ADC[2]_6  
ADC[2]_7  
[22]  
WCO_IN  
[22]  
WCO_OUT  
[22]  
ECO_IN  
ECO_OUT  
[22]  
Notes  
22.I/O pins that support an oscillator function (WCO or ECO) must be configured for high-impedance if the oscillator is enabled.  
23.This I/O has increased leakage to ground when the VDDD supply is below the POR threshold.  
Datasheet  
35  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Power pin assignments  
Table 11-1  
Pin selector and alternate pin functions in DeepSleep (DS) mode, Analog, Smart I/O[21]  
Package  
Name HCon#0[18] 100-LQFP 80-LQFP 64-LQFP HCon#14  
DeepSleep mapping[20]  
HCon#29  
HCon#30  
DS #2  
Analog/HV  
SMART I/O  
I/O Type  
GPIO_STD  
GPIO_STD  
Pin  
92  
Pin  
74  
Pin  
NA  
DS #0[19]  
DS #1  
P22.1  
P22.2  
P22.3  
P23.3  
P23.4  
93  
NA  
NA  
GPIO_STD  
GPIO_STD  
GPIO_STD  
94  
95  
96  
NA  
75  
76  
NA  
60  
61  
SWJ_SWO_  
TDO  
P23.5  
P23.6  
P23.7  
GPIO_STD  
GPIO_STD  
GPIO_STD  
97  
98  
99  
77  
78  
79  
62  
63  
64  
SWJ_SWCLK_TCLK  
SWJ_SWDIO_TMS  
SWJ_SWDOE_TDI  
HIBERNATE_WAKEUP[1]  
12  
Power pin assignments  
Table 12-1  
Power pin assignments  
Packages  
Name  
Remarks  
64-LQFP  
80-LQFP  
100-LQFP  
VDDD  
VSSD  
55, 48, 16  
80, 69, 60  
100, 86, 75, 24, 12 Main digital supply  
57, 56, 49, 33, 17 71, 70, 61, 41, 88, 87, 76, 51, 27, 26, Main digital ground  
21, 1  
20  
13, 1  
25  
VDDIO_1  
VDDIO_2  
VCCD[24]  
NA  
32  
58  
I/O supply for analog I/Os (except analog  
I/Os on VDDA  
)
40  
72  
50  
I/O supply for analog I/Os (except analog  
I/Os on VDDA), P11  
89, 28  
Main regulated supply. Driven by LDO  
regulator  
VREFH  
VREFL  
VDDA  
VSSA  
XRES_L  
29  
26  
28  
27  
54  
35  
32  
34  
33  
68  
44  
41  
43  
42  
85  
High reference voltage for SAR ADCs  
Low reference voltage for SAR ADCs  
Main analog supply for SAR ADCs  
Main analog ground  
Active LOW external reset input  
Note  
24.The VCCD pins must be connected together to ensure a low-impedance connection. (see the requirement in Figure 27-2).  
Datasheet  
36  
002-25756 Rev. *C  
2022-10-07  
13  
Alternate function pin assignments  
Table 13-1  
Alternate pin functions in Active mode  
Active mapping  
HCon#17  
Name  
HCon#8[25]  
ACT #0[26]  
HCon#9  
HCon#10  
HCon#11  
HCon#16  
ACT #4  
HCon#18  
ACT #6  
HCon#19  
ACT #7  
HCon#20  
HCon#21  
ACT #9  
HCon#26  
ACT #14  
HCon#27  
ACT #15  
ACT #1  
ACT #2  
ACT #3  
ACT #5  
ACT #8  
P0.0 PWM0_18  
P0.1 PWM0_17  
P0.2 PWM0_14  
P0.3 PWM0_13  
P2.0 PWM0_7  
P2.1 PWM0_6  
P2.2 PWM0_5  
P2.3 PWM0_4  
P3.0 PWM0_1  
P3.1 PWM0_0  
P5.0 PWM0_9  
P5.1 PWM0_10  
P5.2 PWM0_11  
P5.3 PWM0_12  
P6.0 PWM0_M_0  
P6.1 PWM0_0  
P6.2 PWM0_M_1  
P6.3 PWM0_1  
P6.4 PWM0_M_2  
P6.5 PWM0_2  
P6.6  
PWM0_22_N  
TC0_18_TR0  
TC0_22_TR1  
SCB0_RX  
SCB0_TX  
SCB0_RTS  
SCB0_CTS  
SCB7_RX  
SCB7_TX  
SCB7_RTS  
SCB7_CTS  
SCB7_SDA (1)  
LIN1_RX  
PWM0_18_N  
PWM0_17_N  
PWM0_14_N  
TC0_17_TR0  
TC0_14_TR0  
TC0_13_TR0  
TC0_7_TR0  
TC0_6_TR0  
TC0_5_TR0  
TC0_4_TR0  
TC0_1_TR0  
TC0_0_TR0  
TC0_9_TR0  
TC0_10_TR0  
TC0_11_TR0  
TC0_12_TR0  
TC0_M_0_TR0  
TC0_0_TR0  
TC0_M_1_TR0  
TC0_1_TR0  
TC0_M_2_TR0  
TC0_2_TR0  
TC0_18_TR1  
TC0_17_TR1  
TC0_14_TR1  
SCB7_SCL (1)  
LIN1_TX  
LIN1_EN  
CAN0_1_TX  
CAN0_1_RX  
CAN0_0_TX  
CAN0_0_RX  
SCB7_MISO  
SCB7_MOSI  
SCB7_CLK  
SCB7_SEL0  
LIN0_RX  
LIN0_TX  
LIN0_EN  
TRIG_IN[2]  
TRIG_IN[3]  
TRIG_IN[4]  
TRIG_IN[5]  
PWM0_7_N  
PWM0_6_N  
PWM0_5_N  
TC0_7_TR1  
TC0_6_TR1  
TC0_5_TR1  
SCB7_SDA (0)  
SCB7_SCL (0)  
TRIG_DBG[0]  
TRIG_DBG[1]  
PWM0_1_N  
TC0_1_TR1  
PWM0_9_N  
PWM0_10_N  
PWM0_11_N  
TC0_9_TR1  
TC0_10_TR1  
TC0_11_TR1  
SCB4_RX  
SCB4_TX  
SCB4_RTS  
SCB4_CTS  
SCB4_MISO  
SCB4_MOSI  
SCB4_CLK  
SCB4_SEL0  
SCB4_SEL1  
SCB4_SEL2  
SCB4_SEL3  
SCB5_MISO  
SCB5_MOSI  
SCB5_CLK  
LIN3_RX  
LIN3_TX  
LIN3_EN  
LIN4_RX  
LIN4_TX  
LIN4_EN  
PWM0_M_0_N  
PWM0_0_N  
TC0_M_0_TR1  
TC0_0_TR1  
SCB4_SDA  
SCB4_SCL  
PWM0_M_1_N  
PWM0_1_N  
TC0_M_1_TR1  
TC0_1_TR1  
CAL_SUP_NZ  
PWM0_M_2_N  
PWM0_2_N  
TC0_M_2_TR1  
TC0_2_TR1  
TRIG_IN[8]  
P7.0 PWM0_M_4  
P7.1 PWM0_15  
P7.2  
TC0_M_4_TR0  
TC0_15_TR0  
SCB5_RX  
SCB5_TX  
SCB5_RTS  
LIN4_RX  
LIN4_TX  
LIN4_EN  
PWM0_M_4_N  
PWM0_15_N  
TC0_M_4_TR1  
TC0_15_TR1  
SCB5_SDA  
SCB5_SCL  
Notes  
25.High Speed I/O matrix connection (HCon) reference as per Table 10-1.  
26.Active Mode ordering (ACT#0, ACT#1, and so on) does not have any impact on configuring alternate functions; the HSIOM module handles the alternate function assignments.  
27.Refer to Table 14-1 for more information on pin multiplexer abbreviations used.  
28.For any function marked with an identifier (n), the AC timing is only guaranteed within the respective group "n".  
Table 13-1  
Alternate pin functions in Active mode (continued)  
Active mapping  
HCon#17  
Name  
HCon#8[25]  
ACT #0[26]  
HCon#9  
ACT #1  
HCon#10  
HCon#11  
ACT #3  
HCon#16  
ACT #4  
HCon#18  
ACT #6  
HCon#19  
HCon#20  
ACT #8  
HCon#21  
ACT #9  
HCon#26  
ACT #14  
HCon#27  
ACT #15  
ACT #2  
ACT #5  
ACT #7  
P7.3 PWM0_16  
P7.4  
TC0_16_TR0  
SCB5_CTS  
SCB5_SEL0  
PWM0_16_N  
TC0_16_TR1  
SCB5_SEL1  
SCB5_SEL2  
P7.5 PWM0_17  
P8.0 PWM0_19  
P8.1 PWM0_20  
P8.2 PWM0_21  
P11.0  
TC0_17_TR0  
TC0_19_TR0  
TC0_20_TR0  
TC0_21_TR0  
LIN2_RX  
LIN2_TX  
LIN2_EN  
CAN0_0_TX  
CAN0_0_RX  
PWM0_19_N  
PWM0_20_N  
TC0_19_TR1  
TC0_20_TR1  
TRIG_IN[14]  
TRIG_IN[15]  
P11.1  
P11.2  
P12.0 PWM0_36  
P12.1 PWM0_37  
P12.2 PWM0_38  
P12.3 PWM0_39  
P12.4 PWM0_40  
P13.0  
TC0_36_TR0  
TC0_37_TR0  
TC0_38_TR0  
TC0_39_TR0  
TC0_40_TR0  
TRIG_IN[20]  
TRIG_IN[21]  
PWM0_36_N  
PWM0_37_N  
PWM0_38_N  
PWM0_39_N  
TC0_36_TR1  
TC0_37_TR1  
TC0_38_TR1  
TC0_39_TR1  
EXT_MUX[1]_EN  
EXT_MUX[1]_0  
EXT_MUX[1]_1  
EXT_MUX[2]_0  
EXT_MUX[2]_1  
EXT_MUX[2]_2  
EXT_MUX[2]_EN  
SCB3_RX  
SCB3_MISO  
SCB3_MOSI  
SCB3_CLK  
SCB3_SEL0  
SCB3_SEL1  
SCB3_SEL2  
SCB3_SEL3  
P13.1 PWM0_44  
P13.2  
TC0_44_TR0  
TC0_45_TR0  
TC0_46_TR0  
SCB3_TX  
SCB3_RTS  
SCB3_CTS  
SCB3_SDA  
SCB3_SCL  
PWM0_44_N  
PWM0_45_N  
PWM0_46_N  
TC0_44_TR1  
TC0_45_TR1  
TC0_46_TR1  
P13.3 PWM0_45  
P13.4  
P13.5 PWM0_46  
P13.6  
TRIG_IN[22]  
TRIG_IN[23]  
P13.7 PWM0_47  
P14.0 PWM0_48  
P14.1 PWM0_49  
P14.2 PWM0_50  
P14.3 PWM0_51  
P17.0  
TC0_47_TR0  
TC0_48_TR0  
TC0_49_TR0  
TC0_50_TR0  
TC0_51_TR0  
PWM0_47_N  
PWM0_48_N  
PWM0_49_N  
PWM0_50_N  
TC0_47_TR1  
TC0_48_TR1  
TC0_49_TR1  
TC0_50_TR1  
CAN1_0_TX  
CAN1_0_RX  
CAN1_1_TX  
CAN1_1_RX  
P17.1  
PWM0_H_2  
P17.2  
PWM0_H_2_N  
PWM0_H_0  
P18.0  
SCB1_RX  
SCB1_TX  
SCB1_MISO  
SCB1_MOSI  
FAULT_OUT_0  
FAULT_OUT_1  
P18.1  
PWM0_H_0_N  
SCB1_SDA  
Table 13-1  
Alternate pin functions in Active mode (continued)  
Active mapping  
HCon#17  
Name  
HCon#8[25]  
ACT #0[26]  
HCon#9  
ACT #1  
HCon#10  
HCon#11  
ACT #3  
HCon#16  
ACT #4  
HCon#18  
ACT #6  
HCon#19  
ACT #7  
HCon#20  
ACT #8  
HCon#21  
ACT #9  
HCon#26  
ACT #14  
HCon#27  
ACT #15  
ACT #2  
ACT #5  
P18.2 PWM0_55  
P18.3 PWM0_54  
P18.4 PWM0_53  
P18.5 PWM0_52  
P18.6 PWM0_51  
P18.7 PWM0_50  
P19.0  
TC0_55_TR0  
SCB1_RTS  
SCB1_CTS  
SCB1_SCL  
SCB1_CLK  
PWM0_55_N  
PWM0_54_N  
PWM0_53_N  
PWM0_52_N  
PWM0_51_N  
PWM0_50_N  
TC0_54_TR0  
TC0_53_TR0  
TC0_52_TR0  
TC0_51_TR0  
TC0_50_TR0  
TC0_55_TR1  
TC0_54_TR1  
TC0_53_TR1  
TC0_52_TR1  
TC0_51_TR1  
TC0_50_TR1  
SCB1_SEL0  
SCB1_SEL1  
SCB1_SEL2  
SCB1_SEL3  
TRACE_CLOCK  
TRACE_DATA_0  
TRACE_DATA_1  
TRACE_DATA_2  
TRACE_DATA_3  
FAULT_OUT_2  
FAULT_OUT_3  
PWM0_H_2  
PWM0_H_2_N  
TC0_H_0_TR0  
TC0_H_0_TR1  
P19.1 PWM0_26  
P19.2  
TC0_26_TR0  
PWM0_26_N  
TC0_26_TR1  
TRIG_IN[28]  
TRIG_IN[29]  
P19.3  
P21.0 PWM0_42  
P21.1 PWM0_41  
P21.2 PWM0_40  
P21.3 PWM0_39  
P21.5 PWM0_37  
P22.0 PWM0_34  
P22.1 PWM0_33  
P22.2  
TC0_42_TR0  
TC0_41_TR0  
TC0_40_TR0  
TC0_39_TR0  
TC0_37_TR0  
TC0_34_TR0  
TC0_33_TR0  
PWM0_42_N  
PWM0_41_N  
PWM0_40_N  
TC0_42_TR1  
TC0_41_TR1  
TC0_40_TR1  
EXT_CLK  
TRIG_DBG[1]  
CAN1_1_TX  
CAN1_1_RX  
PWM0_34_N  
PWM0_33_N  
TC0_34_TR1  
TC0_33_TR1  
P22.3  
P23.3  
TRIG_IN[30]  
TRIG_IN[31]  
FAULT_OUT_3  
TRIG_DBG[0]  
P23.4 PWM0_25  
P23.5 PWM0_24  
P23.6 PWM0_23  
P23.7 PWM0_22  
TC0_25_TR0  
TC0_24_TR0  
TC0_23_TR0  
TC0_22_TR0  
PWM0_25_N  
PWM0_24_N  
PWM0_23_N  
TC0_25_TR1  
TC0_24_TR1  
TC0_23_TR1  
EXT_CLK  
CAL_SUP_NZ  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Pin mux descriptions  
14  
Pin mux descriptions  
Table 14-1  
Pin mux descriptions  
Sl.  
Pin  
Module  
Description  
No.  
1
2
3
4
5
6
7
8
9
PWMx_y  
PWMx_y_N  
TCPWM  
TCPWM 16-bit PWM (no motor control), PWM_DT and PWM_PR line  
out, x-TCPWM block, y-counter number  
TCPWM 16-bit PWM (no motor control), PWM_DT and PWM_PR  
complementary line out (N), x-TCPWM block, y-counter number  
TCPWM 16-bit PWM with motor control line out, x-TCPWM block,  
y-counter number  
TCPWM 16-bit PWM with motor control complementary line out (N),  
x-TCPWM block, y-counter number  
TCPWM 32-bit PWM, PWM_DT and PWM_PR line out, x-TCPWM  
block, y-counter number  
TCPWM 32-bit PWM, PWM_DT and PWM_PR complementary line out  
(N), x-TCPWM block, y-counter number  
TCPWM 16-bit dedicated counter input triggers, x-TCPWM block,  
y-counter number, z-trigger number  
TCPWM 16-bit dedicated counter input triggers with motor control,  
x-TCPWM block, y-counter number, z-trigger number  
TCPWM  
TCPWM  
TCPWM  
TCPWM  
TCPWM  
TCPWM  
TCPWM  
TCPWM  
PWMx_M_y  
PWMx_M_y_N  
PWMx_H_y  
PWMx_H_y_N  
TCx_y_TRz  
TCx_M_y_TRz  
TCx_H_y_TRz  
TCPWM 32-bit dedicated counter input triggers, x-TCPWM block,  
y-counter number, z-trigger number  
10 SCBx_RX  
SCB  
UART Receive, x-SCB block  
11 SCBx_TX  
SCB  
UART Transmit, x-SCB block  
12 SCBx_RTS  
13 SCBx_CTS  
14 SCBx_SDA  
15 SCBx_SCL  
16 SCBx_MISO  
17 SCBx_MOSI  
18 SCBx_CLK  
19 SCBx_SELy  
20 LINx_RX  
SCB  
SCB  
SCB  
SCB  
SCB  
SCB  
SCB  
SCB  
UART Request to Send (Handshake), x-SCB block  
UART Clear to Send (Handshake), x-SCB block  
I2C Data line, x-SCB block  
I2C Clock line, x-SCB block  
SPI Master Input Slave Output, x-SCB block  
SPI Master Output Slave Input, x-SCB block  
SPI Serial Clock, x-SCB block  
SPI Slave Select, x-SCB block, y-select line  
LIN Receive line, x-LIN block  
LIN  
21 LINx_TX  
LIN  
LIN Transmit line, x-LIN block  
22 LINx_EN  
LIN  
LIN Enable line, x-LIN block  
23 CANx_y_TX  
24 CANx_y_RX  
25 CAL_SUP_NZ  
26 FAULT_OUT_x  
27 TRACE_DATA_x  
28 TRACE_CLOCK  
29 RTC_CAL  
CANFD  
CANFD  
CPUSS  
SRSS  
SRSS  
SRSS  
CAN Transmit line, x-CAN block, y-channel number  
CAN Receive line, x-CAN block, y-channel number  
ETAS Calibration support line  
Fault output line x-0 to 3  
Trace dataout line x-0 to 3  
Trace clock line  
SRSS RTC RTC calibration clock input  
30 SWJ_TRSTN  
31 SWJ_SWO_TDO  
SRSS  
SRSS  
JTAG Test reset line (Active low)  
JTAG Test data output/SWO (Serial Wire Output)  
Datasheet  
40  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Pin mux descriptions  
Table 14-1  
Pin mux descriptions (continued)  
Sl.  
Pin  
Module  
Description  
No.  
32 SWJ_SWCLK_TCLK  
33 SWJ_SWDIO_TMS  
34 SWJ_SWDOE_TDI  
SRSS  
SRSS  
SRSS  
SRSS  
JTAG Test clock/SWD clock (Serial Wire Clock)  
JTAG Test mode select/SWD data (Serial Wire Data Input/Output)  
JTAG Test data input  
35 HIBER-  
Hibernate wakeup line x-0 to 1  
NATE_WAKEUP[x]  
36 ADC[x]_y  
37 ADC[x]_M  
38 EXT_MUX[x]_y  
39 EXT_MUX[x]_EN  
PASS SAR SAR, channel, x-SAR number, y-channel number  
PASS SAR SAR motor control input, x-SAR number  
PASS SAR External SAR MUX inputs, x-MUX number, y-MUX input 0 to 2  
PASS SAR External SAR MUX enable line  
Datasheet  
41  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Interrupts and wake-up assignments  
15  
Interrupts and wake-up assignments  
Table 15-1  
Peripheral interrupt assignments and wake-up sources  
Source Power Mode  
Interrupt  
Description  
0
1
2
3
4
5
6
7
cpuss_interrupts_ipc_0_IRQn DeepSleep CPUSS Inter Process Communication Interrupt #0  
cpuss_interrupts_ipc_1_IRQn DeepSleep CPUSS Inter Process Communication Interrupt #1  
cpuss_interrupts_ipc_2_IRQn DeepSleep CPUSS Inter Process Communication Interrupt #2  
cpuss_interrupts_ipc_3_IRQn DeepSleep CPUSS Inter Process Communication Interrupt #3  
cpuss_interrupts_ipc_4_IRQn DeepSleep CPUSS Inter Process Communication Interrupt #4  
cpuss_interrupts_ipc_5_IRQn DeepSleep CPUSS Inter Process Communication Interrupt #5  
cpuss_interrupts_ipc_6_IRQn DeepSleep CPUSS Inter Process Communication Interrupt #6  
cpuss_interrupts_ipc_7_IRQn DeepSleep CPUSS Inter Process Communication Interrupt #7  
cpuss_interrupts_-  
8
9
DeepSleep CPUSS Fault Structure #0 Interrupt  
fault_0_IRQn  
cpuss_interrupts_-  
DeepSleep CPUSS Fault Structure #1 Interrupt  
fault_1_IRQn  
cpuss_interrupts_-  
10  
DeepSleep CPUSS Fault Structure #2 Interrupt  
fault_2_IRQn  
cpuss_interrupts_-  
11  
12  
13  
DeepSleep CPUSS Fault Structure #3 Interrupt  
fault_3_IRQn  
srss_interrupt_backup_IRQn  
srss_inter-  
rupt_mcwdt_0_IRQn  
DeepSleep BACKUP domain Interrupt  
DeepSleep Multi Counter Watchdog Timer #0 interrupt  
srss_inter-  
rupt_mcwdt_1_IRQn  
14  
DeepSleep Multi Counter Watchdog Timer #1 interrupt  
15  
16  
17  
srss_interrupt_wdt_IRQn  
srss_interrupt_IRQn  
scb_0_interrupt_IRQn  
DeepSleep Hardware Watchdog Timer interrupt  
DeepSleep Other combined Interrupts for SRSS (LVD, CLKCAL)  
DeepSleep SCB0 interrupt (DeepSleep capable)  
evtgen_0_interrupt_dps-  
lp_IRQn  
ioss_interrupt_vdd_IRQn  
18  
19  
20  
DeepSleep Event gen DeepSleep domain interrupt  
I/O Supply (VDDIO, VDDA, VDDD) state change  
DeepSleep  
Interrupt  
ioss_interrupt_gpio_IRQn  
Consolidated Interrupt for GPIO_STD and  
DeepSleep  
GPIO_ENH, All Ports  
21  
23  
24  
26  
27  
28  
29  
32  
33  
34  
35  
ioss_interrupts_gpio_0_IRQn  
ioss_interrupts_gpio_2_IRQn  
ioss_interrupts_gpio_3_IRQn  
ioss_interrupts_gpio_5_IRQn  
ioss_interrupts_gpio_6_IRQn  
ioss_interrupts_gpio_7_IRQn  
ioss_interrupts_gpio_8_IRQn  
ioss_interrupts_gpio_11_IRQn DeepSleep GPIO_STD Port #11 Interrupt  
ioss_interrupts_gpio_12_IRQn DeepSleep GPIO_STD Port #12 Interrupt  
ioss_interrupts_gpio_13_IRQn DeepSleep GPIO_STD Port #13 Interrupt  
ioss_interrupts_gpio_14_IRQn DeepSleep GPIO_STD Port #14 Interrupt  
DeepSleep GPIO_ENH Port #0 Interrupt  
DeepSleep GPIO_STD Port #2 Interrupt  
DeepSleep GPIO_STD Port #3 Interrupt  
DeepSleep GPIO_STD Port #5 Interrupt  
DeepSleep GPIO_STD Port #6 Interrupt  
DeepSleep GPIO_STD Port #7 Interrupt  
DeepSleep GPIO_STD Port #8 Interrupt  
Datasheet  
42  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Interrupts and wake-up assignments  
Table 15-1  
Peripheral interrupt assignments and wake-up sources (continued)  
Source Power Mode Description  
Interrupt  
38  
39  
40  
42  
43  
44  
45  
46  
ioss_interrupts_gpio_17_IRQn DeepSleep GPIO_STD Port #17 Interrupt  
ioss_interrupts_gpio_18_IRQn DeepSleep GPIO_STD Port #18 Interrupt  
ioss_interrupts_gpio_19_IRQn DeepSleep GPIO_STD Port #19 Interrupt  
ioss_interrupts_gpio_21_IRQn DeepSleep GPIO_STD Port #21 Interrupt  
ioss_interrupts_gpio_22_IRQn DeepSleep GPIO_STD Port #22 Interrupt  
ioss_interrupts_gpio_23_IRQn DeepSleep GPIO_STD Port #23 Interrupt  
cpuss_interrupt_crypto_IRQn  
cpuss_interrupt_fm_IRQn  
Active  
Active  
Crypto Accelerator Interrupt  
Flash Macro Interrupt  
cpuss_interrupts_cm4_f-  
p_IRQn  
cpuss_interrupts_cm0_c-  
ti_0_IRQn  
cpuss_interrupts_cm0_c-  
ti_1_IRQn  
cpuss_interrupts_cm4_c-  
ti_0_IRQn  
47  
48  
49  
50  
Active  
Active  
Active  
Active  
CM4 Floating Point operation fault  
CM0+ CTI (Cross Trigger Interface) #0  
CM0+ CTI #1  
CM4 CTI #0  
cpuss_interrupts_cm4_c-  
ti_1_IRQn  
evtgen_0_interrupt_IRQn  
canfd_0_interrupt0_IRQn  
51  
52  
53  
Active  
Active  
Active  
CM4 CTI #1  
Event gen Active domain interrupt  
CAN0, Consolidated Interrupt #0 for all three  
channels  
canfd_0_interrupt1_IRQn  
canfd_1_interrupt0_IRQn  
canfd_1_interrupt1_IRQn  
CAN0, Consolidated Interrupt #1 for all three  
channels  
CAN1, Consolidated Interrupt #0 for all three  
channels  
CAN1, Consolidated Interrupt #1 for all three  
channels  
54  
55  
56  
Active  
Active  
Active  
57  
58  
60  
61  
63  
64  
66  
67  
69  
70  
71  
72  
73  
77  
79  
canfd_0_interrupts0_0_IRQn  
canfd_0_interrupts0_1_IRQn  
canfd_0_interrupts1_0_IRQn  
canfd_0_interrupts1_1_IRQn  
canfd_1_interrupts0_0_IRQn  
canfd_1_interrupts0_1_IRQn  
canfd_1_interrupts1_0_IRQn  
canfd_1_interrupts1_1_IRQn  
lin_0_interrupts_0_IRQn  
lin_0_interrupts_1_IRQn  
lin_0_interrupts_2_IRQn  
lin_0_interrupts_3_IRQn  
lin_0_interrupts_4_IRQn  
scb_1_interrupt_IRQn  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
CAN0, Interrupt #0, Channel #0  
CAN0, Interrupt #0, Channel #1  
CAN0, Interrupt #1, Channel #0  
CAN0, Interrupt #1, Channel #1  
CAN1, Interrupt #0, Channel #0  
CAN1, Interrupt #0, Channel #1  
CAN1, Interrupt #1, Channel #0  
CAN1, Interrupt #1, Channel #1  
LIN0, Channel #0 Interrupt  
LIN0, Channel #1 Interrupt  
LIN0, Channel #2 Interrupt  
LIN0, Channel #3 Interrupt  
LIN0, Channel #4 Interrupt  
SCB1 Interrupt  
scb_3_interrupt_IRQn  
SCB3 Interrupt  
Datasheet  
43  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Interrupts and wake-up assignments  
Table 15-1  
Peripheral interrupt assignments and wake-up sources (continued)  
Interrupt  
Source  
Power Mode  
Active  
Description  
80  
81  
83  
scb_4_interrupt_IRQn  
scb_5_interrupt_IRQn  
scb_7_interrupt_IRQn  
SCB4 Interrupt  
SCB5 Interrupt  
SCB7 Interrupt  
Active  
Active  
pass_0_inter-  
84  
85  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
SAR0, Logical Channel #0 Interrupt  
SAR0, Logical Channel #1 Interrupt  
SAR0, Logical Channel #2 Interrupt  
SAR0, Logical Channel #3 Interrupt  
SAR0, Logical Channel #4 Interrupt  
SAR0, Logical Channel #5 Interrupt  
SAR0, Logical Channel #8 Interrupt  
SAR0, Logical Channel #9 Interrupt  
SAR0, Logical Channel #11 Interrupt  
SAR0, Logical Channel #12 Interrupt  
SAR0, Logical Channel #17 Interrupt  
SAR1, Logical Channel #4 Interrupt  
SAR1, Logical Channel #5 Interrupt  
SAR1, Logical Channel #6 Interrupt  
SAR1, Logical Channel #7 Interrupt  
SAR1, Logical Channel #8 Interrupt  
SAR1, Logical Channel #12 Interrupt  
SAR1, Logical Channel #13 Interrupt  
SAR1, Logical Channel #14 Interrupt  
SAR1, Logical Channel #15 Interrupt  
SAR1, Logical Channel #16 Interrupt  
rupts_sar_0_IRQn  
pass_0_inter-  
rupts_sar_1_IRQn  
pass_0_inter-  
rupts_sar_2_IRQn  
pass_0_inter-  
rupts_sar_3_IRQn  
pass_0_inter-  
rupts_sar_4_IRQn  
pass_0_inter-  
rupts_sar_5_IRQn  
pass_0_inter-  
rupts_sar_8_IRQn  
pass_0_inter-  
rupts_sar_9_IRQn  
pass_0_inter-  
rupts_sar_11_IRQn  
pass_0_inter-  
rupts_sar_12_IRQn  
pass_0_inter-  
rupts_sar_17_IRQn  
pass_0_inter-  
rupts_sar_36_IRQn  
pass_0_inter-  
rupts_sar_37_IRQn  
pass_0_inter-  
rupts_sar_38_IRQn  
pass_0_inter-  
rupts_sar_39_IRQn  
pass_0_inter-  
rupts_sar_40_IRQn  
pass_0_inter-  
rupts_sar_44_IRQn  
86  
87  
88  
89  
92  
93  
95  
96  
101  
112  
113  
114  
115  
116  
120  
121  
122  
123  
124  
pass_0_inter-  
rupts_sar_45_IRQn  
pass_0_inter-  
rupts_sar_46_IRQn  
pass_0_inter-  
rupts_sar_47_IRQn  
pass_0_inter-  
rupts_sar_48_IRQn  
Datasheet  
44  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Interrupts and wake-up assignments  
Table 15-1  
Interrupt  
Peripheral interrupt assignments and wake-up sources (continued)  
Source  
Power Mode  
Description  
pass_0_inter-  
125  
130  
131  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
Active  
SAR1, Logical Channel #17 Interrupt  
rupts_sar_49_IRQn  
pass_0_inter-  
rupts_sar_54_IRQn  
pass_0_inter-  
rupts_sar_55_IRQn  
pass_0_inter-  
rupts_sar_64_IRQn  
pass_0_inter-  
rupts_sar_65_IRQn  
pass_0_inter-  
rupts_sar_66_IRQn  
pass_0_inter-  
rupts_sar_67_IRQn  
pass_0_inter-  
rupts_sar_68_IRQn  
pass_0_inter-  
rupts_sar_69_IRQn  
pass_0_inter-  
rupts_sar_70_IRQn  
pass_0_inter-  
rupts_sar_71_IRQn  
cpuss_interrupts_d-  
mac_0_IRQn  
cpuss_interrupts_d-  
mac_1_IRQn  
cpuss_inter-  
rupts_dw0_0_IRQn  
cpuss_inter-  
rupts_dw0_1_IRQn  
cpuss_inter-  
rupts_dw0_2_IRQn  
cpuss_inter-  
rupts_dw0_3_IRQn  
cpuss_inter-  
rupts_dw0_4_IRQn  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
SAR1, Logical Channel #22 Interrupt  
SAR1, Logical Channel #23 Interrupt  
SAR2, Logical Channel #0 Interrupt  
SAR2, Logical Channel #1 Interrupt  
SAR2, Logical Channel #2 Interrupt  
SAR2, Logical Channel #3 Interrupt  
SAR2, Logical Channel #4 Interrupt  
SAR2, Logical Channel #5 Interrupt  
SAR2, Logical Channel #6 Interrupt  
SAR2, Logical Channel #7 Interrupt  
CPUSS M-DMA0, Channel #0 Interrupt  
CPUSS M-DMA0, Channel #1 Interrupt  
CPUSS P-DMA0, Channel #0 Interrupt  
CPUSS P-DMA0, Channel #1 Interrupt  
CPUSS P-DMA0, Channel #2 Interrupt  
CPUSS P-DMA0, Channel #3 Interrupt  
CPUSS P-DMA0, Channel #4 Interrupt  
CPUSS P-DMA0, Channel #5 Interrupt  
CPUSS P-DMA0, Channel #6 Interrupt  
CPUSS P-DMA0, Channel #7 Interrupt  
CPUSS P-DMA0, Channel #8 Interrupt  
CPUSS P-DMA0, Channel #9 Interrupt  
cpuss_inter-  
rupts_dw0_5_IRQn  
cpuss_inter-  
rupts_dw0_6_IRQn  
cpuss_inter-  
rupts_dw0_7_IRQn  
cpuss_inter-  
rupts_dw0_8_IRQn  
cpuss_inter-  
rupts_dw0_9_IRQn  
Datasheet  
45  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Interrupts and wake-up assignments  
Table 15-1  
Interrupt  
Peripheral interrupt assignments and wake-up sources (continued)  
Source  
Power Mode  
Description  
cpuss_inter-  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
177  
178  
179  
180  
181  
182  
185  
186  
188  
189  
194  
Active  
CPUSS P-DMA0, Channel #10 Interrupt  
rupts_dw0_10_IRQn  
cpuss_inter-  
rupts_dw0_11_IRQn  
cpuss_inter-  
rupts_dw0_12_IRQn  
cpuss_inter-  
rupts_dw0_13_IRQn  
cpuss_inter-  
rupts_dw0_14_IRQn  
cpuss_inter-  
rupts_dw0_15_IRQn  
cpuss_inter-  
rupts_dw0_16_IRQn  
cpuss_inter-  
rupts_dw0_17_IRQn  
cpuss_inter-  
rupts_dw0_18_IRQn  
cpuss_inter-  
rupts_dw0_19_IRQn  
cpuss_inter-  
rupts_dw0_20_IRQn  
cpuss_inter-  
rupts_dw0_21_IRQn  
cpuss_inter-  
rupts_dw0_25_IRQn  
cpuss_inter-  
rupts_dw0_26_IRQn  
cpuss_inter-  
rupts_dw0_27_IRQn  
cpuss_inter-  
rupts_dw0_28_IRQn  
cpuss_inter-  
rupts_dw0_29_IRQn  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
CPUSS P-DMA0, Channel #11 Interrupt  
CPUSS P-DMA0, Channel #12 Interrupt  
CPUSS P-DMA0, Channel #13 Interrupt  
CPUSS P-DMA0, Channel #14 Interrupt  
CPUSS P-DMA0, Channel #15 Interrupt  
CPUSS P-DMA0, Channel #16 Interrupt  
CPUSS P-DMA0, Channel #17 Interrupt  
CPUSS P-DMA0, Channel #18 Interrupt  
CPUSS P-DMA0, Channel #19 Interrupt  
CPUSS P-DMA0, Channel #20 Interrupt  
CPUSS P-DMA0, Channel #21 Interrupt  
CPUSS P-DMA0, Channel #25 Interrupt  
CPUSS P-DMA0, Channel #26 Interrupt  
CPUSS P-DMA0, Channel #27 Interrupt  
CPUSS P-DMA0, Channel #28 Interrupt  
CPUSS P-DMA0, Channel #29 Interrupt  
CPUSS P-DMA0, Channel #30 Interrupt  
CPUSS P-DMA0, Channel #33 Interrupt  
CPUSS P-DMA0, Channel #34 Interrupt  
CPUSS P-DMA0, Channel #36 Interrupt  
CPUSS P-DMA0, Channel #37 Interrupt  
CPUSS P-DMA0, Channel #42 Interrupt  
cpuss_inter-  
rupts_dw0_30_IRQn  
cpuss_inter-  
rupts_dw0_33_IRQn  
cpuss_inter-  
rupts_dw0_34_IRQn  
cpuss_inter-  
rupts_dw0_36_IRQn  
cpuss_inter-  
rupts_dw0_37_IRQn  
cpuss_inter-  
rupts_dw0_42_IRQn  
Datasheet  
46  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Interrupts and wake-up assignments  
Table 15-1  
Interrupt  
Peripheral interrupt assignments and wake-up sources (continued)  
Source  
Power Mode  
Description  
cpuss_inter-  
205  
206  
207  
208  
209  
213  
214  
215  
216  
217  
218  
223  
224  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
Active  
CPUSS P-DMA0, Channel #53 Interrupt  
rupts_dw0_53_IRQn  
cpuss_inter-  
rupts_dw0_54_IRQn  
cpuss_inter-  
rupts_dw0_55_IRQn  
cpuss_inter-  
rupts_dw0_56_IRQn  
cpuss_inter-  
rupts_dw0_57_IRQn  
cpuss_inter-  
rupts_dw0_61_IRQn  
cpuss_inter-  
rupts_dw0_62_IRQn  
cpuss_inter-  
rupts_dw0_63_IRQn  
cpuss_inter-  
rupts_dw0_64_IRQn  
cpuss_inter-  
rupts_dw0_65_IRQn  
cpuss_inter-  
rupts_dw0_66_IRQn  
cpuss_inter-  
rupts_dw0_71_IRQn  
cpuss_inter-  
rupts_dw0_72_IRQn  
cpuss_inter-  
rupts_dw0_81_IRQn  
cpuss_inter-  
rupts_dw0_82_IRQn  
cpuss_inter-  
rupts_dw0_83_IRQn  
cpuss_inter-  
rupts_dw0_84_IRQn  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
CPUSS P-DMA0, Channel #54 Interrupt  
CPUSS P-DMA0, Channel #55 Interrupt  
CPUSS P-DMA0, Channel #56 Interrupt  
CPUSS P-DMA0, Channel #57 Interrupt  
CPUSS P-DMA0, Channel #61 Interrupt  
CPUSS P-DMA0, Channel #62 Interrupt  
CPUSS P-DMA0, Channel #63 Interrupt  
CPUSS P-DMA0, Channel #64 Interrupt  
CPUSS P-DMA0, Channel #65 Interrupt  
CPUSS P-DMA0, Channel #66 Interrupt  
CPUSS P-DMA0, Channel #71 Interrupt  
CPUSS P-DMA0, Channel #72 Interrupt  
CPUSS P-DMA0, Channel #81 Interrupt  
CPUSS P-DMA0, Channel #82 Interrupt  
CPUSS P-DMA0, Channel #83 Interrupt  
CPUSS P-DMA0, Channel #84 Interrupt  
CPUSS P-DMA0, Channel #85 Interrupt  
CPUSS P-DMA0, Channel #86 Interrupt  
CPUSS P-DMA0, Channel #87 Interrupt  
CPUSS P-DMA0, Channel #88 Interrupt  
CPUSS P-DMA1, Channel #0 Interrupt  
CPUSS P-DMA1, Channel #1 Interrupt  
cpuss_inter-  
rupts_dw0_85_IRQn  
cpuss_inter-  
rupts_dw0_86_IRQn  
cpuss_inter-  
rupts_dw0_87_IRQn  
cpuss_inter-  
rupts_dw0_88_IRQn  
cpuss_inter-  
rupts_dw1_0_IRQn  
cpuss_inter-  
rupts_dw1_1_IRQn  
Datasheet  
47  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Interrupts and wake-up assignments  
Table 15-1  
Interrupt  
Peripheral interrupt assignments and wake-up sources (continued)  
Source  
Power Mode  
Description  
cpuss_inter-  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
255  
256  
257  
258  
259  
260  
263  
264  
265  
266  
267  
268  
269  
Active  
CPUSS P-DMA1, Channel #2 Interrupt  
rupts_dw1_2_IRQn  
cpuss_inter-  
rupts_dw1_3_IRQn  
cpuss_inter-  
rupts_dw1_4_IRQn  
cpuss_inter-  
rupts_dw1_5_IRQn  
cpuss_inter-  
rupts_dw1_6_IRQn  
cpuss_inter-  
rupts_dw1_7_IRQn  
cpuss_inter-  
rupts_dw1_8_IRQn  
cpuss_inter-  
rupts_dw1_9_IRQn  
cpuss_inter-  
rupts_dw1_10_IRQn  
cpuss_inter-  
rupts_dw1_11_IRQn  
cpuss_inter-  
rupts_dw1_14_IRQn  
cpuss_inter-  
rupts_dw1_15_IRQn  
cpuss_inter-  
rupts_dw1_16_IRQn  
cpuss_inter-  
rupts_dw1_17_IRQn  
cpuss_inter-  
rupts_dw1_18_IRQn  
cpuss_inter-  
rupts_dw1_19_IRQn  
cpuss_inter-  
rupts_dw1_22_IRQn  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
CPUSS P-DMA1, Channel #3 Interrupt  
CPUSS P-DMA1, Channel #4 Interrupt  
CPUSS P-DMA1, Channel #5 Interrupt  
CPUSS P-DMA1, Channel #6 Interrupt  
CPUSS P-DMA1, Channel #7 Interrupt  
CPUSS P-DMA1, Channel #8 Interrupt  
CPUSS P-DMA1, Channel #9 Interrupt  
CPUSS P-DMA1, Channel #10 Interrupt  
CPUSS P-DMA1, Channel #11 Interrupt  
CPUSS P-DMA1, Channel #14 Interrupt  
CPUSS P-DMA1, Channel #15 Interrupt  
CPUSS P-DMA1, Channel #16 Interrupt  
CPUSS P-DMA1, Channel #17 Interrupt  
CPUSS P-DMA1, Channel #18 Interrupt  
CPUSS P-DMA1, Channel #19 Interrupt  
CPUSS P-DMA1, Channel #22 Interrupt  
CPUSS P-DMA1, Channel #23 Interrupt  
CPUSS P-DMA1, Channel #24 Interrupt  
CPUSS P-DMA1, Channel #25 Interrupt  
CPUSS P-DMA1, Channel #26 Interrupt  
CPUSS P-DMA1, Channel #27 Interrupt  
CPUSS P-DMA1, Channel #28 Interrupt  
cpuss_inter-  
rupts_dw1_23_IRQn  
cpuss_inter-  
rupts_dw1_24_IRQn  
cpuss_inter-  
rupts_dw1_25_IRQn  
cpuss_inter-  
rupts_dw1_26_IRQn  
cpuss_inter-  
rupts_dw1_27_IRQn  
cpuss_inter-  
rupts_dw1_28_IRQn  
Datasheet  
48  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Interrupts and wake-up assignments  
Table 15-1  
Interrupt  
Peripheral interrupt assignments and wake-up sources (continued)  
Source  
Power Mode  
Description  
cpuss_inter-  
rupts_dw1_29_IRQn  
270  
Active  
CPUSS P-DMA1, Channel #29 Interrupt  
274  
275  
276  
278  
279  
280  
281  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
307  
308  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
321  
tcpwm_0_interrupts_0_IRQn  
tcpwm_0_interrupts_1_IRQn  
tcpwm_0_interrupts_2_IRQn  
tcpwm_0_interrupts_4_IRQn  
tcpwm_0_interrupts_5_IRQn  
tcpwm_0_interrupts_6_IRQn  
tcpwm_0_interrupts_7_IRQn  
tcpwm_0_interrupts_9_IRQn  
tcpwm_0_interrupts_10_IRQn  
tcpwm_0_interrupts_11_IRQn  
tcpwm_0_interrupts_12_IRQn  
tcpwm_0_interrupts_13_IRQn  
tcpwm_0_interrupts_14_IRQn  
tcpwm_0_interrupts_15_IRQn  
tcpwm_0_interrupts_16_IRQn  
tcpwm_0_interrupts_17_IRQn  
tcpwm_0_interrupts_18_IRQn  
tcpwm_0_interrupts_19_IRQn  
tcpwm_0_interrupts_20_IRQn  
tcpwm_0_interrupts_21_IRQn  
tcpwm_0_interrupts_22_IRQn  
tcpwm_0_interrupts_23_IRQn  
tcpwm_0_interrupts_24_IRQn  
tcpwm_0_interrupts_25_IRQn  
tcpwm_0_interrupts_26_IRQn  
tcpwm_0_interrupts_33_IRQn  
tcpwm_0_interrupts_34_IRQn  
tcpwm_0_interrupts_36_IRQn  
tcpwm_0_interrupts_37_IRQn  
tcpwm_0_interrupts_38_IRQn  
tcpwm_0_interrupts_39_IRQn  
tcpwm_0_interrupts_40_IRQn  
tcpwm_0_interrupts_41_IRQn  
tcpwm_0_interrupts_42_IRQn  
tcpwm_0_interrupts_44_IRQn  
tcpwm_0_interrupts_45_IRQn  
tcpwm_0_interrupts_46_IRQn  
tcpwm_0_interrupts_47_IRQn  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
TCPWM0 Group #0, Counter #0 Interrupt  
TCPWM0 Group #0, Counter #1 Interrupt  
TCPWM0 Group #0, Counter #2 Interrupt  
TCPWM0 Group #0, Counter #4 Interrupt  
TCPWM0 Group #0, Counter #5 Interrupt  
TCPWM0 Group #0, Counter #6 Interrupt  
TCPWM0 Group #0, Counter #7 Interrupt  
TCPWM0 Group #0, Counter #9 Interrupt  
TCPWM0 Group #0, Counter #10 Interrupt  
TCPWM0 Group #0, Counter #11 Interrupt  
TCPWM0 Group #0, Counter #12 Interrupt  
TCPWM0 Group #0, Counter #13 Interrupt  
TCPWM0 Group #0, Counter #14 Interrupt  
TCPWM0 Group #0, Counter #15 Interrupt  
TCPWM0 Group #0, Counter #16 Interrupt  
TCPWM0 Group #0, Counter #17 Interrupt  
TCPWM0 Group #0, Counter #18 Interrupt  
TCPWM0 Group #0, Counter #19 Interrupt  
TCPWM0 Group #0, Counter #20 Interrupt  
TCPWM0 Group #0, Counter #21 Interrupt  
TCPWM0 Group #0, Counter #22 Interrupt  
TCPWM0 Group #0, Counter #23 Interrupt  
TCPWM0 Group #0, Counter #24 Interrupt  
TCPWM0 Group #0, Counter #25 Interrupt  
TCPWM0 Group #0, Counter #26 Interrupt  
TCPWM0 Group #0, Counter #33 Interrupt  
TCPWM0 Group #0, Counter #34 Interrupt  
TCPWM0 Group #0, Counter #36 Interrupt  
TCPWM0 Group #0, Counter #37 Interrupt  
TCPWM0 Group #0, Counter #38 Interrupt  
TCPWM0 Group #0, Counter #39 Interrupt  
TCPWM0 Group #0, Counter #40 Interrupt  
TCPWM0 Group #0, Counter #41 Interrupt  
TCPWM0 Group #0, Counter #42 Interrupt  
TCPWM0 Group #0, Counter #44 Interrupt  
TCPWM0 Group #0, Counter #45 Interrupt  
TCPWM0 Group #0, Counter #46 Interrupt  
TCPWM0 Group #0, Counter #47 Interrupt  
Datasheet  
49  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Interrupts and wake-up assignments  
Table 15-1  
Interrupt  
322  
Peripheral interrupt assignments and wake-up sources (continued)  
Source  
Power Mode  
Active  
Description  
tcpwm_0_interrupts_48_IRQn  
tcpwm_0_interrupts_49_IRQn  
tcpwm_0_interrupts_50_IRQn  
tcpwm_0_interrupts_51_IRQn  
tcpwm_0_interrupts_52_IRQn  
tcpwm_0_interrupts_53_IRQn  
tcpwm_0_interrupts_54_IRQn  
tcpwm_0_interrupts_55_IRQn  
TCPWM0 Group #0, Counter #48 Interrupt  
TCPWM0 Group #0, Counter #49 Interrupt  
TCPWM0 Group #0, Counter #50 Interrupt  
TCPWM0 Group #0, Counter #51 Interrupt  
TCPWM0 Group #0, Counter #52 Interrupt  
TCPWM0 Group #0, Counter #53 Interrupt  
TCPWM0 Group #0, Counter #54 Interrupt  
TCPWM0 Group #0, Counter #55 Interrupt  
323  
324  
325  
326  
327  
328  
329  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
tcpwm_0_inter-  
rupts_256_IRQn  
tcpwm_0_inter-  
rupts_257_IRQn  
tcpwm_0_inter-  
rupts_258_IRQn  
tcpwm_0_inter-  
rupts_260_IRQn  
tcpwm_0_inter-  
rupts_512_IRQn  
tcpwm_0_inter-  
rupts_514_IRQn  
337  
338  
339  
341  
349  
351  
Active  
Active  
Active  
Active  
Active  
Active  
TCPWM0 Group #1, Counter #0 Interrupt  
TCPWM0 Group #1, Counter #1 Interrupt  
TCPWM0 Group #1, Counter #2 Interrupt  
TCPWM0 Group #1, Counter #4 Interrupt  
TCPWM0 Group #2, Counter #0 Interrupt  
TCPWM0 Group #2, Counter #2 Interrupt  
Datasheet  
50  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Core interrupt types  
16  
Core interrupt types  
Table 16-1  
Core interrupt types  
Source  
Interrupt  
Power mode  
DeepSleep  
DeepSleep  
DeepSleep  
DeepSleep  
DeepSleep  
DeepSleep  
DeepSleep  
DeepSleep  
Active  
Description  
CPU User Interrupt #0  
CPU User Interrupt #1  
CPU User Interrupt #2  
CPU User Interrupt #3  
0
1
2
CPUIntIdx0_IRQn[29]  
CPUIntIdx1_IRQn[29]  
CPUIntIdx2_IRQn  
CPUIntIdx3_IRQn  
CPUIntIdx4_IRQn  
CPUIntIdx5_IRQn  
CPUIntIdx6_IRQn  
CPUIntIdx7_IRQn  
Internal0_IRQn  
Internal1_IRQn  
Internal2_IRQn  
Internal3_IRQn  
Internal4_IRQn  
Internal5_IRQn  
Internal6_IRQn  
Internal7_IRQn  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CPU User Interrupt #4  
CPU User Interrupt #5  
CPU User Interrupt #6  
CPU User Interrupt #7  
Internal Software Interrupt #0  
Internal Software Interrupt #1  
Internal Software Interrupt #2  
Internal Software Interrupt #3  
Internal Software Interrupt #4  
Internal Software Interrupt #5  
Internal Software Interrupt #6  
Internal Software Interrupt #7  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Note  
29.User interrupt cannot be used for CM0+ application, as it is used internally by system calls. Note, this does not impact CM4 application.  
Datasheet  
51  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Trigger multiplexer  
17  
Trigger multiplexer  
Green numbers indicate mux group number  
Orange numbers indicate 1:1 group number  
16  
16  
8
P-DMA0: PDMA0_TR_OUT[0:15]  
8
2
P-DMA1: PDMA1_TR_OUT[0:7]  
8
6
4
P-DMA0: PDMA0_TR_IN[0:7]  
0
2
M-DMA: MDMA_TR_OUT[0:1]  
3:6  
0:15  
16  
16  
8
2
6
4
16  
8
2
1
P-DMA1: PDMA1_TR_IN[0:7]  
M-DMA: MDMA_TR_IN[0:1]  
7:10  
16:31  
6
2
2
2
2
TCPWM[0]32: TCPWM_32_TR_OUT0{[0],[2]}  
TCPWM[0]32: TCPWM_32_TR_OUT1{[0],[2]}  
8
2
4
46  
3
P-DMA0: PDMA0_TR_IN[8:15]  
16  
Mux #4 only  
4
4
7
4
TCPWM[0]16M: TCPWM_16M_TR_OUT0{[0:2],[4]}  
TCPWM[0]16M: TCPWM_16M_TR_OUT1{[0:2],[4]}  
4
TCPWM[0]: TCPWM_ALL_CNT_TR_IN[0:15]  
46  
63  
TCPWM[0]16: TCPWM_16_TR_OUT0{[0:2],[4:7],[9:26],[33:34],[36:42],[44:55]}  
TCPWM[0]16: TCPWM_16_TR_OUT1{[0:2],[4:7],[9:26],[33:34],[36:42],[44:55]}  
4
0
LIN[0]: LIN0_CMD_TR_IN{[0:2],[4]}  
0:1,4:5,7,  
13,20:24,33,  
38:39,48:51  
PASS[0]: PASS0_CH_TR_IN{[0:2],[4:5],[8:9],[11],[17]}  
PASS[0]: PASS0_CH_TR_IN{[36:40],[49],[54:55]}  
PASS[0]: PASS0_CH_TR_IN[68:71]  
21  
1
0:2  
16  
8
2
6
8
6
CPUSS: FAULT_TR_OUT[0:3]  
CPUSS: CTI_TR_OUT[0:1]  
3:10  
11  
5
TCPWM[0]: TCPWM_ALL_CNT_TR_IN[16:26]  
18  
32  
6
11  
EVTGEN[0]: EVTGEN_TR_OUT[0:10]  
HSIOM: HSIOM_IO _INPUT[0:31]  
12  
16  
32  
4
32  
9
6
PASS[0]: PASS_GEN_TR_IN{[0:5],[8:9],[11]}  
6
3
0:2  
2
6
6
PASS[0]: PASS_GEN_TR_OUT[0:5]  
PASS[0]: PASS_CH_DONE_TR_OUT{[0:5],[8:9],[11:12],[17]}  
PASS[0]: PASS_CH_DONE_TR_OUT{[36:40],[44:49],[54:55]}  
PASS[0]: PASS_CH_DONE_TR_OUT[64:71]  
P-DMA0:  
32  
32  
2
3
PDMA0_TR_IN{[25:30],[33:34],[36:37],[42],[53:57],[61:66],  
[71:72],[81:88]}  
PASS[0]: PASS_CH_RANGEVIO_TR_OUT{[0],[4:5],[8:9],[11],[17]}  
PASS[0]: PASS_CH_RANGEVIO_TR_OUT{[36:40],[49],[54:55]}  
PASS[0]: PASS_CH_RANGEVIO_TR_OUT{[64],[68:71]}  
20  
2
TCPWM[0]16M: TCPWM0_16M_ONE_CNT_TR_IN{[0],[2]}  
TCPWM[0]16:  
TCPWM0_16_ONE_CNT_TR_IN[0:1],[4:5],[7],[13],[20:24],  
[33],[38:39],[48:51]}  
18  
CAN[0:1]: CAN0_DBG_TR_OUT/CAN1_DBG_TR_OUT[0:1]  
CAN[0:1]: CAN0_FIFO0_TR_OUT/CAN1_FIFO0_TR_OUT[0:1]  
CAN[0:1]: CAN0_FIFO1_TR_OUT/CAN1_FIFO1_TR_OUT[0:1]  
12  
4
6
6
4
5
P-DMA0: PDMA0_TR_IN[16:21]  
P-DMA1: PDMA1_TR_IN[24:29]  
CAN[0]: CAN0_TT_TR_OUT[0:1]  
CAN[1]: CAN1_TT_TR_OUT[0:1]  
4
CAN[0]: CAN0_TT_TR_IN[0:1]  
CAN[1]: CAN1_TT_TR_IN[0:1]  
4
7
2
2
2
2
6
7
CAN[0]: CAN0_DBG_TR_ACK[0:1]  
CAN[1]: CAN1_DBG_TR_ACK[0:1]  
P-DMA0: PDMA0_TR_OUT{[16],[19]}  
P-DMA1: PDMA1_TR_OUT{[24],[27]}  
SCB{[0:1],[3:5],[7]}: SCB_TX_TR_OUT  
SCB{[0:1],[3:5],[7]}: SCB_RX_TR_OUT  
SCB{[0:1],[3:5],[7]}: SCB_I2C_SCL_TR_OUT  
18  
SCB_TX_TR_OUT, SCB_RX_TR_OUT  
12  
2
8
P-DMA1: PDMA1_TR_IN{[8:11],[14:19],[22:23]}  
CPUSS: CTI_TR_IN[0:1]  
245  
P-DMA0*, SCB*, CANFD*, CPUSS*, TCPWM_TR_OUT0*  
146  
99  
5
5
1
1
All Triggers  
9
TCPWM[0]: TCPWM_DEBUG_FREEZE_TR_IN  
PERI: PERI_DEBUG_FREEZE_TR_IN  
8
1
3
PASS[0]: PASS_DEBUG_FREEZE_TR_IN  
P-DMA1*, M-DMA*, PASS*, EVTGEN*, TCPWM_TR_OUT1*  
SRSS: SRSS_WDT_DEBUG_FREEZE_TR_IN  
SRSS: SRSS_MCWDT_DEBUG_FREEZE_TR_IN[0:1]  
10  
2
HSIOM: HSIOM_IO_OUTPUT[0:1]  
Figure 17-1  
Trigger multiplexer[30]  
Note  
30.The diagram shows only the TRIG_LABEL, final trigger formation is based on the formula TRIG_{PREFIX(IN/OUT)}_{MUX_x}_{TRIG_LA-  
BEL} / TRIG_{PREFIX(IN_1TO1/OUT_1TO1)}_{x}_{TRIG_LABEL} and the below mentioned tables Table 18-1, Table 19-1, and  
Table 20-1.  
Datasheet  
52  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Triggers group inputs  
18  
Triggers group inputs  
Table 18-1  
Trigger inputs  
Trigger label  
(TRIG_LABEL)  
Input  
Description  
MUX Group 0: PDMA0_TR (P-DMA0_0_15 trigger multiplexer)  
1:16[31]  
PDMA0_TR_OUT[0:15]  
Allow P-DMA0 to chain to itself, useful for triggering once per  
row for 2D transfer  
17:24  
PDMA1_TR_OUT[0:7]  
Cross connections from P-DMA1 to P-DMA0, Channels 0-7 are  
used  
25:26  
29:32  
33:34  
35:38  
39:54  
MDMA_TR_OUT[0:1]  
FAULT_TR_OUT[0:3]  
CTI_TR_OUT[0:1]  
EVTGEN_TR_OUT[3:6]  
HSIOM_IO_INPUT[0:15]  
Cross connections from M-DMA0 to P-DMA0  
Allow faults to initiate data transfer for debug purposes  
Trace events  
EVTGEN triggers  
I/O inputs  
MUX Group 1: PDMA1_TR (P-DMA1 trigger multiplexer)  
1:16  
17:24  
PDMA0_TR_OUT[0:15]  
PDMA1_TR_OUT[0:7]  
Allow P-DMA0 to trigger P-DMA1  
Allow P-DMA1 to chain to itself, useful for triggering once per  
row for 2D transfer  
25:26  
29:32  
33:34  
35:38  
39:54  
55:60  
MDMA_TR_OUT[0:1]  
FAULT_TR_OUT[0:3]  
CTI_TR_OUT[0:1]  
EVTGEN_TR_OUT[7:10]  
HSIOM_IO_INPUT[16:31]  
PASS_GEN_TR_OUT[0:5]  
Allow M-DMA0 to trigger P-DMA0  
Allow faults to initiate data transfer for debug purposes  
Trace events  
EVTGEN triggers  
I/O inputs  
PASS SAR events  
MUX Group 2: MDMA (M-DMA0 trigger multiplexer)  
1:2 MDMA_TR_OUT[0:1] Allow M-DMA0 to trigger itself  
MUX Group 3: TCPWM_TO_PDMA0 (TCPWM0 to P-DMA0 trigger multiplexer)  
1
3
TCPWM_32_TR_OUT0[0]  
TCPWM_32_TR_OUT0[2]  
32-bit TCPWM0 Group #2, Counter #0 counters  
32-bit TCPWM0 Group #2, Counter #2 counters  
5
6
7
9
TCPWM_16M_TR_OUT0[0] 16-bit Motor enhanced TCPWM0 Group #1, Counter #0 counters  
TCPWM_16M_TR_OUT0[1] 16-bit Motor enhanced TCPWM0 Group #1, Counter #1 counters  
TCPWM_16M_TR_OUT0[2] 16-bit Motor enhanced TCPWM0 Group #1, Counter #2 counters  
TCPWM_16M_TR_OUT0[4] 16-bit Motor enhanced TCPWM0 Group #1, Counter #4 counters  
17  
18  
19  
21  
22  
23  
24  
TCPWM_16_TR_OUT0[0]  
TCPWM_16_TR_OUT0[1]  
TCPWM_16_TR_OUT0[2]  
TCPWM_16_TR_OUT0[4]  
TCPWM_16_TR_OUT0[5]  
TCPWM_16_TR_OUT0[6]  
TCPWM_16_TR_OUT0[7]  
TCPWM0 Group #0, Counter #0  
TCPWM0 Group #0, Counter #1  
TCPWM0 Group #0, Counter #2  
TCPWM0 Group #0, Counter #4  
TCPWM0 Group #0, Counter #5  
TCPWM0 Group #0, Counter #6  
TCPWM0 Group #0, Counter #7  
Note  
31.“a:b” depicts a range starting from ‘a’ through ‘b’.  
Datasheet  
53  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Triggers group inputs  
Table 18-1  
Input  
Trigger inputs (continued)  
Trigger label  
(TRIG_LABEL)  
Description  
TCPWM0 Group #0, Counter #9  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
50  
51  
53  
54  
55  
56  
57  
58  
59  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
TCPWM_16_TR_OUT0[9]  
TCPWM_16_TR_OUT0[10]  
TCPWM_16_TR_OUT0[11]  
TCPWM_16_TR_OUT0[12]  
TCPWM_16_TR_OUT0[13]  
TCPWM_16_TR_OUT0[14]  
TCPWM_16_TR_OUT0[15]  
TCPWM_16_TR_OUT0[16]  
TCPWM_16_TR_OUT0[17]  
TCPWM_16_TR_OUT0[18]  
TCPWM_16_TR_OUT0[19]  
TCPWM_16_TR_OUT0[20]  
TCPWM_16_TR_OUT0[21]  
TCPWM_16_TR_OUT0[22]  
TCPWM_16_TR_OUT0[23]  
TCPWM_16_TR_OUT0[24]  
TCPWM_16_TR_OUT0[25]  
TCPWM_16_TR_OUT0[26]  
TCPWM_16_TR_OUT0[33]  
TCPWM_16_TR_OUT0[34]  
TCPWM_16_TR_OUT0[36]  
TCPWM_16_TR_OUT0[37]  
TCPWM_16_TR_OUT0[38]  
TCPWM_16_TR_OUT0[39]  
TCPWM_16_TR_OUT0[40]  
TCPWM_16_TR_OUT0[41]  
TCPWM_16_TR_OUT0[42]  
TCPWM_16_TR_OUT0[44]  
TCPWM_16_TR_OUT0[45]  
TCPWM_16_TR_OUT0[46]  
TCPWM_16_TR_OUT0[47]  
TCPWM_16_TR_OUT0[48]  
TCPWM_16_TR_OUT0[49]  
TCPWM_16_TR_OUT0[50]  
TCPWM_16_TR_OUT0[51]  
TCPWM_16_TR_OUT0[52]  
TCPWM_16_TR_OUT0[53]  
TCPWM_16_TR_OUT0[54]  
TCPWM_16_TR_OUT0[55]  
TCPWM0 Group #0, Counter #10  
TCPWM0 Group #0, Counter #11  
TCPWM0 Group #0, Counter #12  
TCPWM0 Group #0, Counter #13  
TCPWM0 Group #0, Counter #14  
TCPWM0 Group #0, Counter #15  
TCPWM0 Group #0, Counter #16  
TCPWM0 Group #0, Counter #17  
TCPWM0 Group #0, Counter #18  
TCPWM0 Group #0, Counter #19  
TCPWM0 Group #0, Counter #20  
TCPWM0 Group #0, Counter #21  
TCPWM0 Group #0, Counter #22  
TCPWM0 Group #0, Counter #23  
TCPWM0 Group #0, Counter #24  
TCPWM0 Group #0, Counter #25  
TCPWM0 Group #0, Counter #26  
TCPWM0 Group #0, Counter #33  
TCPWM0 Group #0, Counter #34  
TCPWM0 Group #0, Counter #36  
TCPWM0 Group #0, Counter #37  
TCPWM0 Group #0, Counter #38  
TCPWM0 Group #0, Counter #39  
TCPWM0 Group #0, Counter #40  
TCPWM0 Group #0, Counter #41  
TCPWM0 Group #0, Counter #42  
TCPWM0 Group #0, Counter #44  
TCPWM0 Group #0, Counter #45  
TCPWM0 Group #0, Counter #46  
TCPWM0 Group #0, Counter #47  
TCPWM0 Group #0, Counter #48  
TCPWM0 Group #0, Counter #49  
TCPWM0 Group #0, Counter #50  
TCPWM0 Group #0, Counter #51  
TCPWM0 Group #0, Counter #52  
TCPWM0 Group #0, Counter #53  
TCPWM0 Group #0, Counter #54  
TCPWM0 Group #0, Counter #55  
Datasheet  
54  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Triggers group inputs  
Table 18-1  
Input  
Trigger inputs (continued)  
Trigger label  
(TRIG_LABEL)  
Description  
CAN0, channel#0 TT Sync Outputs  
CAN0, channel#1 TT Sync Outputs  
CAN1, channel#0 TT Sync Outputs  
CAN1, channel#1 TT Sync Outputs  
80  
81  
83  
84  
CAN0_TT_TR_OUT[0]  
CAN0_TT_TR_OUT[1]  
CAN1_TT_TR_OUT[0]  
CAN1_TT_TR_OUT[1]  
MUX Group 4: TCPWM_OUT (TCPWM0 loop back multiplexer)  
1
3
TCPWM_32_TR_OUT0[0]  
TCPWM_32_TR_OUT0[2]  
32-bit TCPWM0 Group #2, Counter #0 counters  
32-bit TCPWM0 Group #2, Counter #2 counters  
5
6
7
9
TCPWM_16M_TR_OUT0[0] 16-bit Motor enhanced TCPWM0 Group #1, Counter #0 counters  
TCPWM_16M_TR_OUT0[1] 16-bit Motor enhanced TCPWM0 Group #1, Counter #1 counters  
TCPWM_16M_TR_OUT0[2] 16-bit Motor enhanced TCPWM0 Group #1, Counter #2 counters  
TCPWM_16M_TR_OUT0[4] 16-bit Motor enhanced TCPWM0 Group #1, Counter #4 counters  
17  
18  
19  
21  
22  
23  
24  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
50  
51  
53  
TCPWM_16_TR_OUT0[0]  
TCPWM_16_TR_OUT0[1]  
TCPWM_16_TR_OUT0[2]  
TCPWM_16_TR_OUT0[4]  
TCPWM_16_TR_OUT0[5]  
TCPWM_16_TR_OUT0[6]  
TCPWM_16_TR_OUT0[7]  
TCPWM_16_TR_OUT0[9]  
TCPWM_16_TR_OUT0[10]  
TCPWM_16_TR_OUT0[11]  
TCPWM_16_TR_OUT0[12]  
TCPWM_16_TR_OUT0[13]  
TCPWM_16_TR_OUT0[14]  
TCPWM_16_TR_OUT0[15]  
TCPWM_16_TR_OUT0[16]  
TCPWM_16_TR_OUT0[17]  
TCPWM_16_TR_OUT0[18]  
TCPWM_16_TR_OUT0[19]  
TCPWM_16_TR_OUT0[20]  
TCPWM_16_TR_OUT0[21]  
TCPWM_16_TR_OUT0[22]  
TCPWM_16_TR_OUT0[23]  
TCPWM_16_TR_OUT0[24]  
TCPWM_16_TR_OUT0[25]  
TCPWM_16_TR_OUT0[26]  
TCPWM_16_TR_OUT0[33]  
TCPWM_16_TR_OUT0[34]  
TCPWM_16_TR_OUT0[36]  
TCPWM0 Group #0, Counter #0  
TCPWM0 Group #0, Counter #1  
TCPWM0 Group #0, Counter #2  
TCPWM0 Group #0, Counter #4  
TCPWM0 Group #0, Counter #5  
TCPWM0 Group #0, Counter #6  
TCPWM0 Group #0, Counter #7  
TCPWM0 Group #0, Counter #9  
TCPWM0 Group #0, Counter #10  
TCPWM0 Group #0, Counter #11  
TCPWM0 Group #0, Counter #12  
TCPWM0 Group #0, Counter #13  
TCPWM0 Group #0, Counter #14  
TCPWM0 Group #0, Counter #15  
TCPWM0 Group #0, Counter #16  
TCPWM0 Group #0, Counter #17  
TCPWM0 Group #0, Counter #18  
TCPWM0 Group #0, Counter #19  
TCPWM0 Group #0, Counter #20  
TCPWM0 Group #0, Counter #21  
TCPWM0 Group #0, Counter #22  
TCPWM0 Group #0, Counter #23  
TCPWM0 Group #0, Counter #24  
TCPWM0 Group #0, Counter #25  
TCPWM0 Group #0, Counter #26  
TCPWM0 Group #0, Counter #33  
TCPWM0 Group #0, Counter #34  
TCPWM0 Group #0, Counter #36  
Datasheet  
55  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Triggers group inputs  
Table 18-1  
Input  
Trigger inputs (continued)  
Trigger label  
(TRIG_LABEL)  
Description  
TCPWM0 Group #0, Counter #37  
54  
55  
56  
57  
58  
59  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
80  
81  
82  
84  
85  
86  
87  
88  
89  
91  
92  
TCPWM_16_TR_OUT0[37]  
TCPWM_16_TR_OUT0[38]  
TCPWM_16_TR_OUT0[39]  
TCPWM_16_TR_OUT0[40]  
TCPWM_16_TR_OUT0[41]  
TCPWM_16_TR_OUT0[42]  
TCPWM_16_TR_OUT0[44]  
TCPWM_16_TR_OUT0[45]  
TCPWM_16_TR_OUT0[46]  
TCPWM_16_TR_OUT0[47]  
TCPWM_16_TR_OUT0[48]  
TCPWM_16_TR_OUT0[49]  
TCPWM_16_TR_OUT0[50]  
TCPWM_16_TR_OUT0[51]  
TCPWM_16_TR_OUT0[52]  
TCPWM_16_TR_OUT0[53]  
TCPWM_16_TR_OUT0[54]  
TCPWM_16_TR_OUT0[55]  
TCPWM_16_TR_OUT1[0]  
TCPWM_16_TR_OUT1[1]  
TCPWM_16_TR_OUT1[2]  
TCPWM_16_TR_OUT1[4]  
TCPWM_16_TR_OUT1[5]  
TCPWM_16_TR_OUT1[6]  
TCPWM_16_TR_OUT1[7]  
CAN0_TT_TR_OUT[0]  
TCPWM0 Group #0, Counter #38  
TCPWM0 Group #0, Counter #39  
TCPWM0 Group #0, Counter #40  
TCPWM0 Group #0, Counter #41  
TCPWM0 Group #0, Counter #42  
TCPWM0 Group #0, Counter #44  
TCPWM0 Group #0, Counter #45  
TCPWM0 Group #0, Counter #46  
TCPWM0 Group #0, Counter #47  
TCPWM0 Group #0, Counter #48  
TCPWM0 Group #0, Counter #49  
TCPWM0 Group #0, Counter #50  
TCPWM0 Group #0, Counter #51  
TCPWM0 Group #0, Counter #52  
TCPWM0 Group #0, Counter #53  
TCPWM0 Group #0, Counter #54  
TCPWM0 Group #0, Counter #55  
TCPWM0 Group #1, Counter #0  
TCPWM0 Group #1, Counter #1  
TCPWM0 Group #1, Counter #2  
TCPWM0 Group #1, Counter #4  
TCPWM0 Group #1, Counter #5  
TCPWM0 Group #1, Counter #6  
TCPWM0 Group #1, Counter #7  
CAN0, channel#0 TT Sync Outputs  
CAN0, channel#1 TT Sync Outputs  
CAN1, channel#0 TT Sync Outputs  
CAN1, channel#1 TT Sync Outputs  
CAN0_TT_TR_OUT[1]  
CAN1_TT_TR_OUT[0]  
CAN1_TT_TR_OUT[1]  
MUX Group 5: TCPWM_IN (TCPWM0 Trigger Multiplexer)  
1:16  
17:24  
25:26  
29:30  
31:34  
35:40  
41:72  
73  
PDMA0_TR_OUT[0:15]  
PDMA1_TR_OUT[0:7]  
MDMA_TR_OUT[0:1]  
CTI_TR_OUT[0:1]  
FAULT_TR_OUT[0:3]  
PASS_GEN_TR_OUT[0:5]  
HSIOM_IO_INPUT[0:31]  
SCB_TX_TR_OUT[0]  
SCB_RX_TR_OUT[0]  
General-purpose P-DMA0 triggers  
General-purpose P-DMA1 triggers  
M-DMA0 triggers  
Trace events  
Fault events  
PASS SAR events  
I/O inputs  
SCB0 TX trigger  
SCB0 RX trigger  
74  
Datasheet  
56  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Triggers group inputs  
Table 18-1  
Input  
Trigger inputs (continued)  
Trigger label  
(TRIG_LABEL)  
Description  
75  
76  
77  
78  
82  
SCB_I2C_SCL_TR_OUT[0]  
SCB_TX_TR_OUT[1]  
SCB_RX_TR_OUT[1]  
SCB_I2C_SCL_TR_OUT[1]  
SCB_TX_TR_OUT[3]  
SCB0 I2C trigger  
SCB1 TX trigger  
SCB1 RX trigger  
SCB1 I2C trigger  
SCB3 TX trigger  
SCB3 RX trigger  
SCB3 I2C trigger  
SCB4 TX trigger  
SCB4 RX trigger  
SCB4 I2C trigger  
SCB5 TX trigger  
SCB5 RX trigger  
SCB5 I2C trigger  
SCB7 TX trigger  
SCB7 RX trigger  
SCB7 I2C trigger  
CAN0 M-DMA0 events  
83  
84  
85  
86  
87  
88  
89  
90  
SCB_RX_TR_OUT[3]  
SCB_I2C_SCL_TR_OUT[3]  
SCB_TX_TR_OUT[4]  
SCB_RX_TR_OUT[4]  
SCB_I2C_SCL_TR_OUT[4]  
SCB_TX_TR_OUT[5]  
SCB_RX_TR_OUT[5]  
SCB_I2C_SCL_TR_OUT[5]  
SCB_TX_TR_OUT[7]  
SCB_RX_TR_OUT[7]  
SCB_I2C_SCL_TR_OUT[7]  
CAN0_DBG_TR_OUT[0:1]  
CAN0_FIFO0_TR_OUT[0:1] CAN0 FIFO0 events  
CAN0_FIFO1_TR_OUT[0:1] CAN0 FIFO1 events  
CAN1_DBG_TR_OUT[0:1]  
CAN1_FIFO0_TR_OUT[0:1] CAN1 FIFO0 events  
CAN1_FIFO1_TR_OUT[0:1] CAN1 FIFO1 events  
EVTGEN_TR_OUT[3:10]  
94  
95  
96  
97:98  
100:101  
103:104  
106:107  
109:110  
112:113  
115:122  
CAN1 M-DMA0 events  
EVTGEN triggers  
MUX Group 6: PASS (PASS SAR trigger multiplexer)  
1:16  
17:18  
19:22  
23:25  
26:31  
32:63  
64  
PDMA0_TR_OUT[0:15]  
CTI_TR_OUT[0:1]  
FAULT_TR_OUT[0:3]  
EVTGEN_TR_OUT[0:2]  
PASS_GEN_TR_OUT[0:5]  
HSIOM_IO_INPUT[0:31]  
TCPWM_32_TR_OUT1[0]  
TCPWM_32_TR_OUT1[2]  
General-purpose P-DMA0 triggers  
Trace events  
Fault events  
EVTGEN triggers  
PASS SAR done signals  
I/O inputs  
32-bit TCPWM0 Group #2, Counter #0 counters  
32-bit TCPWM0 Group #2, Counter #2 counters  
66  
68  
69  
70  
72  
TCPWM_16M_TR_OUT1[0] 16-bit Motor enhanced TCPWM0 Group #1, Counter #0 counters  
TCPWM_16M_TR_OUT1[1] 16-bit Motor enhanced TCPWM0 Group #1, Counter #1 counters  
TCPWM_16M_TR_OUT1[2] 16-bit Motor enhanced TCPWM0 Group #1, Counter #2 counters  
TCPWM_16M_TR_OUT1[4] 16-bit Motor enhanced TCPWM0 Group #1, Counter #4 counters  
MUX Group 7: CAN TT sync triggers  
1:2  
4:5  
CAN0_TT_TR_OUT[0:1]  
CAN1_TT_TR_OUT[0:1]  
CAN0 TT Sync Outputs  
CAN1 TT Sync Outputs  
Datasheet  
57  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Triggers group inputs  
Table 18-1  
Input  
Trigger inputs (continued)  
Trigger label  
(TRIG_LABEL)  
Description  
MUX Group 8: DebugMain (Debug Multiplexer)  
1:5  
6:10  
TR_GROUP9_OUTPUT[0:4] Output from debug reduction multiplexer #1  
TR_GROUP10_OUTPUT[0:4] Output from debug reduction multiplexer #2  
MUX Group 9: DebugReduction1 (Debug Reduction #1)  
1
PDMA0_TR_OUT[0]  
PDMA0_TR_OUT[1]  
PDMA0_TR_OUT[2]  
PDMA0_TR_OUT[3]  
PDMA0_TR_OUT[4]  
PDMA0_TR_OUT[5]  
PDMA0_TR_OUT[6]  
PDMA0_TR_OUT[7]  
PDMA0_TR_OUT[8]  
PDMA0_TR_OUT[9]  
PDMA0_TR_OUT[10]  
PDMA0_TR_OUT[11]  
PDMA0_TR_OUT[12]  
PDMA0_TR_OUT[13]  
PDMA0_TR_OUT[14]  
PDMA0_TR_OUT[15]  
PDMA0_TR_OUT[16]  
PDMA0_TR_OUT[17]  
PDMA0_TR_OUT[18]  
PDMA0_TR_OUT[19]  
PDMA0_TR_OUT[20]  
PDMA0_TR_OUT[21]  
PDMA0_TR_OUT[25]  
PDMA0_TR_OUT[26]  
PDMA0_TR_OUT[27]  
PDMA0_TR_OUT[28]  
PDMA0_TR_OUT[29]  
PDMA0_TR_OUT[30]  
PDMA0_TR_OUT[33]  
PDMA0_TR_OUT[34]  
PDMA0_TR_OUT[36]  
PDMA0_TR_OUT[37]  
PDMA0_TR_OUT[42]  
PDMA0_TR_OUT[53]  
PDMA0_TR_OUT[54]  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
26  
27  
28  
29  
30  
31  
34  
35  
37  
38  
43  
54  
55  
Datasheet  
58  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Triggers group inputs  
Table 18-1  
Input  
Trigger inputs (continued)  
Trigger label  
(TRIG_LABEL)  
Description  
56  
57  
58  
62  
63  
PDMA0_TR_OUT[55]  
PDMA0_TR_OUT[56]  
PDMA0_TR_OUT[57]  
PDMA0_TR_OUT[61]  
PDMA0_TR_OUT[62]  
PDMA0_TR_OUT[63]  
PDMA0_TR_OUT[64]  
PDMA0_TR_OUT[65]  
PDMA0_TR_OUT[66]  
PDMA0_TR_OUT[71]  
PDMA0_TR_OUT[72]  
PDMA0_TR_OUT[81]  
PDMA0_TR_OUT[82]  
PDMA0_TR_OUT[83]  
PDMA0_TR_OUT[84]  
PDMA0_TR_OUT[85]  
PDMA0_TR_OUT[86]  
PDMA0_TR_OUT[87]  
PDMA0_TR_OUT[88]  
SCB_TX_TR_OUT[0]  
SCB_TX_TR_OUT[1]  
SCB_TX_TR_OUT[3]  
SCB_TX_TR_OUT[4]  
SCB_TX_TR_OUT[5]  
SCB_TX_TR_OUT[7]  
SCB_RX_TR_OUT[0]  
SCB_RX_TR_OUT[1]  
SCB_RX_TR_OUT[3]  
SCB_RX_TR_OUT[4]  
SCB_RX_TR_OUT[5]  
SCB_RX_TR_OUT[7]  
SCB_I2C_SCL_TR_OUT[0]  
SCB_I2C_SCL_TR_OUT[1]  
SCB_I2C_SCL_TR_OUT[3]  
SCB_I2C_SCL_TR_OUT[4]  
SCB_I2C_SCL_TR_OUT[5]  
SCB_I2C_SCL_TR_OUT[7]  
CAN0_DBG_TR_OUT[0:1]  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
64  
65  
66  
67  
72  
73  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
P-DMA0 triggers  
SCB0 TTCAN tx Triggers  
SCB1 TTCAN tx Triggers  
SCB3 TTCAN tx Triggers  
SCB4 TTCAN tx Triggers  
SCB5 TTCAN tx Triggers  
SCB7 TTCAN tx Triggers  
SCB0 TTCAN rx Triggers  
SCB1 TTCAN rx Triggers  
SCB3 TTCAN rx Triggers  
SCB4 TTCAN rx Triggers  
SCB5 TTCAN rx Triggers  
SCB7 TTCAN rx Triggers  
SCB0 I2C triggers  
SCB1 I2C triggers  
SCB3 I2C triggers  
SCB4 I2C triggers  
SCB5 I2C triggers  
SCB7 I2C triggers  
CAN0 P-DMA  
93  
94  
95  
97  
98  
99  
101  
102  
103  
105  
106  
107  
109  
110  
111  
113  
114:115  
117:118  
CAN0_FIFO0_TR_OUT[0:1] CAN0 FIFO0  
Datasheet  
59  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Triggers group inputs  
Table 18-1  
Input  
Trigger inputs (continued)  
Trigger label  
(TRIG_LABEL)  
Description  
120:121  
123:124  
126:127  
129:130  
132:133  
135:136  
138:139  
140:143  
144  
CAN0_FIFO1_TR_OUT[0:1] CAN0 FIFO1  
CAN0_TT_TR_OUT[0:1]  
CAN1_DBG_TR_OUT[0:1]  
CAN TT Sync Outputs  
CAN1 P-DMA  
CAN1_FIFO0_TR_OUT[0:1] CAN1 FIFO0  
CAN1_FIFO1_TR_OUT[0:1] CAN1 FIFO1  
CAN1_TT_TR_OUT[0:1]  
CTI_TR_OUT[0:1]  
FAULT_TR_OUT[0:3]  
TCPWM_32_TR_OUT0[0]  
TCPWM_32_TR_OUT0[2]  
CAN TT Sync Outputs  
Trace events  
Fault events  
32-bit TCPWM0 Group #2, Counter #0 counters  
32-bit TCPWM0 Group #2, Counter #2 counters  
146  
148  
149  
150  
152  
TCPWM_16M_TR_OUT0[0] 16-bit Motor enhanced TCPWM0 Group #1, Counter #0 counters  
TCPWM_16M_TR_OUT0[1] 16-bit Motor enhanced TCPWM0 Group #1, Counter #1 counters  
TCPWM_16M_TR_OUT0[2] 16-bit Motor enhanced TCPWM0 Group #1, Counter #2 counters  
TCPWM_16M_TR_OUT0[4] 16-bit Motor enhanced TCPWM0 Group #1, Counter #4 counters  
160  
161  
162  
164  
165  
166  
167  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
TCPWM_16_TR_OUT0[0]  
TCPWM_16_TR_OUT0[1]  
TCPWM_16_TR_OUT0[2]  
TCPWM_16_TR_OUT0[4]  
TCPWM_16_TR_OUT0[5]  
TCPWM_16_TR_OUT0[6]  
TCPWM_16_TR_OUT0[7]  
TCPWM_16_TR_OUT0[9]  
TCPWM_16_TR_OUT0[10]  
TCPWM_16_TR_OUT0[11]  
TCPWM_16_TR_OUT0[12]  
TCPWM_16_TR_OUT0[13]  
TCPWM_16_TR_OUT0[14]  
TCPWM_16_TR_OUT0[15]  
TCPWM_16_TR_OUT0[16]  
TCPWM_16_TR_OUT0[17]  
TCPWM_16_TR_OUT0[18]  
TCPWM_16_TR_OUT0[19]  
TCPWM_16_TR_OUT0[20]  
TCPWM_16_TR_OUT0[21]  
TCPWM_16_TR_OUT0[22]  
TCPWM_16_TR_OUT0[23]  
TCPWM_16_TR_OUT0[24]  
TCPWM_16_TR_OUT0[25]  
TCPWM_16_TR_OUT0[26]  
TCPWM0 Group #0, Counter #0  
TCPWM0 Group #0, Counter #1  
TCPWM0 Group #0, Counter #2  
TCPWM0 Group #0, Counter #4  
TCPWM0 Group #0, Counter #5  
TCPWM0 Group #0, Counter #6  
TCPWM0 Group #0, Counter #7  
TCPWM0 Group #0, Counter #9  
TCPWM0 Group #0, Counter #10  
TCPWM0 Group #0, Counter #11  
TCPWM0 Group #0, Counter #12  
TCPWM0 Group #0, Counter #13  
TCPWM0 Group #0, Counter #14  
TCPWM0 Group #0, Counter #15  
TCPWM0 Group #0, Counter #16  
TCPWM0 Group #0, Counter #17  
TCPWM0 Group #0, Counter #18  
TCPWM0 Group #0, Counter #19  
TCPWM0 Group #0, Counter #20  
TCPWM0 Group #0, Counter #21  
TCPWM0 Group #0, Counter #22  
TCPWM0 Group #0, Counter #23  
TCPWM0 Group #0, Counter #24  
TCPWM0 Group #0, Counter #25  
TCPWM0 Group #0, Counter #26  
186  
Datasheet  
60  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Triggers group inputs  
Table 18-1  
Input  
Trigger inputs (continued)  
Trigger label  
(TRIG_LABEL)  
Description  
TCPWM0 Group #0, Counter #33  
193  
194  
196  
197  
198  
199  
200  
201  
202  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
TCPWM_16_TR_OUT0[33]  
TCPWM_16_TR_OUT0[34]  
TCPWM_16_TR_OUT0[36]  
TCPWM_16_TR_OUT0[37]  
TCPWM_16_TR_OUT0[38]  
TCPWM_16_TR_OUT0[39]  
TCPWM_16_TR_OUT0[40]  
TCPWM_16_TR_OUT0[41]  
TCPWM_16_TR_OUT0[42]  
TCPWM_16_TR_OUT0[44]  
TCPWM_16_TR_OUT0[45]  
TCPWM_16_TR_OUT0[46]  
TCPWM_16_TR_OUT0[47]  
TCPWM_16_TR_OUT0[48]  
TCPWM_16_TR_OUT0[49]  
TCPWM_16_TR_OUT0[50]  
TCPWM_16_TR_OUT0[51]  
TCPWM_16_TR_OUT0[52]  
TCPWM_16_TR_OUT0[53]  
TCPWM_16_TR_OUT0[54]  
TCPWM_16_TR_OUT0[55]  
TCPWM0 Group #0, Counter #34  
TCPWM0 Group #0, Counter #36  
TCPWM0 Group #0, Counter #37  
TCPWM0 Group #0, Counter #38  
TCPWM0 Group #0, Counter #39  
TCPWM0 Group #0, Counter #40  
TCPWM0 Group #0, Counter #41  
TCPWM0 Group #0, Counter #42  
TCPWM0 Group #0, Counter #44  
TCPWM0 Group #0, Counter #45  
TCPWM0 Group #0, Counter #46  
TCPWM0 Group #0, Counter #47  
TCPWM0 Group #0, Counter #48  
TCPWM0 Group #0, Counter #49  
TCPWM0 Group #0, Counter #50  
TCPWM0 Group #0, Counter #51  
TCPWM0 Group #0, Counter #52  
TCPWM0 Group #0, Counter #53  
TCPWM0 Group #0, Counter #54  
TCPWM0 Group #0, Counter #55  
MUX Group 10: DebugReduction2 (Debug Reduction #2)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
15  
16  
17  
18  
19  
PDMA1_TR_OUT[0]  
PDMA1_TR_OUT[1]  
PDMA1_TR_OUT[2]  
PDMA1_TR_OUT[3]  
PDMA1_TR_OUT[4]  
PDMA1_TR_OUT[5]  
PDMA1_TR_OUT[6]  
PDMA1_TR_OUT[7]  
PDMA1_TR_OUT[8]  
PDMA1_TR_OUT[9]  
PDMA1_TR_OUT[10]  
PDMA1_TR_OUT[11]  
PDMA1_TR_OUT[14]  
PDMA1_TR_OUT[15]  
PDMA1_TR_OUT[16]  
PDMA1_TR_OUT[17]  
PDMA1_TR_OUT[18]  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
Datasheet  
61  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Triggers group inputs  
Table 18-1  
Input  
Trigger inputs (continued)  
Trigger label  
(TRIG_LABEL)  
Description  
20  
23  
24  
25  
26  
27  
28  
29  
30  
34:35  
38  
40  
42  
43  
44  
46  
54  
55  
56  
58  
59  
60  
61  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
PDMA1_TR_OUT[19]  
PDMA1_TR_OUT[22]  
PDMA1_TR_OUT[23]  
PDMA1_TR_OUT[24]  
PDMA1_TR_OUT[25]  
PDMA1_TR_OUT[26]  
PDMA1_TR_OUT[27]  
PDMA1_TR_OUT[28]  
PDMA1_TR_OUT[29]  
MDMA_TR_OUT[0:1]  
TCPWM_32_TR_OUT1[0]  
TCPWM_32_TR_OUT1[2]  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit Motor enhanced TCPWM0 counters  
16-bit TCPWM0 counters  
32-bit TCPWM0 counters  
32-bit TCPWM0 counters  
TCPWM_16M_TR_OUT1[0] 16-bit Motor enhanced TCPWM0 counters  
TCPWM_16M_TR_OUT1[1] 16-bit Motor enhanced TCPWM0 counters  
TCPWM_16M_TR_OUT1[2] 16-bit Motor enhanced TCPWM0 counters  
TCPWM_16M_TR_OUT1[4] 16-bit Motor enhanced TCPWM0 counters  
TCPWM_16_TR_OUT1[0]  
TCPWM_16_TR_OUT1[1]  
TCPWM_16_TR_OUT1[2]  
TCPWM_16_TR_OUT1[4]  
TCPWM_16_TR_OUT1[5]  
TCPWM_16_TR_OUT1[6]  
TCPWM_16_TR_OUT1[7]  
TCPWM_16_TR_OUT1[9]  
TCPWM_16_TR_OUT1[10]  
TCPWM_16_TR_OUT1[11]  
TCPWM_16_TR_OUT1[12]  
TCPWM_16_TR_OUT1[13]  
TCPWM_16_TR_OUT1[14]  
TCPWM_16_TR_OUT1[15]  
TCPWM_16_TR_OUT1[16]  
TCPWM_16_TR_OUT1[17]  
TCPWM_16_TR_OUT1[18]  
TCPWM_16_TR_OUT1[19]  
TCPWM_16_TR_OUT1[20]  
TCPWM_16_TR_OUT1[21]  
TCPWM_16_TR_OUT1[22]  
TCPWM_16_TR_OUT1[23]  
TCPWM_16_TR_OUT1[24]  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
Datasheet  
62  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Triggers group inputs  
Table 18-1  
Input  
Trigger inputs (continued)  
Trigger label  
(TRIG_LABEL)  
Description  
79  
80  
87  
88  
90  
TCPWM_16_TR_OUT1[25]  
TCPWM_16_TR_OUT1[26]  
TCPWM_16_TR_OUT1[33]  
TCPWM_16_TR_OUT1[34]  
TCPWM_16_TR_OUT1[36]  
TCPWM_16_TR_OUT1[37]  
TCPWM_16_TR_OUT1[38]  
TCPWM_16_TR_OUT1[39]  
TCPWM_16_TR_OUT1[40]  
TCPWM_16_TR_OUT1[41]  
TCPWM_16_TR_OUT1[42]  
TCPWM_16_TR_OUT1[44]  
TCPWM_16_TR_OUT1[45]  
TCPWM_16_TR_OUT1[46]  
TCPWM_16_TR_OUT1[47]  
TCPWM_16_TR_OUT1[48]  
TCPWM_16_TR_OUT1[49]  
TCPWM_16_TR_OUT1[50]  
TCPWM_16_TR_OUT1[51]  
TCPWM_16_TR_OUT1[52]  
TCPWM_16_TR_OUT1[53]  
TCPWM_16_TR_OUT1[54]  
TCPWM_16_TR_OUT1[55]  
PASS_GEN_TR_OUT[0:5]  
EVTGEN_TR_OUT[0:10]  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
16-bit TCPWM0 counters  
91  
92  
93  
94  
95  
96  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
117:122  
123:133  
PASS SAR conversion complete events  
EVTGEN Triggers  
Datasheet  
63  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Triggers group outputs  
19  
Triggers group outputs  
Table 19-1  
Trigger outputs  
Output  
MUX Group 0: PDMA0_TR (P-DMA0 trigger multiplexer)  
0:7 PDMA0_TR_IN[0:7]  
MUX Group 1: PDMA1_TR (P-DMA1 trigger multiplexer)  
0:7 PDMA1_TR_IN[0:7]  
MUX Group 2: MDMA (M-DMA0 trigger multiplexer)  
0:1 MDMA_TR_IN[0:1]  
MUX Group 3: TCPWM_TO_PDMA0 (TCPWM0 to P-DMA0 trigger multiplexer)  
0:7 PDMA0_TR_IN[8:15]  
MUX Group 4: TCPWM_OUT (TCPWM0 loop back multiplexer)  
0:15 TCPWM_ALL_CNT_TR_IN[0:15]  
MUX Group 5: TCPWM_IN (TCPWM0 Trigger Multiplexer)  
0:10 TCPWM_ALL_CNT_TR_IN[16:26]  
MUX Group 6: PASS (PASS SAR trigger multiplexer)  
Trigger Label (TRIG_LABEL)  
Description  
Triggers to P-DMA0[0:7]  
Triggers to P-DMA1[0:7]  
Triggers to M-DMA0  
Triggers to P-DMA0[8:15]  
All counters trigger input  
Triggers to TCPWM0  
0
1
2
3
4
5
8
9
11  
PASS_GEN_TR_IN[0]  
PASS_GEN_TR_IN[1]  
PASS_GEN_TR_IN[2]  
PASS_GEN_TR_IN[3]  
PASS_GEN_TR_IN[4]  
PASS_GEN_TR_IN[5]  
PASS_GEN_TR_IN[8]  
PASS_GEN_TR_IN[9]  
PASS_GEN_TR_IN[11]  
Triggers to SAR ADCs  
Triggers to SAR ADCs  
Triggers to SAR ADCs  
Triggers to SAR ADCs  
Triggers to SAR ADCs  
Triggers to SAR ADCs  
Triggers to SAR ADCs  
Triggers to SAR ADCs  
Triggers to SAR ADCs  
MUX Group 7: CANTT (CAN TT Sync)  
0:1  
3:4  
CAN0_TT_TR_IN[0:1]  
CAN1_TT_TR_IN[0:1]  
CAN0 TT Sync Inputs  
CAN1 TT Sync Inputs  
MUX Group 8: DebugMain (Debug Multiplexer)  
0:1  
2:3  
4
5
6
HSIOM_IO_OUTPUT[0:1]  
CTI_TR_IN[0:1]  
PERI_DEBUG_FREEZE_TR_IN  
PASS_DEBUG_FREEZE_TR_IN  
SRSS_WDT_DEBUG_FREEZE_TR_IN  
SRSS_MCWDT_DEBUG_-  
FREEZE_TR_IN[0:1]  
To HSIOM as an output  
To CPU Cross Trigger system  
Signal to Freeze PERI operation  
Signal to Freeze SAR ADC operation  
Signal to Freeze WDT operation  
Signal to Freeze MCWDT operation  
7:8  
9
TCPWM_DEBUG_FREEZE_TR_IN  
Signal to Freeze TCPWM0 operation  
To main debug multiplexer  
MUX Group 9: DebugReduction1 (Debug Reduction #1)  
0:4 TR_GROUP8_INPUT[1:5]  
MUX Group 10: DebugReduction2 (Debug Reduction #2)  
0:4  
TR_GROUP8_INPUT[6:10]  
To main debug multiplexer  
Datasheet  
64  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Triggers one-to-one  
20  
Triggers one-to-one  
Table 20-1  
Triggers 1:1  
Input  
Trigger In  
Trigger Out  
Description  
MUX Group 0: TCPWM0 to LIN0 Triggers  
0
1
2
4
TCPWM0_16_TR_OUT0[0]  
TCPWM0_16_TR_OUT0[1]  
TCPWM0_16_TR_OUT0[2]  
TCPWM0_16_TR_OUT0[4]  
LIN0_CMD_TR_IN[0]  
TCPWM0 (Group #0 Counter #00) to LIN0  
TCPWM0 (Group #0 Counter #01) to LIN1  
TCPWM0 (Group #0 Counter #02) to LIN2  
TCPWM0 (Group #0 Counter #04) to LIN4  
LIN0_CMD_TR_IN[1]  
LIN0_CMD_TR_IN[2]  
LIN0_CMD_TR_IN[4]  
MUX Group 1: TCPWM0 to PASS SARx direct connect  
0
1
TCPWM0_16M_TR_OUT1[0]  
TCPWM0_16M_TR_OUT1[1]  
TCPWM0_16M_TR_OUT1[2]  
TCPWM0_16_TR_OUT1[0]  
TCPWM0_16_TR_OUT1[1]  
TCPWM0_16_TR_OUT1[4]  
TCPWM0_16_TR_OUT1[5]  
TCPWM0_16_TR_OUT1[7]  
TCPWM0_16_TR_OUT1[13]  
TCPWM0_16_TR_OUT1[20]  
TCPWM0_16_TR_OUT1[21]  
TCPWM0_16_TR_OUT1[22]  
TCPWM0_16_TR_OUT1[23]  
TCPWM0_16_TR_OUT1[24]  
TCPWM0_16_TR_OUT1[33]  
TCPWM0_16_TR_OUT1[38]  
TCPWM0_16_TR_OUT1[39]  
PASS0_CH_TR_IN[0]  
PASS0_CH_TR_IN[1]  
PASS0_CH_TR_IN[2]  
PASS0_CH_TR_IN[4]  
PASS0_CH_TR_IN[5]  
PASS0_CH_TR_IN[8]  
PASS0_CH_TR_IN[9]  
PASS0_CH_TR_IN[11]  
PASS0_CH_TR_IN[17]  
PASS0_CH_TR_IN[36]  
PASS0_CH_TR_IN[37]  
PASS0_CH_TR_IN[38]  
PASS0_CH_TR_IN[39]  
PASS0_CH_TR_IN[40]  
PASS0_CH_TR_IN[49]  
PASS0_CH_TR_IN[54]  
PASS0_CH_TR_IN[55]  
PASS0_CH_TR_IN[68:71]  
TCPWM0 Group #1 Counter #00 (PWM0_M_0) to SAR0 ch#0  
TCPWM0 Group #1 Counter #03 (PWM0_M_3) to SAR0 ch#1  
TCPWM0 Group #1 Counter #06 (PWM0_M_6) to SAR0 ch#2  
TCPWM0 Group #0 Counter #00 (PWM0_0) to SAR0 ch#4  
TCPWM0 Group #0 Counter #01 (PWM0_1) to SAR0 ch#5  
TCPWM0 Group #0 Counter #04 (PWM0_4) to SAR0 ch#8  
TCPWM0 Group #0 Counter #05 (PWM0_5) to SAR0 ch#9  
TCPWM0 Group #0 Counter #07 (PWM0_7) to SAR0 ch#11  
TCPWM0 Group #0 Counter #13 (PWM0_13) to SAR0 ch#17  
TCPWM0 Group #0 Counter #20 (PWM0_20) to SAR1 ch#4  
TCPWM0 Group #0 Counter #21 (PWM0_21) to SAR1 ch#5  
TCPWM0 Group #0 Counter #22 (PWM0_22) to SAR1 ch#6  
TCPWM0 Group #0 Counter #23 (PWM0_23) to SAR1 ch#7  
TCPWM0 Group #0 Counter #24 (PWM0_24) to SAR1 ch#8  
TCPWM0 Group #0 Counter #33 (PWM0_33) to SAR1 ch#17  
TCPWM0 Group #0 Counter #38 (PWM0_38) to SAR1 ch#22  
TCPWM0 Group #0 Counter #39 (PWM0_39) to SAR1 ch#23  
2
4
5
8
9
11  
17  
28  
29  
30  
31  
32  
41  
46  
47  
60:63 TCPWM0_16_TR_OUT1[48:51]  
TCPWM0 Group #0 Counter #48 through 51 (PWM0_48 to  
PWM0_51) to SAR2 ch#4 through SAR2 ch#7  
MUX Group 2: PASS SARx to P-DMA0 direct connect  
0
1
PASS0_CH_DONE_TR_OUT[0]  
PASS0_CH_DONE_TR_OUT[1]  
PASS0_CH_DONE_TR_OUT[2]  
PASS0_CH_DONE_TR_OUT[3]  
PASS0_CH_DONE_TR_OUT[4]  
PASS0_CH_DONE_TR_OUT[5]  
PASS0_CH_DONE_TR_OUT[8]  
PASS0_CH_DONE_TR_OUT[9]  
PASS0_CH_DONE_TR_OUT[11]  
PASS0_CH_DONE_TR_OUT[12]  
PASS0_CH_DONE_TR_OUT[17]  
PASS0_CH_DONE_TR_OUT[36]  
PASS0_CH_DONE_TR_OUT[37]  
PASS0_CH_DONE_TR_OUT[38]  
PASS0_CH_DONE_TR_OUT[39]  
PASS0_CH_DONE_TR_OUT[40]  
PASS0_CH_DONE_TR_OUT[44]  
PASS0_CH_DONE_TR_OUT[45]  
PDMA0_TR_IN[25]  
PDMA0_TR_IN[26]  
PDMA0_TR_IN[27]  
PDMA0_TR_IN[28]  
PDMA0_TR_IN[29]  
PDMA0_TR_IN[30]  
PDMA0_TR_IN[33]  
PDMA0_TR_IN[34]  
PDMA0_TR_IN[36]  
PDMA0_TR_IN[37]  
PDMA0_TR_IN[42]  
PDMA0_TR_IN[53]  
PDMA0_TR_IN[54]  
PDMA0_TR_IN[55]  
PDMA0_TR_IN[56]  
PDMA0_TR_IN[57]  
PDMA0_TR_IN[61]  
PDMA0_TR_IN[62]  
PASS SAR0 ch#0 to P-DMA0 direct connect  
PASS SAR0 ch#1 to P-DMA0 direct connect  
PASS SAR0 ch#2 to P-DMA0 direct connect  
PASS SAR0 ch#3 to P-DMA0 direct connect  
PASS SAR0 ch#4 to P-DMA0 direct connect  
PASS SAR0 ch#5 to P-DMA0 direct connect  
PASS SAR0 ch#8 to P-DMA0 direct connect  
PASS SAR0 ch#9 to P-DMA0 direct connect  
PASS SAR0 ch#11 to P-DMA0 direct connect  
PASS SAR0 ch#12 to P-DMA0 direct connect  
PASS SAR0 ch#17 to P-DMA0 direct connect  
PASS SAR1 ch#4 to P-DMA0 direct connect  
PASS SAR1 ch#5 to P-DMA0 direct connect  
PASS SAR1 ch#6 to P-DMA0 direct connect  
PASS SAR1 ch#7 to P-DMA0 direct connect  
PASS SAR1 ch#8 to P-DMA0 direct connect  
PASS SAR1 ch#12 to P-DMA0 direct connect  
PASS SAR1 ch#13 to P-DMA0 direct connect  
2
3
4
5
8
9
11  
12  
17  
28  
29  
30  
31  
32  
36  
37  
Datasheet  
65  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Triggers one-to-one  
Table 20-1  
Triggers 1:1 (continued)  
Input  
Trigger In  
Trigger Out  
PDMA0_TR_IN[63]  
Description  
38  
39  
40  
41  
46  
47  
56  
57  
58  
59  
60  
61  
62  
63  
PASS0_CH_DONE_TR_OUT[46]  
PASS0_CH_DONE_TR_OUT[47]  
PASS SAR1 ch#14 to P-DMA0 direct connect  
PASS SAR1 ch#15 to P-DMA0 direct connect  
PASS SAR1 ch#16 to P-DMA0 direct connect  
PASS SAR1 ch#17 to P-DMA0 direct connect  
PASS SAR1 ch#22 to P-DMA0 direct connect  
PASS SAR1 ch#23 to P-DMA0 direct connect  
PASS SAR2 ch#0 to P-DMA0 direct connect  
PASS SAR2 ch#1 to P-DMA0 direct connect  
PASS SAR2 ch#2 to P-DMA0 direct connect  
PASS SAR2 ch#3 to P-DMA0 direct connect  
PASS SAR2 ch#4 to P-DMA0 direct connect  
PASS SAR2 ch#5 to P-DMA0 direct connect  
PASS SAR2 ch#6 to P-DMA0 direct connect  
PASS SAR2 ch#7 to P-DMA0 direct connect  
PDMA0_TR_IN[64]  
PDMA0_TR_IN[65]  
PDMA0_TR_IN[66]  
PDMA0_TR_IN[71]  
PDMA0_TR_IN[72]  
PDMA0_TR_IN[81]  
PDMA0_TR_IN[82]  
PDMA0_TR_IN[83]  
PDMA0_TR_IN[84]  
PDMA0_TR_IN[85]  
PDMA0_TR_IN[86]  
PDMA0_TR_IN[87]  
PDMA0_TR_IN[88]  
PASS0_CH_DONE_TR_OUT[48]  
PASS0_CH_DONE_TR_OUT[49]  
PASS0_CH_DONE_TR_OUT[54]  
PASS0_CH_DONE_TR_OUT[55]  
PASS0_CH_DONE_TR_OUT[64]  
PASS0_CH_DONE_TR_OUT[65]  
PASS0_CH_DONE_TR_OUT[66]  
PASS0_CH_DONE_TR_OUT[67]  
PASS0_CH_DONE_TR_OUT[68]  
PASS0_CH_DONE_TR_OUT[69]  
PASS0_CH_DONE_TR_OUT[70]  
PASS0_CH_DONE_TR_OUT[71]  
MUX Group 3: PASS SARx to TCPWM0 direct connect  
0
PASS0_CH_RANGEVIO_TR_OUT[0]  
PASS0_CH_RANGEVIO_TR_OUT[4]  
PASS0_CH_RANGEVIO_TR_OUT[5]  
PASS0_CH_RANGEVIO_TR_OUT[8]  
PASS0_CH_RANGEVIO_TR_OUT[9]  
PASS0_CH_RANGEVIO_TR_OUT[11]  
PASS0_CH_RANGEVIO_TR_OUT[17]  
PASS0_CH_RANGEVIO_TR_OUT[36]  
PASS0_CH_RANGEVIO_TR_OUT[37]  
PASS0_CH_RANGEVIO_TR_OUT[38]  
PASS0_CH_RANGEVIO_TR_OUT[39]  
PASS0_CH_RANGEVIO_TR_OUT[40]  
PASS0_CH_RANGEVIO_TR_OUT[49]  
PASS0_CH_RANGEVIO_TR_OUT[54]  
PASS0_CH_RANGEVIO_TR_OUT[55]  
PASS0_CH_RANGEVIO_TR_OUT[64]  
PASS0_CH_RANGEVIO_TR_OUT[68]  
PASS0_CH_RANGEVIO_TR_OUT[69]  
PASS0_CH_RANGEVIO_TR_OUT[70]  
TCPWM0_16M_ONE_CNT_TR_IN[0] SAR0 ch#0[32], range violation to TCPWM0 Group #1 Counter  
#00 trig=2  
4
TCPWM0_16_ONE_CNT_TR_IN[0]  
TCPWM0_16_ONE_CNT_TR_IN[1]  
TCPWM0_16_ONE_CNT_TR_IN[4]  
TCPWM0_16_ONE_CNT_TR_IN[5]  
TCPWM0_16_ONE_CNT_TR_IN[7]  
SAR0 ch#4, range violation to TCPWM0 Group #0 Counter #00  
trig=2  
5
SAR0 ch#5, range violation to TCPWM0 Group #0 Counter #01  
trig=2  
8
SAR0 ch#8, range violation to TCPWM0 Group #0 Counter #04  
trig=2  
9
SAR0 ch#9, range violation to TCPWM0 Group #0 Counter #05  
trig=2  
11  
17  
28  
29  
30  
31  
32  
41  
46  
47  
56  
60  
61  
62  
Note  
SAR0 ch#11, range violation to TCPWM0 Group #0 Counter  
#07 trig=2  
TCPWM0_16_ONE_CNT_TR_IN[13] SAR0 ch#17, range violation to TCPWM0 Group #0 Counter  
#13 trig=2  
TCPWM0_16_ONE_CNT_TR_IN[20] SAR1 ch#4, range violation to TCPWM0 Group #0 Counter #20  
trig=2  
TCPWM0_16_ONE_CNT_TR_IN[21] SAR1 ch#5, range violation to TCPWM0 Group #0 Counter #21  
trig=2  
TCPWM0_16_ONE_CNT_TR_IN[22] SAR1 ch#6, range violation to TCPWM0 Group #0 Counter #22  
trig=2  
TCPWM0_16_ONE_CNT_TR_IN[23] SAR1 ch#7, range violation to TCPWM0 Group #0 Counter #23  
trig=2  
TCPWM0_16_ONE_CNT_TR_IN[24] SAR1 ch#8, range violation to TCPWM0 Group #0 Counter #24  
trig=2  
TCPWM0_16_ONE_CNT_TR_IN[33] SAR1 ch#17, range violation to TCPWM0 Group #0 Counter  
#33 trig=2  
TCPWM0_16_ONE_CNT_TR_IN[38] SAR1 ch#22, range violation to TCPWM0 Group #0 Counter  
#38 trig=2  
TCPWM0_16_ONE_CNT_TR_IN[39] SAR1 ch#23, range violation to TCPWM0 Group #0 Counter  
#39 trig=2  
TCPWM0_16M_ONE_CNT_TR_IN[2] SAR2 ch#0, range violation to TCPWM0 Group #1 Counter #02  
trig=2  
TCPWM0_16_ONE_CNT_TR_IN[48] SAR2 ch#4, range violation to TCPWM0 Group #0 Counter #48  
trig=2  
TCPWM0_16_ONE_CNT_TR_IN[49] SAR2 ch#5, range violation to TCPWM0 Group #0 Counter #49  
trig=2  
TCPWM0_16_ONE_CNT_TR_IN[50] SAR2 ch#6, range violation to TCPWM0 Group #0 Counter #50  
trig=2  
32.Each logical channel of SAR ADC[x] can be connected to any of the SAR ADC[x]_y external pin. (x = 0, or 1, or, 2 and y=0 to max 31)  
Datasheet  
66  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Triggers one-to-one  
Table 20-1  
Triggers 1:1 (continued)  
Input  
Trigger In  
Trigger Out  
Description  
63  
PASS0_CH_RANGEVIO_TR_OUT[71]  
TCPWM0_16_ONE_CNT_TR_IN[51] SAR2 ch#7, range violation to TCPWM0 Group #0 Counter #51  
trig=2  
MUX Group 4: CAN0 to P-DMA0 Triggers  
0
1
2
3
4
5
CAN0_DBG_TR_OUT[0]  
CAN0_FIFO0_TR_OUT[0]  
CAN0_FIFO1_TR_OUT[0]  
CAN0_DBG_TR_OUT[1]  
CAN0_FIFO0_TR_OUT[1]  
CAN0_FIFO1_TR_OUT[1]  
PDMA0_TR_IN[16]  
PDMA0_TR_IN[17]  
PDMA0_TR_IN[18]  
PDMA0_TR_IN[19]  
PDMA0_TR_IN[20]  
PDMA0_TR_IN[21]  
CAN0, Channel #0 P-DMA0 trigger  
CAN0, Channel #0 FIFO0 trigger  
CAN0, Channel #0 FIFO1 trigger  
CAN0, Channel #1 P-DMA0 trigger  
CAN0, Channel #1 FIFO0 trigger  
CAN0, Channel #1 FIFO1 trigger  
MUX Group 5: CAN1 to P-DMA1 triggers  
0
1
2
3
4
5
CAN1_DBG_TR_OUT[0]  
CAN1_FIFO0_TR_OUT[0]  
CAN1_FIFO1_TR_OUT[0]  
CAN1_DBG_TR_OUT[1]  
CAN1_FIFO0_TR_OUT[1]  
CAN1_FIFO1_TR_OUT[1]  
PDMA1_TR_IN[24]  
PDMA1_TR_IN[25]  
PDMA1_TR_IN[26]  
PDMA1_TR_IN[27]  
PDMA1_TR_IN[28]  
PDMA1_TR_IN[29]  
CAN1, Channel #0 P-DMA01 trigger  
CAN1, Channel #0 FIFO0 trigger  
CAN1, Channel #0 FIFO1 trigger  
CAN1, Channel #1 P-DMA1 trigger  
CAN1, Channel #1 FIFO0 trigger  
CAN1, Channel #1 FIFO1 trigger  
MUX Group 6:Acknowledge triggers from P-DMA0 to CAN0  
0
1
PDMA0_TR_OUT[16]  
PDMA0_TR_OUT[19]  
CAN0_DBG_TR_ACK[0]  
CAN0_DBG_TR_ACK[1]  
CAN0, Channel #0 P-DMA0 acknowledge  
CAN0, Channel #1 P-DMA0 acknowledge  
MUX Group 7: Acknowledge triggers from P-DMA1 to CAN1  
0
1
PDMA1_TR_OUT[24]  
PDMA1_TR_OUT[27]  
CAN1_DBG_TR_ACK[0]  
CAN1_DBG_TR_ACK[1]  
CAN1, Channel #0 P-DMA1 acknowledge  
CAN1, Channel #1 P-DMA1 acknowledge  
MUX Group 8: SCBx to P-DMA1 Triggers  
0
1
SCB0_TX_TR_OUT  
SCB0_RX_TR_OUT  
SCB1_TX_TR_OUT  
SCB1_RX_TR_OUT  
SCB3_TX_TR_OUT  
SCB3_RX_TR_OUT  
SCB4_TX_TR_OUT  
SCB4_RX_TR_OUT  
SCB5_TX_TR_OUT  
SCB5_RX_TR_OUT  
SCB7_TX_TR_OUT  
SCB7_RX_TR_OUT  
PDMA1_TR_IN[8]  
PDMA1_TR_IN[9]  
PDMA1_TR_IN[10]  
PDMA1_TR_IN[11]  
PDMA1_TR_IN[14]  
PDMA1_TR_IN[15]  
PDMA1_TR_IN[16]  
PDMA1_TR_IN[17]  
PDMA1_TR_IN[18]  
PDMA1_TR_IN[19]  
PDMA1_TR_IN[22]  
PDMA1_TR_IN[23]  
SCB0 TX to P-DMA1 Trigger  
SCB0 RX to P-DMA1 Trigger  
SCB1 TX to P-DMA1 Trigger  
SCB1 RX to P-DMA1 Trigger  
SCB3 TX to P-DMA1 Trigger  
SCB3 RX to P-DMA1 Trigger  
SCB4 TX to P-DMA1 Trigger  
SCB4 RX to P-DMA1 Trigger  
SCB5 TX to P-DMA1 Trigger  
SCB5 RX to P-DMA1 Trigger  
SCB7 TX to P-DMA1 Trigger  
SCB7 RX to P-DMA1 Trigger  
2
3
6
7
8
9
10  
11  
14  
15  
Datasheet  
67  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Peripheral clocks  
21  
Peripheral clocks  
Table 21-1  
Peripheral clock assignments  
Destination  
Output  
0
Description  
PCLK_CPUSS_CLOCK_TRACE_IN  
PCLK_SMARTIO12_CLOCK  
PCLK_SMARTIO13_CLOCK  
PCLK_SMARTIO14_CLOCK  
PCLK_CANFD0_CLOCK_CAN0  
PCLK_CANFD0_CLOCK_CAN1  
PCLK_CANFD1_CLOCK_CAN0  
PCLK_CANFD1_CLOCK_CAN1  
PCLK_LIN0_CLOCK_CH_EN0  
PCLK_LIN0_CLOCK_CH_EN1  
PCLK_LIN0_CLOCK_CH_EN2  
PCLK_LIN0_CLOCK_CH_EN3  
PCLK_LIN0_CLOCK_CH_EN4  
PCLK_SCB0_CLOCK  
Trace clock  
SMART I/O #12  
SMART I/O #13  
SMART I/O #14  
CAN0, Channel #0  
CAN0, Channel #1  
CAN1, Channel #0  
CAN1, Channel #1  
LIN0, Channel #0  
LIN0, Channel #1  
LIN0, Channel #2  
LIN0, Channel #3  
LIN0, Channel #4  
SCB0  
SCB1  
SCB3  
SCB4  
SCB5  
SCB7  
SAR0  
SAR1  
SAR2  
TCPWM0 Group #0, Counter #0  
TCPWM0 Group #0, Counter #1  
TCPWM0 Group #0, Counter #2  
TCPWM0 Group #0, Counter #4  
TCPWM0 Group #0, Counter #5  
TCPWM0 Group #0, Counter #6  
TCPWM0 Group #0, Counter #7  
TCPWM0 Group #0, Counter #9  
TCPWM0 Group #0, Counter #10  
TCPWM0 Group #0, Counter #11  
TCPWM0 Group #0, Counter #12  
TCPWM0 Group #0, Counter #13  
TCPWM0 Group #0, Counter #14  
TCPWM0 Group #0, Counter #15  
TCPWM0 Group #0, Counter #16  
TCPWM0 Group #0, Counter #17  
1
2
3
6
7
9
10  
12  
13  
14  
15  
16  
20  
21  
23  
24  
25  
27  
28  
29  
30  
31  
32  
33  
35  
36  
37  
38  
40  
41  
42  
43  
44  
45  
46  
47  
48  
PCLK_SCB1_CLOCK  
PCLK_SCB3_CLOCK  
PCLK_SCB4_CLOCK  
PCLK_SCB5_CLOCK  
PCLK_SCB7_CLOCK  
PCLK_PASS0_CLOCK_SAR0  
PCLK_PASS0_CLOCK_SAR1  
PCLK_PASS0_CLOCK_SAR2  
PCLK_TCPWM0_CLOCKS0  
PCLK_TCPWM0_CLOCKS1  
PCLK_TCPWM0_CLOCKS2  
PCLK_TCPWM0_CLOCKS4  
PCLK_TCPWM0_CLOCKS5  
PCLK_TCPWM0_CLOCKS6  
PCLK_TCPWM0_CLOCKS7  
PCLK_TCPWM0_CLOCKS9  
PCLK_TCPWM0_CLOCKS10  
PCLK_TCPWM0_CLOCKS11  
PCLK_TCPWM0_CLOCKS12  
PCLK_TCPWM0_CLOCKS13  
PCLK_TCPWM0_CLOCKS14  
PCLK_TCPWM0_CLOCKS15  
PCLK_TCPWM0_CLOCKS16  
PCLK_TCPWM0_CLOCKS17  
Datasheet  
68  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Peripheral clocks  
Table 21-1  
Output  
49  
Peripheral clock assignments (continued)  
Destination  
Description  
TCPWM0 Group #0, Counter #18  
TCPWM0 Group #0, Counter #19  
TCPWM0 Group #0, Counter #20  
TCPWM0 Group #0, Counter #21  
TCPWM0 Group #0, Counter #22  
TCPWM0 Group #0, Counter #23  
TCPWM0 Group #0, Counter #24  
TCPWM0 Group #0, Counter #25  
TCPWM0 Group #0, Counter #26  
TCPWM0 Group #0, Counter #33  
TCPWM0 Group #0, Counter #34  
TCPWM0 Group #0, Counter #36  
TCPWM0 Group #0, Counter #37  
TCPWM0 Group #0, Counter #38  
TCPWM0 Group #0, Counter #39  
TCPWM0 Group #0, Counter #40  
TCPWM0 Group #0, Counter #41  
TCPWM0 Group #0, Counter #42  
TCPWM0 Group #0, Counter #44  
TCPWM0 Group #0, Counter #45  
TCPWM0 Group #0, Counter #46  
TCPWM0 Group #0, Counter #47  
TCPWM0 Group #0, Counter #48  
TCPWM0 Group #0, Counter #49  
TCPWM0 Group #0, Counter #50  
TCPWM0 Group #0, Counter #51  
TCPWM0 Group #0, Counter #52  
TCPWM0 Group #0, Counter #53  
TCPWM0 Group #0, Counter #54  
TCPWM0 Group #0, Counter #55  
TCPWM0 Group #1, Counter #0  
TCPWM0 Group #1, Counter #1  
TCPWM0 Group #1, Counter #2  
TCPWM0 Group #1, Counter #4  
TCPWM0 Group #2, Counter #0  
TCPWM0 Group #2, Counter #2  
PCLK_TCPWM0_CLOCKS18  
PCLK_TCPWM0_CLOCKS19  
PCLK_TCPWM0_CLOCKS20  
PCLK_TCPWM0_CLOCKS21  
PCLK_TCPWM0_CLOCKS22  
PCLK_TCPWM0_CLOCKS23  
PCLK_TCPWM0_CLOCKS24  
PCLK_TCPWM0_CLOCKS25  
PCLK_TCPWM0_CLOCKS26  
PCLK_TCPWM0_CLOCKS33  
PCLK_TCPWM0_CLOCKS34  
PCLK_TCPWM0_CLOCKS36  
PCLK_TCPWM0_CLOCKS37  
PCLK_TCPWM0_CLOCKS38  
PCLK_TCPWM0_CLOCKS39  
PCLK_TCPWM0_CLOCKS40  
PCLK_TCPWM0_CLOCKS41  
PCLK_TCPWM0_CLOCKS42  
PCLK_TCPWM0_CLOCKS44  
PCLK_TCPWM0_CLOCKS45  
PCLK_TCPWM0_CLOCKS46  
PCLK_TCPWM0_CLOCKS47  
PCLK_TCPWM0_CLOCKS48  
PCLK_TCPWM0_CLOCKS49  
PCLK_TCPWM0_CLOCKS50  
PCLK_TCPWM0_CLOCKS51  
PCLK_TCPWM0_CLOCKS52  
PCLK_TCPWM0_CLOCKS53  
PCLK_TCPWM0_CLOCKS54  
PCLK_TCPWM0_CLOCKS55  
PCLK_TCPWM0_CLOCKS256  
PCLK_TCPWM0_CLOCKS257  
PCLK_TCPWM0_CLOCKS258  
PCLK_TCPWM0_CLOCKS260  
PCLK_TCPWM0_CLOCKS512  
PCLK_TCPWM0_CLOCKS514  
50  
51  
52  
53  
54  
55  
56  
57  
64  
65  
67  
68  
69  
70  
71  
72  
73  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
94  
95  
96  
98  
106  
108  
Datasheet  
69  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Faults  
22  
Faults  
Table 22-1  
Fault assignments  
Fault  
Source  
Description  
CM0+ SMPU violation  
DATA0[31:0]: Violating address.  
DATA1[0]: User read.  
DATA1[1]: User write.  
DATA1[2]: User execute.  
DATA1[3]: Privileged read.  
DATA1[4]: Privileged write.  
DATA1[5]: Privileged execute.  
DATA1[6]: Non-secure.  
0
CPUSS_MPU_VIO_0  
DATA1[11:8]: Master identifier.  
DATA1[15:12]: Protection context identifier.  
DATA1[31]: '0' MPU violation; '1': SMPU violation.  
1
2
CPUSS_MPU_VIO_1  
Crypto SMPU violation. See CPUSS_MPU_VIO_0 description.  
CPUSS_MPU_VIO_2  
CPUSS_MPU_VIO_3  
CPUSS_MPU_VIO_4  
CPUSS_MPU_VIO_15  
CPUSS_MPU_VIO_16  
P-DMA0 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.  
P-DMA1 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.  
M-DMA0 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.  
Test Controller MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.  
CM4 system bus AHB-Lite interface MPU violation. See CPUSS_MPU_VIO_0 description.  
3
4
15  
16  
CM4 code bus AHB-Lite interface MPU violation for non flash controller accesses.  
See CPUSS_MPU_VIO_0 description.  
17  
18  
CPUSS_MPU_VIO_17  
CPUSS_MPU_VIO_18  
CM4 code bus AHB-Lite interface MPU violation for flash controller accesses.  
See CPUSS_MPU_VIO_0 description.  
Peripheral protection SRAM correctable ECC violation  
DATA0[10:0]: Violating address.  
26  
27  
PERI_PERI_C_ECC  
PERI_PERI_NC_ECC  
DATA1[7:0]: Syndrome of SRAM word.  
Peripheral protection SRAM non-correctable ECC violation  
CM0+ Peripheral Master Interface PPU violation  
DATA0[31:0]: Violating address.  
DATA1[0]: User read.  
DATA1[1]: User write.  
DATA1[2]: User execute.  
DATA1[3]: Privileged read.  
28  
PERI_MS_VIO_0  
DATA1[4]: Privileged write.  
DATA1[5]: Privileged execute.  
DATA1[6]: Non-secure.  
DATA1[11:8]: Master identifier.  
DATA1[15:12]: Protection context identifier.  
DATA1[31:28]: “0”: master interface, PPU violation, “1': timeout detected, “2”: bus error,  
other: undefined.  
CM4 Peripheral Master Interface PPU violation.  
See PERI_MS_VIO_0 description.  
29  
30  
31  
PERI_MS_VIO_1  
PERI_MS_VIO_2  
PERI_MS_VIO_3  
P-DMA0 Peripheral Master Interface PPU violation.  
See PERI_MS_VIO_0 description.  
P-DMA1 Peripheral Master Interface PPU violation.  
See PERI_MS_VIO_0 description.  
Peripheral Group #0 violation.  
DATA0[31:0]: Violating address.  
DATA1[0]: User read.  
DATA1[1]: User write.  
DATA1[2]: User execute.  
DATA1[3]: Privileged read.  
32  
PERI_GROUP_VIO_0  
DATA1[4]: Privileged write.  
DATA1[5]: Privileged execute.  
DATA1[6]: Non-secure.  
DATA1[11:8]: Master identifier.  
DATA1[15:12]: Protection context identifier.  
DATA1[31:28]: “0”: decoder or peripheral bus error, other: undefined.  
33  
34  
35  
37  
38  
PERI_GROUP_VIO_1  
PERI_GROUP_VIO_2  
PERI_GROUP_VIO_3  
PERI_GROUP_VIO_5  
PERI_GROUP_VIO_6  
Peripheral Group #1 violation. See PERI_GROUP_VIO_0 description.  
Peripheral Group #2 violation. See PERI_GROUP_VIO_0 description.  
Peripheral Group #3 violation. See PERI_GROUP_VIO_0 description.  
Peripheral Group #5 violation. See PERI_GROUP_VIO_0 description.  
Peripheral Group #6 violation. See PERI_GROUP_VIO_0 description.  
Datasheet  
70  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Faults  
Table 22-1  
Fault assignments (continued)  
Fault  
Source  
Description  
41  
48  
PERI_GROUP_VIO_9  
CPUSS_FLASHC_MAIN_BUS_ERROR  
Peripheral Group #9 violation. See PERI_GROUP_VIO_0 description.  
Flash controller main flash bus error  
FAULT_DATA0[26:0]: Violating address. Append 5'b00010 as most significant bits to derive  
32-bit system address.  
FAULT_DATA1[11:8]: Master identifier.  
Flash controller main flash correctable ECC violation  
DATA[26:0]: Violating address. Append 5'b00010 as most significant bits to derive 32-bit  
system address.  
49  
CPUSS_FLASHC_MAIN_C_ECC  
DATA1[7:0]: Syndrome of 64-bit word (at address offset 0x00).  
DATA1[15:8]: Syndrome of 64-bit word (at address offset 0x08).  
DATA1[23:16]: Syndrome of 64-bit word (at address offset 0x10).  
DATA1[31:24]: Syndrome of 64-bit word (at address offset 0x18).  
Flash controller main flash non-correctable ECC violation.  
See CPUSS_FLASHC_MAIN_C_ECC description.  
50  
51  
CPUSS_FLASHC_MAIN_NC_ECC  
Flash controller work-flash bus error.  
CPUSS_FLASHC_WORK_BUS_ERROR  
See CPUSS_FLASHC_MAIN_BUS_ERR description.  
Flash controller work flash correctable ECC violation.  
DATA0[26:0]: Violating address. Append 5'b00010 as most significant bits to derive 32-bit  
system address.  
52  
53  
CPUSS_FLASHC_WORK_C_ECC  
CPUSS_FLASHC_WORK_NC_ECC  
DATA1[6:0]: Syndrome of 32-bit word.  
Flash controller work-flash non-correctable ECC violation.  
See CPUSS_FLASHC_WORK_C_ECC description.  
Flash controller CM0+ cache correctable ECC violation.  
DATA0[26:0]: Violating address.  
DATA1[6:0]: Syndrome of 32-bit SRAM word (at address offset 0x0).  
DATA1[14:8]: Syndrome of 32-bit SRAM word (at address offset 0x4).  
DATA1[22:16]: Syndrome of 32-bit SRAM word (at address offset 0x8).  
DATA1[30:24]: Syndrome of 32-bit SRAM word (at address offset 0xc).  
54  
CPUSS_FLASHC_CM0_CA_C_ECC  
Flash controller CM0+ cache non-correctable ECC violation.  
See CPUSS_FLASHC_CM0_CA_C_ECC description.  
55  
56  
57  
CPUSS_FLASHC_CM0_CA_NC_ECC  
CPUSS_FLASHC_CM4_CA_C_ECC  
CPUSS_FLASHC_CM4_CA_NC_ECC  
Flash controller CM4 cache correctable ECC violation.  
See CPUSS_FLASHC_CM0_CA_C_ECC description.  
Flash controller CM4 cache non-correctable ECC violation.  
See CPUSS_FLASHC_CM0_CA_C_ECC description.  
System memory controller 0 correctable ECC violation:  
DATA0[31:0]: Violating address.  
58  
59  
CPUSS_RAMC0_C_ECC  
CPUSS_RAMC0_NC_ECC  
DATA1[6:0]: Syndrome of 32-bit SRAM code word.  
System memory controller 0 non-correctable ECC violation.  
See CPUSS_RAMC0_C_ECC description.  
Crypto memory correctable ECC violation.  
DATA0[31:0]: Violating address.  
64  
65  
70  
CPUSS_CRYPTO_C_ECC  
CPUSS_CRYPTO_NC_ECC  
CPUSS_DW0_C_ECC  
DATA1[6:0]: Syndrome of Least Significant 32-bit SRAM.  
DATA1[14:8]: Syndrome of Most Significant 32-bit SRAM.  
Crypto memory non-correctable ECC violation.  
See CPUSS_CRYPTO_C_ECC description.  
P-DMA0 memory correctable ECC violation:  
DATA0[11:0]: Violating DW SRAM address  
(word address, assuming byte addressable).  
DATA1[6:0]: Syndrome of 32-bit SRAM code word.  
P-DMA0 memory non-correctable ECC violation.  
See CPUSS_DW0_C_ECC description.  
71  
72  
73  
CPUSS_DW0_NC_ECC  
CPUSS_DW1_C_ECC  
CPUSS_DW1_NC_ECC  
P-DMA1 memory correctable ECC violation.  
See CPUSS_DW0_C_ECC description.  
P-DMA1 memory non-correctable ECC violation.  
See CPUSS_DW0_C_ECC description.  
Flash code storage SRAM memory correctable ECC violation:  
DATA0[15:0]: Address location in the eCT Flash SRAM.  
DATA1[6:0]: Syndrome of 32-bit SRAM word.  
74  
75  
CPUSS_FM_SRAM_C_ECC  
CPUSS_FM_SRAM_NC_ECC  
Flash code storage SRAM memory non-correctable ECC violation:  
See CPUSS_FM_SRAMC_C_ECC description.  
CAN0 message buffer correctable ECC violation:  
DATA0[15:0]: Violating address.  
80  
CANFD_0_CAN_C_ECC  
DATA0[22:16]: ECC violating data[38:32] from MRAM.  
DATA0[27:24]: Master ID: 0-7 = CAN channel ID within mxttcanfd cluster, 8 = AHB I/F  
DATA1[31:0]: ECC violating data[31:0] from MRAM.  
Datasheet  
71  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Faults  
Table 22-1  
Fault assignments (continued)  
Fault  
Source  
Description  
CAN0 message buffer non-correctable ECC violation:  
DATA0[15:0]: Violating address.  
DATA0[22:16]: ECC violating data[38:32] from MRAM (not for Address Error).  
DATA0[27:24]: Master ID: 0-7 = CAN channel ID within mxttcanfd cluster, 8 = AHB I/F  
DATA0[30]: Write access, only possible for Address Error  
81  
CANFD_0_CAN_NC_ECC  
DATA0[31]: Address Error: a CAN channel did an MRAM access above MRAM_SIZE  
DATA1[31:0]: ECC violating data[31:0] from MRAM (not for Address Error).  
CAN1 message buffer correctable ECC violation.  
See CANFD_0_CAN_C_ECC description.  
82  
83  
CANFD_1_CAN_C_ECC  
CAN1 message buffer non-correctable ECC violation.  
See CANFD_0_CAN_NC_ECC description.  
CANFD_1_CAN_NC_ECC  
Consolidated fault output for clock supervisors. Multiple CSV can detect a violation at the  
same time.  
DATA0[15:0]: CLK_HF* root CSV violation flags.  
DATA0[24]: CLK_REF CSV violation flag (reference clock for CLK_HF CSVs)  
DATA0[25]: CLK_LF CSV violation flag  
90  
91  
SRSS_FAULT_CSV  
DATA0[26]: CLK_HVILO CSV violation flag  
Consolidated fault output for supply supervisors. Multiple CSV can detect a violation at the  
same time.  
DATA0[0]: BOD on VDDA  
DATA[1]: OVD on VDDA  
DATA[16]: LVD/HVD #1  
DATA0[17]: LVD/HVD #2  
SRSS_FAULT_SSV  
Fault output for MCWDT0 (all sub-counters) Multiple counters can detect a violation at the  
same time.  
DATA0[0]: MCWDT sub counter 0 LOWER_LIMIT  
DATA0[1]: MCWDT sub counter 0 UPPER_LIMIT  
DATA0[2]: MCWDT sub counter 1 LOWER_LIMIT  
DATA0[3]: MCWDT sub counter 1 UPPER_LIMIT  
92  
93  
SRSS_FAULT_MCWDT0  
SRSS_FAULT_MCWDT1  
Fault output for MCWDT1 (all sub-counters).  
See SRSS_FAULT_MCWDT0 description.  
Datasheet  
72  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Peripheral protection unit fixed structure pairs  
23  
Peripheral protection unit fixed structure pairs  
Protection pair is a pair PPU structures, a master and a slave structure. The master structure protects the slave  
structure, and the slave structure protects resources such as peripheral registers, or the peripheral itself.  
Table 23-1  
PPU fixed structure pairs  
Pair no.  
PPU fixed structure pair  
Address  
Size  
Description  
Peripheral Interconnect main  
Peripheral interconnect secure  
Peripheral Group #0 main  
Peripheral Group #1 main  
Peripheral Group #2 main  
Peripheral Group #3 main  
Peripheral Group #5 main  
Peripheral Group #6 main  
Peripheral Group #9 main  
Peripheral trigger multiplexer  
Crypto main  
PERI_MS_PPU_FX_PERI_MAIN  
PERI_MS_PPU_FX_PERI_SECURE  
0x40000000  
0x40002000  
0x40004010  
0x40004030  
0x40004050  
0x40004060  
0x400040A0  
0x400040C0  
0x40004120  
0x40008000  
0x40100000  
0x40101000  
0x40102000  
0x40102100  
0x40102120  
0x40108000  
0x40200000  
0x40201000  
0x40202000  
0x40208000  
0x4020A000  
0x40210000  
0x40210100  
0x40210200  
0x40210300  
0x40220000  
0x40220020  
0x40220040  
0x40220060  
0x40220080  
0x402200A0  
0x402200C0  
0x402200E0  
0x40221000  
0x40221020  
0x40221040  
0x40221060  
0x40221080  
0x402210A0  
0x402210C0  
0x402210E0  
0x00002000  
0x00000004  
0x00000004  
0x00000004  
0x00000004  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00008000  
0x00000400  
0x00000800  
0x00000100  
0x00000004  
0x00000004  
0x00002000  
0x00000400  
0x00001000  
0x00000200  
0x00000800  
0x00000800  
0x00000100  
0x00000100  
0x00000100  
0x00000100  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000010  
0x00000010  
0x00000010  
0x00000010  
0x00000010  
0x00000010  
0x00000010  
0x00000010  
0
1
PERI_MS_PPU_FX_PERI_GR0_GROUP  
PERI_MS_PPU_FX_PERI_GR1_GROUP  
PERI_MS_PPU_FX_PERI_GR2_GROUP  
PERI_MS_PPU_FX_PERI_GR3_GROUP  
PERI_MS_PPU_FX_PERI_GR5_GROUP  
PERI_MS_PPU_FX_PERI_GR6_GROUP  
PERI_MS_PPU_FX_PERI_GR9_GROUP  
PERI_MS_PPU_FX_PERI_TR  
2
3
4
5
6
7
8
9
PERI_MS_PPU_FX_CRYPTO_MAIN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Note  
PERI_MS_PPU_FX_CRYPTO_CRYPTO  
PERI_MS_PPU_FX_CRYPTO_BOOT  
Crypto MMIO (Memory Mapped I/O)  
Crypto boot  
PERI_MS_PPU_FX_CRYPTO_KEY0  
Crypto Key #0  
PERI_MS_PPU_FX_CRYPTO_KEY1  
Crypto Key #1  
PERI_MS_PPU_FX_CRYPTO_BUF  
Crypto buffer  
PERI_MS_PPU_FX_CPUSS_CM4  
CM4 CPU core  
PERI_MS_PPU_FX_CPUSS_CM0  
CM0+ CPU core  
PERI_MS_PPU_FX_CPUSS_BOOT[33]  
PERI_MS_PPU_FX_CPUSS_CM0_INT  
PERI_MS_PPU_FX_CPUSS_CM4_INT  
PERI_MS_PPU_FX_FAULT_STRUCT0_MAIN  
PERI_MS_PPU_FX_FAULT_STRUCT1_MAIN  
PERI_MS_PPU_FX_FAULT_STRUCT2_MAIN  
PERI_MS_PPU_FX_FAULT_STRUCT3_MAIN  
PERI_MS_PPU_FX_IPC_STRUCT0_IPC  
PERI_MS_PPU_FX_IPC_STRUCT1_IPC  
PERI_MS_PPU_FX_IPC_STRUCT2_IPC  
PERI_MS_PPU_FX_IPC_STRUCT3_IPC  
PERI_MS_PPU_FX_IPC_STRUCT4_IPC  
PERI_MS_PPU_FX_IPC_STRUCT5_IPC  
PERI_MS_PPU_FX_IPC_STRUCT6_IPC  
PERI_MS_PPU_FX_IPC_STRUCT7_IPC  
PERI_MS_PPU_FX_IPC_INTR_STRUCT0_INTR  
PERI_MS_PPU_FX_IPC_INTR_STRUCT1_INTR  
PERI_MS_PPU_FX_IPC_INTR_STRUCT2_INTR  
PERI_MS_PPU_FX_IPC_INTR_STRUCT3_INTR  
PERI_MS_PPU_FX_IPC_INTR_STRUCT4_INTR  
PERI_MS_PPU_FX_IPC_INTR_STRUCT5_INTR  
PERI_MS_PPU_FX_IPC_INTR_STRUCT6_INTR  
PERI_MS_PPU_FX_IPC_INTR_STRUCT7_INTR  
CPUSS boot  
CPUSS CM0+ interrupts  
CPUSS CM4 interrupts  
CPUSS Fault Structure #0 main  
CPUSS Fault Structure #1 main  
CPUSS Fault Structure #2 main  
CPUSS Fault Structure #3 main  
CPUSS IPC Structure #0  
CPUSS IPC Structure #1  
CPUSS IPC Structure #2  
CPUSS IPC Structure #3  
CPUSS IPC Structure #4  
CPUSS IPC Structure #5  
CPUSS IPC Structure #6  
CPUSS IPC Structure #7  
CPUSS IPC Interrupt Structure #0  
CPUSS IPC Interrupt Structure #1  
CPUSS IPC Interrupt Structure #2  
CPUSS IPC Interrupt Structure #3  
CPUSS IPC Interrupt Structure #4  
CPUSS IPC Interrupt Structure #5  
CPUSS IPC Interrupt Structure #6  
CPUSS IPC Interrupt Structure #7  
33.Fixed PPU is configured inside the Boot and user is not allowed to change the attributes of this PPU.  
Datasheet  
73  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Peripheral protection unit fixed structure pairs  
Table 23-1  
PPU fixed structure pairs (continued)  
Pair no.  
PPU fixed structure pair  
Address  
Size  
Description  
Peripheral protection SMPU main  
Peripheral protection MPU #0 main  
Peripheral protection MPU #14 main  
Peripheral protection MPU #15 main  
Flash controller main  
Flash controller command  
Flash controller tests  
Flash controller CM0+  
Flash controller CM4  
Flash controller Crypto  
Flash controller P-DMA0  
Flash controller P-DMA1  
Flash controller M-DMA0  
Flash management  
PERI_MS_PPU_FX_PROT_SMPU_MAIN  
PERI_MS_PPU_FX_PROT_MPU0_MAIN  
0x40230000  
0x40234000  
0x40237800  
0x40237C00  
0x40240000  
0x40240008  
0x40240200  
0x40240400  
0x40240480  
0x40240500  
0x40240580  
0x40240600  
0x40240680  
0x4024F000  
0x4024F400  
0x4024F500  
0x40260000  
0x40261000  
0x40262000  
0x40268000  
0x40268100  
0x40268080  
0x40268180  
0x4026C000  
0x4026C040  
0x40270000  
0x40280000  
0x40290000  
0x40280100  
0x40290100  
0x40288000  
0x40288040  
0x40288080  
0x402880C0  
0x40288100  
0x40288140  
0x40288180  
0x402881C0  
0x40288200  
0x40288240  
0x40288280  
0x402882C0  
0x40288300  
0x40288340  
0x40288380  
0x402883C0  
0x40288400  
0x00000040  
0x00000004  
0x00000004  
0x00000400  
0x00000008  
0x00000004  
0x00000100  
0x00000080  
0x00000080  
0x00000004  
0x00000004  
0x00000004  
0x00000004  
0x00000080  
0x00000008  
0x00000004  
0x00000400  
0x00001000  
0x00002000  
0x00000080  
0x00000080  
0x00000040  
0x00000040  
0x00000020  
0x00000020  
0x00010000  
0x00000100  
0x00000100  
0x00000080  
0x00000080  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
PERI_MS_PPU_FX_PROT_MPU14_MAIN  
PERI_MS_PPU_FX_PROT_MPU15_MAIN  
PERI_MS_PPU_FX_FLASHC_MAIN  
PERI_MS_PPU_FX_FLASHC_CMD  
PERI_MS_PPU_FX_FLASHC_DFT  
PERI_MS_PPU_FX_FLASHC_CM0  
PERI_MS_PPU_FX_FLASHC_CM4  
PERI_MS_PPU_FX_FLASHC_CRYPTO  
PERI_MS_PPU_FX_FLASHC_DW0  
PERI_MS_PPU_FX_FLASHC_DW1  
PERI_MS_PPU_FX_FLASHC_DMAC  
PERI_MS_PPU_FX_FLASHC_FlashMgmt[33]  
PERI_MS_PPU_FX_FLASHC_MainSafety  
PERI_MS_PPU_FX_FLASHC_WorkSafety  
PERI_MS_PPU_FX_SRSS_GENERAL  
PERI_MS_PPU_FX_SRSS_MAIN  
Flash controller code-flash safety  
Flash controller work-flash safety  
SRSS General  
SRSS main  
PERI_MS_PPU_FX_SRSS_SECURE  
SRSS secure  
PERI_MS_PPU_FX_MCWDT0_CONFIG  
PERI_MS_PPU_FX_MCWDT1_CONFIG  
PERI_MS_PPU_FX_MCWDT0_MAIN  
PERI_MS_PPU_FX_MCWDT1_MAIN  
PERI_MS_PPU_FX_WDT_CONFIG  
MCWDT #0 configuration  
MCWDT #1 configuration  
MCWDT #0 main  
MCWDT #1 main  
System WDT configuration  
System WDT main  
PERI_MS_PPU_FX_WDT_MAIN  
PERI_MS_PPU_FX_BACKUP_BACKUP  
PERI_MS_PPU_FX_DW0_DW  
SRSS backup  
P-DMA0 main  
PERI_MS_PPU_FX_DW1_DW  
P-DMA1 main  
PERI_MS_PPU_FX_DW0_DW_CRC  
P-DMA0 CRC  
PERI_MS_PPU_FX_DW1_DW_CRC  
P-DMA1 CRC  
PERI_MS_PPU_FX_DW0_CH_STRUCT0_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT1_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT2_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT3_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT4_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT5_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT6_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT7_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT8_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT9_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT10_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT11_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT12_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT13_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT14_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT15_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT16_CH  
P-DMA0 Channel #0  
P-DMA0 Channel #1  
P-DMA0 Channel #2  
P-DMA0 Channel #3  
P-DMA0 Channel #4  
P-DMA0 Channel #5  
P-DMA0 Channel #6  
P-DMA0 Channel #7  
P-DMA0 Channel #8  
P-DMA0 Channel #9  
P-DMA0 Channel #10  
P-DMA0 Channel #11  
P-DMA0 Channel #12  
P-DMA0 Channel #13  
P-DMA0 Channel #14  
P-DMA0 Channel #15  
P-DMA0 Channel #16  
Datasheet  
74  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Peripheral protection unit fixed structure pairs  
Table 23-1  
PPU fixed structure pairs (continued)  
Pair no.  
PPU fixed structure pair  
Address  
Size  
Description  
P-DMA0 Channel #17  
PERI_MS_PPU_FX_DW0_CH_STRUCT17_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT18_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT19_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT20_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT21_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT25_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT26_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT27_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT28_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT29_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT30_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT33_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT34_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT36_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT37_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT42_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT53_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT54_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT55_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT56_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT57_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT61_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT62_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT63_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT64_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT65_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT66_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT71_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT72_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT81_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT82_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT83_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT84_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT85_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT86_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT87_CH  
PERI_MS_PPU_FX_DW0_CH_STRUCT88_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT0_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT1_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT2_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT3_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT4_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT5_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT6_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT7_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT8_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT9_CH  
0x40288440  
0x40288480  
0x402884C0  
0x40288500  
0x40288540  
0x40288640  
0x40288680  
0x402886C0  
0x40288700  
0x40288740  
0x40288780  
0x40288840  
0x40288880  
0x40288900  
0x40288940  
0x40288A80  
0x40288D40  
0x40288D80  
0x40288DC0  
0x40288E00  
0x40288E40  
0x40288F40  
0x40288F80  
0x40288FC0  
0x40289000  
0x40289040  
0x40289080  
0x402891C0  
0x40289200  
0x40289440  
0x40289480  
0x402894C0  
0x40289500  
0x40289540  
0x40289580  
0x402895C0  
0x40289600  
0x40298000  
0x40298040  
0x40298080  
0x402980C0  
0x40298100  
0x40298140  
0x40298180  
0x402981C0  
0x40298200  
0x40298240  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
88  
P-DMA0 Channel #18  
P-DMA0 Channel #19  
P-DMA0 Channel #20  
P-DMA0 Channel #21  
P-DMA0 Channel #25  
P-DMA0 Channel #26  
P-DMA0 Channel #27  
P-DMA0 Channel #28  
P-DMA0 Channel #29  
P-DMA0 Channel #30  
P-DMA0 Channel #33  
P-DMA0 Channel #34  
P-DMA0 Channel #36  
P-DMA0 Channel #37  
P-DMA0 Channel #42  
P-DMA0 Channel #53  
P-DMA0 Channel #54  
P-DMA0 Channel #55  
P-DMA0 Channel #56  
P-DMA0 Channel #57  
P-DMA0 Channel #61  
P-DMA0 Channel #62  
P-DMA0 Channel #63  
P-DMA0 Channel #64  
P-DMA0 Channel #65  
P-DMA0 Channel #66  
P-DMA0 Channel #71  
P-DMA0 Channel #72  
P-DMA0 Channel #81  
P-DMA0 Channel #82  
P-DMA0 Channel #83  
P-DMA0 Channel #84  
P-DMA0 Channel #85  
P-DMA0 Channel #86  
P-DMA0 Channel #87  
P-DMA0 Channel #88  
P-DMA1 Channel #0  
P-DMA1 Channel #1  
P-DMA1 Channel #2  
P-DMA1 Channel #3  
P-DMA1 Channel #4  
P-DMA1 Channel #5  
P-DMA1 Channel #6  
P-DMA1 Channel #7  
P-DMA1 Channel #8  
P-DMA1 Channel #9  
89  
90  
91  
92  
96  
97  
98  
99  
100  
101  
104  
105  
107  
108  
113  
124  
125  
126  
127  
128  
132  
133  
134  
135  
136  
137  
142  
143  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
Datasheet  
75  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Peripheral protection unit fixed structure pairs  
Table 23-1  
PPU fixed structure pairs (continued)  
Pair no.  
PPU fixed structure pair  
Address  
Size  
Description  
P-DMA1 Channel #10  
PERI_MS_PPU_FX_DW1_CH_STRUCT10_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT11_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT14_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT15_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT16_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT17_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT18_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT19_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT22_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT23_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT24_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT25_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT26_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT27_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT28_CH  
PERI_MS_PPU_FX_DW1_CH_STRUCT29_CH  
PERI_MS_PPU_FX_DMAC_TOP  
0x40298280  
0x402982C0  
0x40298380  
0x402983C0  
0x40298400  
0x40298440  
0x40298480  
0x402984C0  
0x40298580  
0x402985C0  
0x40298600  
0x40298640  
0x40298680  
0x402986C0  
0x40298700  
0x40298740  
0x402A0000  
0x402A1000  
0x402A1100  
0x402C0000  
0x402C0800  
0x402F0000  
0x40300000  
0x40300020  
0x40300030  
0x40300050  
0x40300060  
0x40300070  
0x40300080  
0x403000B0  
0x403000C0  
0x403000D0  
0x403000E0  
0x40300110  
0x40300120  
0x40300130  
0x40300150  
0x40300160  
0x40300170  
0x40302000  
0x40302200  
0x40302240  
0x40310000  
0x40310100  
0x40310180  
0x40310280  
0x40310300  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000010  
0x00000100  
0x00000100  
0x00000200  
0x00000200  
0x00001000  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000008  
0x00000010  
0x00000010  
0x00000004  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
170  
171  
174  
175  
176  
177  
178  
179  
182  
183  
184  
185  
186  
187  
188  
189  
193  
194  
195  
198  
199  
200  
201  
203  
204  
206  
207  
208  
209  
212  
213  
214  
215  
218  
219  
220  
222  
223  
224  
225  
226  
227  
228  
230  
231  
233  
234  
P-DMA1 Channel #11  
P-DMA1 Channel #14  
P-DMA1 Channel #15  
P-DMA1 Channel #16  
P-DMA1 Channel #17  
P-DMA1 Channel #18  
P-DMA1 Channel #19  
P-DMA1 Channel #22  
P-DMA1 Channel #23  
P-DMA1 Channel #24  
P-DMA1 Channel #25  
P-DMA1 Channel #26  
P-DMA1 Channel #27  
P-DMA1 Channel #28  
P-DMA1 Channel #29  
M-DMA0 main  
PERI_MS_PPU_FX_DMAC_CH0_CH  
M-DMA0 Channel #0  
M-DMA0 Channel #1  
EFUSE control  
PERI_MS_PPU_FX_DMAC_CH1_CH  
PERI_MS_PPU_FX_EFUSE_CTL  
PERI_MS_PPU_FX_EFUSE_DATA  
EFUSE data  
PERI_MS_PPU_FX_BIST  
Built-in self test  
PERI_MS_PPU_FX_HSIOM_PRT0_PRT  
PERI_MS_PPU_FX_HSIOM_PRT2_PRT  
PERI_MS_PPU_FX_HSIOM_PRT3_PRT  
PERI_MS_PPU_FX_HSIOM_PRT5_PRT  
PERI_MS_PPU_FX_HSIOM_PRT6_PRT  
PERI_MS_PPU_FX_HSIOM_PRT7_PRT  
PERI_MS_PPU_FX_HSIOM_PRT8_PRT  
PERI_MS_PPU_FX_HSIOM_PRT11_PRT  
PERI_MS_PPU_FX_HSIOM_PRT12_PRT  
PERI_MS_PPU_FX_HSIOM_PRT13_PRT  
PERI_MS_PPU_FX_HSIOM_PRT14_PRT  
PERI_MS_PPU_FX_HSIOM_PRT17_PRT  
PERI_MS_PPU_FX_HSIOM_PRT18_PRT  
PERI_MS_PPU_FX_HSIOM_PRT19_PRT  
PERI_MS_PPU_FX_HSIOM_PRT21_PRT  
PERI_MS_PPU_FX_HSIOM_PRT22_PRT  
PERI_MS_PPU_FX_HSIOM_PRT23_PRT  
PERI_MS_PPU_FX_HSIOM_AMUX  
HSIOm Port #0  
HSIOm Port #2  
HSIOm Port #3  
HSIOm Port #5  
HSIOm Port #6  
HSIOm Port #7  
HSIOm Port #8  
HSIOm Port #11  
HSIOm Port #12  
HSIOm Port #13  
HSIOm Port #14  
HSIOm Port #17  
HSIOm Port #18  
HSIOm Port #19  
HSIOm Port #21  
HSIOm Port #22  
HSIOm Port #23  
HSIOm Analog multiplexer  
HSIOm monitor  
PERI_MS_PPU_FX_HSIOM_MON  
PERI_MS_PPU_FX_HSIOM_ALTJTAG  
PERI_MS_PPU_FX_GPIO_PRT0_PRT  
PERI_MS_PPU_FX_GPIO_PRT2_PRT  
PERI_MS_PPU_FX_GPIO_PRT3_PRT  
PERI_MS_PPU_FX_GPIO_PRT5_PRT  
PERI_MS_PPU_FX_GPIO_PRT6_PRT  
HSIOm Alternate JTAG  
GPIO_ENH Port #0  
GPIO_STD Port #2  
GPIO_STD Port #3  
GPIO_STD Port #5  
GPIO_STD Port #6  
Datasheet  
76  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Peripheral protection unit fixed structure pairs  
Table 23-1  
PPU fixed structure pairs (continued)  
Pair no.  
PPU fixed structure pair  
Address  
Size  
Description  
GPIO_STD Port #7  
PERI_MS_PPU_FX_GPIO_PRT7_PRT  
PERI_MS_PPU_FX_GPIO_PRT8_PRT  
0x40310380  
0x40310400  
0x40310580  
0x40310600  
0x40310680  
0x40310700  
0x40310880  
0x40310900  
0x40310980  
0x40310A80  
0x40310B00  
0x40310B80  
0x40310040  
0x40310140  
0x403101C0  
0x403102C0  
0x40310340  
0x403103C0  
0x40310440  
0x403105C0  
0x40310640  
0x403106C0  
0x40310740  
0x403108C0  
0x40310940  
0x403109C0  
0x40310AC0  
0x40310B40  
0x40310BC0  
0x40314000  
0x40315000  
0x40320C00  
0x40320D00  
0x40320E00  
0x40380000  
0x40380080  
0x40380100  
0x40380200  
0x40380280  
0x40380300  
0x40380380  
0x40380480  
0x40380500  
0x40380580  
0x40380600  
0x40380680  
0x40380700  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000020  
0x00000040  
0x00000008  
0x00000100  
0x00000100  
0x00000100  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
235  
236  
239  
240  
241  
242  
245  
246  
247  
249  
250  
251  
252  
254  
255  
257  
258  
259  
260  
263  
264  
265  
266  
269  
270  
271  
273  
274  
275  
276  
277  
278  
279  
280  
283  
284  
285  
287  
288  
289  
290  
292  
293  
294  
295  
296  
297  
GPIO_STD Port #8  
PERI_MS_PPU_FX_GPIO_PRT11_PRT  
PERI_MS_PPU_FX_GPIO_PRT12_PRT  
PERI_MS_PPU_FX_GPIO_PRT13_PRT  
PERI_MS_PPU_FX_GPIO_PRT14_PRT  
PERI_MS_PPU_FX_GPIO_PRT17_PRT  
PERI_MS_PPU_FX_GPIO_PRT18_PRT  
PERI_MS_PPU_FX_GPIO_PRT19_PRT  
PERI_MS_PPU_FX_GPIO_PRT21_PRT  
PERI_MS_PPU_FX_GPIO_PRT22_PRT  
PERI_MS_PPU_FX_GPIO_PRT23_PRT  
PERI_MS_PPU_FX_GPIO_PRT0_CFG  
GPIO_STD Port #11  
GPIO_STD Port #12  
GPIO_STD Port #13  
GPIO_STD Port #14  
GPIO_STD Port #17  
GPIO_STD Port #18  
GPIO_STD Port #19  
GPIO_STD Port #21  
GPIO_STD Port #22  
GPIO_STD Port #23  
GPIO_ENH Port #0 configuration  
GPIO_STD Port #2 configuration  
GPIO_STD Port #3 configuration  
GPIO_STD Port #5 configuration  
GPIO_STD Port #6 configuration  
GPIO_STD Port #7 configuration  
GPIO_STD Port #8 configuration  
GPIO_STD Port #11 configuration  
GPIO_STD Port #12 configuration  
GPIO_STD Port #13 configuration  
GPIO_STD Port #14 configuration  
GPIO_STD Port #17 configuration  
GPIO_STD Port #18 configuration  
GPIO_STD Port #19 configuration  
GPIO_STD Port #21 configuration  
GPIO_STD Port #22 configuration  
GPIO_STD Port #23 configuration  
GPIO main  
PERI_MS_PPU_FX_GPIO_PRT2_CFG  
PERI_MS_PPU_FX_GPIO_PRT3_CFG  
PERI_MS_PPU_FX_GPIO_PRT5_CFG  
PERI_MS_PPU_FX_GPIO_PRT6_CFG  
PERI_MS_PPU_FX_GPIO_PRT7_CFG  
PERI_MS_PPU_FX_GPIO_PRT8_CFG  
PERI_MS_PPU_FX_GPIO_PRT11_CFG  
PERI_MS_PPU_FX_GPIO_PRT12_CFG  
PERI_MS_PPU_FX_GPIO_PRT13_CFG  
PERI_MS_PPU_FX_GPIO_PRT14_CFG  
PERI_MS_PPU_FX_GPIO_PRT17_CFG  
PERI_MS_PPU_FX_GPIO_PRT18_CFG  
PERI_MS_PPU_FX_GPIO_PRT19_CFG  
PERI_MS_PPU_FX_GPIO_PRT21_CFG  
PERI_MS_PPU_FX_GPIO_PRT22_CFG  
PERI_MS_PPU_FX_GPIO_PRT23_CFG  
PERI_MS_PPU_FX_GPIO_GPIO  
PERI_MS_PPU_FX_GPIO_TEST  
GPIO test  
PERI_MS_PPU_FX_SMARTIO_PRT12_PRT  
PERI_MS_PPU_FX_SMARTIO_PRT13_PRT  
PERI_MS_PPU_FX_SMARTIO_PRT14_PRT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT0_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT1_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT2_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT4_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT5_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT6_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT7_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT9_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT10_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT11_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT12_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT13_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT14_CNT  
SMART I/O #12  
SMART I/O #13  
SMART I/O #14  
TCPWM0 Group #0, Counter #0  
TCPWM0 Group #0, Counter #1  
TCPWM0 Group #0, Counter #2  
TCPWM0 Group #0, Counter #4  
TCPWM0 Group #0, Counter #5  
TCPWM0 Group #0, Counter #6  
TCPWM0 Group #0, Counter #7  
TCPWM0 Group #0, Counter #9  
TCPWM0 Group #0, Counter #10  
TCPWM0 Group #0, Counter #11  
TCPWM0 Group #0, Counter #12  
TCPWM0 Group #0, Counter #13  
TCPWM0 Group #0, Counter #14  
Datasheet  
77  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Peripheral protection unit fixed structure pairs  
Table 23-1  
PPU fixed structure pairs (continued)  
Pair no.  
PPU fixed structure pair  
Address  
Size  
Description  
TCPWM0 Group #0, Counter #15  
TCPWM0 Group #0, Counter #16  
TCPWM0 Group #0, Counter #17  
TCPWM0 Group #0, Counter #18  
TCPWM0 Group #0, Counter #19  
TCPWM0 Group #0, Counter #20  
TCPWM0 Group #0, Counter #21  
TCPWM0 Group #0, Counter #22  
TCPWM0 Group #0, Counter #23  
TCPWM0 Group #0, Counter #24  
TCPWM0 Group #0, Counter #25  
TCPWM0 Group #0, Counter #26  
TCPWM0 Group #0, Counter #33  
TCPWM0 Group #0, Counter #34  
TCPWM0 Group #0, Counter #36  
TCPWM0 Group #0, Counter #37  
TCPWM0 Group #0, Counter #38  
TCPWM0 Group #0, Counter #39  
TCPWM0 Group #0, Counter #40  
TCPWM0 Group #0, Counter #41  
TCPWM0 Group #0, Counter #42  
TCPWM0 Group #0, Counter #44  
TCPWM0 Group #0, Counter #45  
TCPWM0 Group #0, Counter #46  
TCPWM0 Group #0, Counter #47  
TCPWM0 Group #0, Counter #48  
TCPWM0 Group #0, Counter #49  
TCPWM0 Group #0, Counter #50  
TCPWM0 Group #0, Counter #51  
TCPWM0 Group #0, Counter #52  
TCPWM0 Group #0, Counter #53  
TCPWM0 Group #0, Counter #54  
TCPWM0 Group #0, Counter #55  
TCPWM0 Group #1, Counter #0  
TCPWM0 Group #1, Counter #1  
TCPWM0 Group #1, Counter #2  
TCPWM0 Group #1, Counter #4  
TCPWM0 Group #2, Counter #0  
TCPWM0 Group #2, Counter #2  
Event generator #0  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT15_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT16_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT17_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT18_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT19_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT20_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT21_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT22_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT23_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT24_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT25_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT26_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT33_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT34_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT36_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT37_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT38_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT39_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT40_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT41_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT42_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT44_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT45_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT46_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT47_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT48_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT49_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT50_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT51_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT52_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT53_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT54_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP0_CNT55_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP1_CNT0_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP1_CNT1_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP1_CNT2_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP1_CNT4_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP2_CNT0_CNT  
PERI_MS_PPU_FX_TCPWM0_GRP2_CNT2_CNT  
PERI_MS_PPU_FX_EVTGEN0  
0x40380780  
0x40380800  
0x40380880  
0x40380900  
0x40380980  
0x40380A00  
0x40380A80  
0x40380B00  
0x40380B80  
0x40380C00  
0x40380C80  
0x40380D00  
0x40381080  
0x40381100  
0x40381200  
0x40381280  
0x40381300  
0x40381380  
0x40381400  
0x40381480  
0x40381500  
0x40381600  
0x40381680  
0x40381700  
0x40381780  
0x40381800  
0x40381880  
0x40381900  
0x40381980  
0x40381A00  
0x40381A80  
0x40381B00  
0x40381B80  
0x40388000  
0x40388080  
0x40388100  
0x40388200  
0x40390000  
0x40390100  
0x403F0000  
0x40500000  
0x40508000  
0x40508100  
0x40508200  
0x40508300  
0x40508400  
0x40520000  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00000080  
0x00001000  
0x00000008  
0x00000100  
0x00000100  
0x00000100  
0x00000100  
0x00000100  
0x00000200  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
316  
317  
319  
320  
321  
322  
323  
324  
325  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
346  
347  
348  
350  
358  
360  
362  
363  
364  
365  
366  
367  
368  
372  
PERI_MS_PPU_FX_LIN0_MAIN  
LIN0, main  
PERI_MS_PPU_FX_LIN0_CH0_CH  
LIN0, Channel #0  
PERI_MS_PPU_FX_LIN0_CH1_CH  
LIN0, Channel #1  
PERI_MS_PPU_FX_LIN0_CH2_CH  
LIN0, Channel #2  
PERI_MS_PPU_FX_LIN0_CH3_CH  
LIN0, Channel #3  
PERI_MS_PPU_FX_LIN0_CH4_CH  
LIN0, Channel #4  
PERI_MS_PPU_FX_CANFD0_CH0_CH  
CAN0, Channel #0  
Datasheet  
78  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Peripheral protection unit fixed structure pairs  
Table 23-1  
PPU fixed structure pairs (continued)  
Pair no.  
PPU fixed structure pair  
Address  
Size  
Description  
CAN0, Channel #1  
PERI_MS_PPU_FX_CANFD0_CH1_CH  
PERI_MS_PPU_FX_CANFD1_CH0_CH  
0x40520200  
0x40540000  
0x40540200  
0x40521000  
0x40541000  
0x40530000  
0x40550000  
0x40600000  
0x40610000  
0x40630000  
0x40640000  
0x40650000  
0x40670000  
0x40900000  
0x40901000  
0x40902000  
0x40900800  
0x40900840  
0x40900880  
0x409008C0  
0x40900900  
0x40900940  
0x40900A00  
0x40900A40  
0x40900AC0  
0x40900B00  
0x40900C40  
0x40901900  
0x40901940  
0x40901980  
0x409019C0  
0x40901A00  
0x40901B00  
0x40901B40  
0x40901B80  
0x40901BC0  
0x40901C00  
0x40901C40  
0x40901D80  
0x40901DC0  
0x40902800  
0x40902840  
0x40902880  
0x409028C0  
0x40902900  
0x40902940  
0x40902980  
0x00000200  
0x00000200  
0x00000200  
0x00000100  
0x00000100  
0x00010000  
0x00010000  
0x00010000  
0x00010000  
0x00010000  
0x00010000  
0x00010000  
0x00010000  
0x00000400  
0x00000400  
0x00000400  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
0x00000040  
373  
375  
376  
378  
379  
380  
381  
382  
383  
385  
386  
387  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
401  
402  
404  
405  
410  
421  
422  
423  
424  
425  
429  
430  
431  
432  
433  
434  
439  
440  
449  
450  
451  
452  
453  
454  
455  
CAN1, Channel #0  
CAN1, Channel #1  
CAN0 main  
PERI_MS_PPU_FX_CANFD1_CH1_CH  
PERI_MS_PPU_FX_CANFD0_MAIN  
PERI_MS_PPU_FX_CANFD1_MAIN  
CAN1 main  
PERI_MS_PPU_FX_CANFD0_BUF  
CAN0 buffer  
PERI_MS_PPU_FX_CANFD1_BUF  
CAN1 buffer  
PERI_MS_PPU_FX_SCB0  
SCB0  
PERI_MS_PPU_FX_SCB1  
SCB1  
PERI_MS_PPU_FX_SCB3  
SCB3  
PERI_MS_PPU_FX_SCB4  
SCB4  
PERI_MS_PPU_FX_SCB5  
SCB5  
PERI_MS_PPU_FX_SCB7  
SCB7  
PERI_MS_PPU_FX_PASS0_SAR0_SAR  
PERI_MS_PPU_FX_PASS0_SAR1_SAR  
PERI_MS_PPU_FX_PASS0_SAR2_SAR  
PERI_MS_PPU_FX_PASS0_SAR0_CH0_CH  
PERI_MS_PPU_FX_PASS0_SAR0_CH1_CH  
PERI_MS_PPU_FX_PASS0_SAR0_CH2_CH  
PERI_MS_PPU_FX_PASS0_SAR0_CH3_CH  
PERI_MS_PPU_FX_PASS0_SAR0_CH4_CH  
PERI_MS_PPU_FX_PASS0_SAR0_CH5_CH  
PERI_MS_PPU_FX_PASS0_SAR0_CH8_CH  
PERI_MS_PPU_FX_PASS0_SAR0_CH9_CH  
PERI_MS_PPU_FX_PASS0_SAR0_CH11_CH  
PERI_MS_PPU_FX_PASS0_SAR0_CH12_CH  
PERI_MS_PPU_FX_PASS0_SAR0_CH17_CH  
PERI_MS_PPU_FX_PASS0_SAR1_CH4_CH  
PERI_MS_PPU_FX_PASS0_SAR1_CH5_CH  
PERI_MS_PPU_FX_PASS0_SAR1_CH6_CH  
PERI_MS_PPU_FX_PASS0_SAR1_CH7_CH  
PERI_MS_PPU_FX_PASS0_SAR1_CH8_CH  
PERI_MS_PPU_FX_PASS0_SAR1_CH12_CH  
PERI_MS_PPU_FX_PASS0_SAR1_CH13_CH  
PERI_MS_PPU_FX_PASS0_SAR1_CH14_CH  
PERI_MS_PPU_FX_PASS0_SAR1_CH15_CH  
PERI_MS_PPU_FX_PASS0_SAR1_CH16_CH  
PERI_MS_PPU_FX_PASS0_SAR1_CH17_CH  
PERI_MS_PPU_FX_PASS0_SAR1_CH22_CH  
PERI_MS_PPU_FX_PASS0_SAR1_CH23_CH  
PERI_MS_PPU_FX_PASS0_SAR2_CH0_CH  
PERI_MS_PPU_FX_PASS0_SAR2_CH1_CH  
PERI_MS_PPU_FX_PASS0_SAR2_CH2_CH  
PERI_MS_PPU_FX_PASS0_SAR2_CH3_CH  
PERI_MS_PPU_FX_PASS0_SAR2_CH4_CH  
PERI_MS_PPU_FX_PASS0_SAR2_CH5_CH  
PERI_MS_PPU_FX_PASS0_SAR2_CH6_CH  
PASS SAR0  
PASS SAR1  
PASS SAR2  
SAR0, Channel #0  
SAR0, Channel #1  
SAR0, Channel #2  
SAR0, Channel #3  
SAR0, Channel #4  
SAR0, Channel #5  
SAR0, Channel #8  
SAR0, Channel #9  
SAR0, Channel #11  
SAR0, Channel #12  
SAR0, Channel #17  
SAR1, Channel #4  
SAR1, Channel #5  
SAR1, Channel #6  
SAR1, Channel #7  
SAR1, Channel #8  
SAR1, Channel #12  
SAR1, Channel #13  
SAR1, Channel #14  
SAR1, Channel #15  
SAR1, Channel #16  
SAR1, Channel #17  
SAR1, Channel #22  
SAR1, Channel #23  
SAR2, Channel #0  
SAR2, Channel #1  
SAR2, Channel #2  
SAR2, Channel #3  
SAR2, Channel #4  
SAR2, Channel #5  
SAR2, Channel #6  
Datasheet  
79  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Peripheral protection unit fixed structure pairs  
Table 23-1  
PPU fixed structure pairs (continued)  
Pair no.  
PPU fixed structure pair  
Address  
Size  
Description  
SAR2, Channel #7  
PASS0 SAR main  
PERI_MS_PPU_FX_PASS0_SAR2_CH7_CH  
PERI_MS_PPU_FX_PASS0_TOP  
0x409029C0  
0x409F0000  
0x00000040  
0x00001000  
456  
457  
Datasheet  
80  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Bus masters  
24  
Bus masters  
The Arbiter (part of flash controller) performs priority-based arbitration based on the master identifier. Each bus  
master has a dedicated 4-bit master identifier. This master identifier is used for bus arbitration and IPC function-  
ality.  
Table 24-1  
ID No.  
Bus masters for access and protection control  
Master ID  
Description  
Master ID for CM0+  
Master ID for Crypto  
0
1
2
3
4
CPUSS_MS_ID_CM0  
CPUSS_MS_ID_CRYPTO  
CPUSS_MS_ID_DW0  
CPUSS_MS_ID_DW1  
CPUSS_MS_ID_DMAC  
Master ID for P-DMA 0  
Master ID for P-DMA 1  
Master ID for M-DMA0  
Master ID for CM4  
14 CPUSS_MS_ID_CM4  
15 CPUSS_MS_ID_TC  
Master ID for DAP Tap Controller  
Datasheet  
81  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Miscellaneous configuration  
25  
Miscellaneous configuration  
Table 25-1  
Miscellaneous configuration for CYT2B6 devices  
Sl.  
Number/  
Configuration  
Description  
No.  
instances  
Number of clock paths. One for each of FLL,  
PLL, Direct and CSV  
0
SRSS_NUM_CLKPATH  
SRSS_NUM_HFROOT  
4
Number of CLK_HFs present  
1
2
3
4
5
6
7
8
3
8
Number of protection contexts  
PERI_PC_NR  
Number of programmable clocks (outputs)  
Number of divide-by-8 clock dividers  
Number of divide-by-16 clock dividers  
Number of divide-by-24.5 clock dividers  
Number of MPU regions in CM0+  
Number of MPU regions in CM4  
PERI_CLOCK_NR  
PERI_DIV_8_NR  
110  
32  
16  
8
PERI_DIV_16_NR  
PERI_DIV_24_5_NR  
CPUSS_CM0P_MPU_NR  
CPUSS_CM4_MPU_NR  
8
8
Number of 32-bit words in the IP internal  
memory buffer (to allow for a 256-B, 512-B,  
1-KB, 2-KB, 4-KB, 8-KB, 16-KB, and 32-KB  
memory buffer)  
9
CPUSS_CRYPTO_BUFF_SIZE  
2048  
4
Number of fault structures  
10 CPUSS_FAULT_FAULT_NR  
11 CPUSS_IPC_IPC_NR  
Number of IPC structures  
0 - Reserved for CM0+ access  
1 - Reserved for CM4 access  
2 - Reserved for DAP access  
Remaining for user purposes  
8
Number of EZ memory bytes. This memory is  
used in EZ mode, CMD_RESP mode and FIFO  
mode.  
12 SCB0_EZ_DATA_NR  
256  
Note: Only SCB0 supports EZ mode  
Number of SMPU protection structures  
13 CPUSS_PROT_SMPU_STRUCT_NR  
14 TCPWM_TR_ONE_CNT_NR  
16  
3
Number of input triggers per counter, routed  
to one counter  
Number of input triggers routed to all  
counters, based on the pin package  
15 TCPWM_TR_ALL_CNT_NR  
27  
Number of TCPWM0 counter groups  
16 TCPWM_GRP_NR  
3
Number of counters per TCPWM0 Group #0  
17 TCPWM_GRP_NR0_GRP_GRP_CNT_NR  
46  
Counter width in number of bits per TCPWM0  
Group #0  
TCPWM_GRP_NR0_CNT_GRP_CNT_WIDT  
18  
H
16  
4
Number of counters per TCPWM0 Group #1  
19 TCPWM_GRP_NR1_GRP_GRP_CNT_NR  
Counter width in number of bits per TCPWM0  
Group #1  
TCPWM_GRP_NR1_CNT_GRP_CNT_WIDT  
20  
H
16  
2
Number of counters per TCPWM0 Group #2  
21 TCPWM_GRP_NR2_GRP_GRP_CNT_NR  
Counter width in number of bits per TCPWM0  
Group #2  
TCPWM_GRP_NR2_CNT_GRP_CNT_WIDT  
22  
H
32  
Message RAM size in KB shared by all the  
channels  
CANFD0_MRAM_SIZE / CANFD1_M-  
23  
24  
11  
RAM_SIZE  
Number of Event Generator comparator  
structures  
24 EVTGEN_COMP_STRUCT_NR  
Datasheet  
82  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Development support  
26  
Development support  
CYT2B6 has a rich set of documentation, programming tools, and online resources to assist during the devel-  
opment process. Visit www.infineon.com to find out more.  
26.1  
Documentation  
A suite of documentation supports CYT2B6 to ensure that you can find answers to your questions quickly. This  
section contains a list of some of the key documents.  
26.1.1  
Software user guide  
A step-by-step guide for using the sample driver library along with third-party IDEs such as IAR EWARM and GHS  
Multi.  
26.1.2  
Technical reference manual  
The Technical reference manual (TRM) contains all the technical detail needed to use a CYT2B6 device, including  
a complete description of all registers. The TRM is available in the documentation section at www.infineon.com.  
26.2  
Tools  
CYT2B6 is supported on third-party development tool ecosystems such as IAR and GHS. CYT2B6 is also supported  
by Infineon programming utilities for programming, erasing, or reading using the MiniProg4 or Segger J-link.  
More details are available in the documentation section at www.infineon.com.  
Datasheet  
83  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
27  
Electrical specifications  
27.1  
Absolute maximum ratings  
Use of this device under conditions outside the min and max limits listed in Table 27-1 may cause permanent  
damage to the device. Exposure to conditions within the limits of Table 27-1 but beyond those of normal  
operation for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C  
in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When operated under condi-  
tions within the limits of Table 27-1 but beyond those of normal operation, the device may not operate to speci-  
fication.  
Power considerations  
The average chip-junction temperature, TJ, in °C, may be calculated using Equation 1:  
TJ = TA + PD  JA  
Equation. 1  
Where:  
TA is the ambient temperature in °C.  
JA is the package junction-to-ambient thermal resistance, in °C/W.  
θ
PD is the sum of PINT and PIO (PD = PINT + PIO).  
PINT is the chip internal power. (PINT = VDDD × IDD + VDDA × IA)  
PIO represents the power dissipation on input and output pins; user determined.  
For most applications, PIO < PINT and may be neglected.  
On the other hand, PIO may be significant if the device is configured to continuously drive external modules  
and/or memories.  
Datasheet  
84  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-1  
Absolute maximum ratings  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/conditions  
For ports 0, 2, 3, 5, 17, 18,  
19, 21, 22, 23  
SID10_5  
VDDD_ABS_5  
VDDD power supply voltage[34]  
VSSD – 0.3  
VSSD + 6.0  
V
V
DDIO_1 VDDD  
SID10B_5 VDDIO_1_ABS_5  
VDDIO_1 power supply voltage[34]  
VSSD – 0.3  
VSSD + 6.0  
V
For ports 6, 7, 8[35]  
For ports 11, 12, 13, 14  
VDDIO_2 = VDDA  
SID10C1  
SID11  
VDDIO_2_ABS_5  
VDDA_ABS  
VREFH_ABS  
VREFL_ABS  
VDDIO_2 power supply voltage[34]  
VDDA analog power supply voltage[34]  
Analog reference voltage, HIGH [34]  
Analog reference voltage, LOW[34]  
VSSD – 0.3  
VSSA – 0.3  
VSSA – 0.3  
VSSA – 0.3  
VSSD + 6.0  
VSSA + 6.0  
VSSA + 6.0  
VSSA + 0.3  
V
V
V
V
SID12  
VREFH VDDA + 0.3 V  
SID12A  
For ports 0, 2, 3, 5, 17, 18,  
19, 21, 22, 23  
For ports 6, 7, 8[35]  
SID15A_5  
SID15B_5  
V
V
I0_ABS0_5  
I1_ABS1_5  
Input voltage[34]  
VSSD – 0.5  
VDDD + 0.5  
V
Input voltage[34]  
Input voltage[34]  
Analog input voltage[34]  
VSSD – 0.5  
VSSD – 0.5  
VSSA – 0.3  
VDDIO_1 + 0.5  
VDDIO_2 + 0.5  
VDDA + 0.3  
V
V
V
SID15C_5 VI2_ABS2_5  
For ports 11, 12, 13, 14,  
SID16  
VIA_ABS  
For ports 0, 2, 3, 5, 17, 18,  
19, 21, 22, 23  
For ports 6, 7, 8[35]  
SID17A_5  
V
O0_ABS0_5  
O1_ABS1_5  
Output voltage[34]  
VSSD – 0.3  
VDDD + 0.3  
SID17B_5  
V
Output voltage[34]  
Output voltage[34]  
Maximum clamp current [36, 37, 38]  
VSSD – 0.3  
VSSD – 0.3  
–5  
VDDIO_1 + 0.3  
VDDIO_2 + 0.3  
5
V
V
SID17C_5 VO2_ABS2_5  
For ports 11, 12, 13, 14  
SID18  
ICLAMP_ABS  
mA  
Maximum positive clamp current per I/O  
supply pin. Limit applies to I/O supply pin  
closest to the B+ injected current[39]  
+B injected DC currents  
ICLAMP_SUP-  
PLY_POS_ABS  
SID18A  
10  
10  
50  
50  
6
mA are not allowed for Ports  
11 and 21.  
Maximum negative clamp current per I/O  
ground pin. Limit applies to I/O supply pin  
closest to the B+ injected current[39]  
+B injected DC currents  
mA are not allowed for Ports  
11 and 21.  
ICLAMP_SUP-  
PLY_NEG_ABS  
SID18B  
SID18C  
SID18D  
SID20A  
SID20B  
SID20C  
SID21A  
SID21B  
Maximum positive clamp current per I/O  
supply, if not limited by the per supply pin  
(based on SID18A).  
ICLAMP_TO-  
TAL_POS_ABS  
mA  
mA  
Maximum negative clamp current per I/O  
ground, if not limited by the per supply pin  
(based on SID18B).  
ICLAMP_TO-  
TAL_NEG_ABS  
For GPIO_STD,  
mA configured for  
drive_sel<1:0>= 0b0X  
IOL1A_ABS  
IOL1B_ABS  
IOL1C_ABS  
IOL2A_ABS  
IOL2B_ABS  
IOL2C_ABS  
LOW-level maximum output current [41]  
LOW-level maximum output current [41]  
LOW-level maximum output current [41]  
LOW-level maximum output current [41]  
LOW-level maximum output current [41]  
LOW-level maximum output current [41]  
For GPIO_STD,  
mA configured for  
drive_sel<1:0>= 0b10  
2
For GPIO_STD,  
mA configured for  
drive_sel<1:0>= 0b11  
1
For GPIO_ENH,  
mA configured for  
drive_sel<1:0>= 0b0X  
6
For GPIO_ENH,  
mA configured for  
drive_sel<1:0>= 0b10  
2
For GPIO_ENH,  
mA configured for  
drive_sel<1:0>= 0b11  
SID21C  
1
Notes  
34.These parameters are based on the condition that VSSD = VSSA = 0.0 V.  
35.The I/Os in VDDIO_1 domain are referred to the VDDD domain in 64-LQFP package.  
36.A current-limiting resistor must be provided such that the current at the I/O pin does not exceed rated values at any time, including  
during power transients. Refer to Figure 27-1 for more information on the recommended circuit.  
37.VDDIO and VDDD must be sufficiently loaded or protected to prevent them from being pulled out of the recommended operating range  
by the clamp current.  
38.When the conditions of [36], [37], and SID18A/B/C/D are met, |ICLAMP_ABS| supersedes VIA_ABS and VI_ABS  
.
39.The definition of “closer” depends on the package. In LQFP packaging, “closest” is determined by counting pins. For example, in a  
100-LQFP package, P5.2 (pin 16) is closer to the VDDD on pin 12 than on pin 24. Ports 11 and 21should not be used for injection currents.  
The impact of injection currents is only defined for GPIO_STD/GPIO_ENH type I/Os.  
40.The maximum output current is the peak current flowing through any one I/O.  
Datasheet  
85  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-1  
Absolute maximum ratings (continued)  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/conditions  
SID26A  
IOL_ABS_GPIO  
LOW-level total output current [42]  
50  
mA  
For GPIO_STD,  
SID27A  
IOH1A_ABS  
IOH1B_ABS  
IOH1C_ABS  
IOH2A_ABS  
IOH2B_ABS  
IOH2C_ABS  
HIGH-level maximum output current [41]  
HIGH-level maximum output current [41]  
HIGH-level maximum output current [41]  
HIGH-level maximum output current [41]  
HIGH-level maximum output current [41]  
HIGH-level maximum output current [41]  
–5  
–2  
–1  
–5  
–2  
–1  
mA configured for  
drive_sel<1:0>= 0b0X  
For GPIO_STD,  
SID27B  
SID27C  
SID28A  
SID28B  
SID28C  
mA configured for  
drive_sel<1:0>= 0b10  
For GPIO_STD,  
mA configured for  
drive_sel<1:0>= 0b11  
For GPIO_ENH,  
mA configured for  
drive_sel<1:0>= 0b0X  
For GPIO_ENH,  
mA configured for  
drive_sel<1:0>= 0b10  
For GPIO_ENH,  
mA configured for  
drive_sel<1:0 0b11  
SID33A  
SID34  
IOH_ABS_GPIO  
HIGH-level total output current [42]  
Power dissipation  
–50  
mA  
TJ should not exceed  
150 °C  
PD  
1000  
mW  
SID35  
SID36  
SID37  
SID38  
TA  
Ambient temperature  
–40  
–40  
–55  
–40  
105  
125  
150  
150  
°C  
°C  
°C  
°C  
For S-grade devices  
For E-grade devices  
TA  
Ambient temperature  
TSTG  
TJ  
Storage temperature  
Operating Junction temperature  
Electrostatic discharge human body  
model  
SID39A  
SID39B1  
SID39B2  
SID39C  
VESD_HBM  
VESD_CDM1  
VESD_CDM2  
ILU  
2000  
750  
V
V
Electrostatic discharge charged device  
model for corner pins  
Electrostatic discharge charged device  
model for all other pins  
500  
V
The maximum pin current the device can  
tolerate before triggering a latch-up  
–100  
100  
mA  
Notes  
41.The maximum output current is the peak current flowing through any one I/O.  
42.The total output current is the maximum current flowing through all I/Os (GPIO_STD, and GPIO_ENH).  
Datasheet  
86  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
VDDD or VDDIO  
Current  
limiting  
resistor  
Protection  
Diode  
+B input  
Protection  
Diode  
VSS  
Figure 27-1  
Example of a recommended circuit[43]  
WARNING:  
Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current, or tempera-  
ture) in excess of absolute maximum ratings. Do not exceed any of these ratings.  
Note  
43.+B is the positive battery voltage around 45 V.  
Datasheet  
87  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
27.2  
Device-level specifications  
Table 27-2  
Recommended operating conditions  
Details/  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
Units  
conditions  
Recommended operating conditions  
SID40  
VDDD, VDDA  
,
Power supply voltage[44]  
2.7[45]  
5.5[46]  
V
VDDIO_1  
VDDIO_2  
,
,
SID40A  
SID41  
VDDIO_1_EFP Power supply voltage for  
3
5.5  
11  
V
eFuse programming[47]  
Smoothing capacitor[48, 49]  
3.76  
µF  
C
S1  
VCCD  
VREF_L  
CS1  
VSS  
VSSA  
Single-point connection  
between analog and  
digital grounds  
Figure 27-2  
Smoothing capacitor  
Smoothing capacitor should be placed as close as possible to the VCCD pin.  
Notes  
44.VDDD, VDDIO_1, VDDIO_2, and VDDA do not have any sequencing limitation and can establish in any order. These supplies (except for VDDA  
and VDDIO_2) are independent in voltage level. See 12-Bit SAR ADC DC Specifications when using ADC units.  
45.3.0 V ±10% is supported with a lower BOD setting option for VDDD and VDDA. This setting provides robust protection for internal timing  
but BOD reset occurs at a voltage below the specified operating conditions. A higher BOD setting option is available (consistent with  
down to 3.0 V) and guarantees that all operating conditions are met.  
46.5.0 V ±10% is supported with a higher OVD setting option for VDDD and VDDA. This setting provides robust protection for internal and  
interface timing, but OVD reset occurs at a voltage above the specified operating conditions. A lower OVD setting option is available  
(consistent with up to 5.0 V) and guarantees that all operating conditions are met. Voltage overshoot to a higher OVD setting range  
for VDDD and VDDA is permissible, provided the duration is less than 2 hours cumulated. Note that during overshoot voltage condition  
electrical parameters are not guaranteed.  
47.eFuse programming must be executed with the part in a “quiet” state, with minimal activity (preferably only JTAG or a single LIN/CAN  
channel on VDDD domain, no activity on VDDIO_1).  
48.Smoothing capacitor, CS1 is required per chip (not per VCCD pin). The VCCD pins must be connected together to ensure a low-impedance  
connection (see the requirement in Figure 27-2).  
49.Capacitors used for power supply decoupling or filtering are operated under a continuous DC-bias. Many capacitors used with DC  
power across them provide less than their target capacitance, and their capacitance is not constant across their working voltage  
range. When selecting capacitors for use with this device, ensure that the selected components provide the required capacitance  
under the specific operating conditions of temperature and voltage used in your design. While the temperature coefficient is normally  
found within a parts catalog (such as, X7R, C0G, Y5V), the matching voltage coefficient may only be available on the component  
datasheet or direct from the manufacturer. Use of components that do not provide the required capacitance under the actual oper-  
ating conditions may cause the device to operate to less than datasheet specifications.  
Datasheet  
88  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
27.3  
DC specifications  
Table 27-3  
DC specifications, CPU current and transition time specifications  
All specifications are valid for –40 °C TA 125 °C and for 2.7 V to 5.5 V except where noted.  
Spec ID Parameter Description Min Typ Max Units Details/conditions  
SID49C1A IDD1_CM04_8_1 LP Active mode (CM4  
4
9
mA CM0+ and CM4 clocked at 8 MHz  
with IMO. All peripherals are  
disabled. No IO toggling.  
and CM0+ at 8 MHz, all  
peripherals are  
disabled)  
A
TYP: TA = 25 °C, VDDD = 5.0 V,  
process typ (TT), CM0+ and CM4  
executing Dhrystone from flash  
with cache enabled  
MAX: TA = 25 °C, VDDD = 5.5 V,  
process worst (FF), CM0+ and  
CM4 executing Dhrystone from  
flash with cache enabled.  
SID49CB IDD1_CM04_8B LP Active mode (CM4  
and CM0+ at 8 MHz, all  
peripherals are  
5
49  
mA CM0+ and CM4 clocked at 8 MHz  
with IMO.  
All peripherals are enabled. No  
IO toggling.  
enabled)  
M-DMA transferring data from  
code + work flash, P-DMA chains  
with maximum trigger activity.  
TYP: TA = 25 °C, VDDD = 5.0 V,  
process typ (TT), CM0+ and CM4  
executing Dhrystone from flash  
with cache enabled  
MAX: TA = 125 °C, VDDD = 5.5 V,  
process worst (FF), CM0+ and  
CM4 executing max_power.c  
from Arm® with cache enabled.  
SID49E2 IDD1_F80_512 Active mode (CM4 at  
80 MHz, CM0+ at 80  
29  
85  
mA PLL enabled at 80 MHz with ECO  
reference.  
MHz, all peripherals  
All peripherals are enabled. No  
I/O toggling.  
are enabled)  
M-DMA transferring data from  
code + work flash, P-DMA chains  
with maximum trigger activity.  
TYP: TA = 25 °C, VDDD = 5.0 V,  
process typ (TT), CM4 and CM0+  
executing Dhrystone from flash  
with cache enabled.  
MAX: TA = 125 °C, VDDD = 5.5 V,  
process worst (FF), CM4 and  
CM0+ executing max_power.c  
from flash with cache enabled  
SID53A1 IDD2_8_1  
All CPUs in Sleep mode  
3
46  
mA PLL disabled, CM4 and CM0+ are  
sleeping at 8 MHz with IMO. All  
peripherals, peripheral clocks,  
interrupts, CSV, DMA, FLL, ECO  
are disabled. No I/O toggling.  
Typ: TA = 25 °C, VDDD = 5.0 V,  
process typ (TT)  
Max: TA = 125 °C, VDDD = 5.5 V,  
process worst (FF)  
Note  
50.At cold temperature –5 °C to –40 °C, the DeepSleep to Active transition time can be higher than the max time indicated by as much  
as 20 µs.  
Datasheet  
89  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-3  
DC specifications, CPU current and transition time specifications (continued)  
All specifications are valid for –40 °C TA 125 °C and for 2.7 V to 5.5 V except where noted.  
Spec ID  
Parameter  
Description  
Min Typ Max Units  
Details/conditions  
SID56A  
IDD_CWU2  
Average current for  
cyclic wake-up  
46  
136  
µA VDDD = 5.5 V, T = 25 °C, 64-KB  
SRAM, ILO0 oAperation in  
operation  
DeepSleep, SmartIOoperations  
with ILO0, CM0+, CM4: Retained  
TYP: process typ (TT)  
This is the average  
current for the  
specified LP Active  
mode and DeepSleep  
mode (RTC, WDT and  
Event generator  
operating).  
MAX: process worst (FF)  
This average current is achieved  
under the following conditions.  
1. MCU repetitively goes from  
DeepSleep to LP Active with a  
period of 32 ms.  
2. One of the I/Os is toggled  
using Smart I/O to activate an  
external sensor connected to an  
analog input of A/D in  
DeepSleep  
3. After 200 µs delay, the CM4  
wakes up by event generator  
trigger to LP Active mode with  
IMO and A/D conversion is  
triggered by software.  
4. Group A/D conversion is  
performed on 5 channels with  
the sampling time of 1 µs each.  
5. Once the group A/D  
conversion is finished, and the  
results fit in the window of the  
range comparator, the I/O is  
toggled back by software to  
de-activate the sensor and the  
CM4 goes back to DeepSleep.  
SID59A  
SID61A  
IDD_DS64B  
64-KB SRAM retention,  
ILO0  
35  
130  
3.5  
µA DeepSleep Mode (RTC, WDT,  
and event generator operating,  
all other peripherals are off  
except for retention registers),  
TA = 25 °C, CM0+, CM4: Retained  
Typ: VDDD = 5.0 V, process typ  
(TT)  
operation in  
DeepSleep mode  
Max: VDDD = 5.5 V, process worst  
(FF)  
IDD_DS64D  
64-KB SRAM retention,  
ILO0  
0.9  
mA DeepSleep Mode steady state at  
TA = 125 °C (RTC, WDT, and event  
generator operating, all other  
peripherals are off except for  
retention registers),  
operation in  
DeepSleep mode  
CM0+, CM4: Retained  
Typ: VDDD = 5.0 V, process typ  
(TT)  
Max: VDDD = 5.5 V, process worst  
(FF)  
Hibernate mode  
SID62  
IDD_HIB1  
Hibernate Mode  
5
µA ILO0/WDT operating. All other  
peripherals, and all CPUs are  
off.  
TA = 25 °C, VDDD = 5.5 V,  
process typ (TT)  
Datasheet  
90  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-3  
DC specifications, CPU current and transition time specifications (continued)  
All specifications are valid for –40 °C TA 125 °C and for 2.7 V to 5.5 V except where noted.  
Spec ID  
Parameter  
Description  
Min Typ Max Units  
Details/conditions  
SID62A  
IDD_HIB2  
Hibernate Mode  
130  
µA ILO0/WDT operating. All other  
peripherals, and all CPUs are  
off.  
TA = 125 °C, VDDD = 5.5 V,  
process worst (FF)  
Power mode transition times  
SID65  
tACT_DS  
Power down time from  
Active to DeepSleep  
2.5  
µs WhentheIMOisalreadyrunning  
and all HFCLK roots are at least  
8 MHz. HFCLK roots that are  
slower than this will require  
additional time to turn off.  
SID63  
tDS_ACT  
DeepSleep to Active  
transition time (IMO  
clock, SRAM execution)  
10[50]  
20[50]  
15[50]  
µs When using the 8-MHz IMO.  
Measured from wakeup  
interrupt during DeepSleep  
until wakeup.  
SID63C  
SID63A  
tDS_ACT  
DeepSleep to Active  
transition time (IMO  
clock, flash execution)  
µs When using the 8-MHz IMO.  
Measured from wakeup  
interrupt during DeepSleep  
until flash execution.  
tDS_ACT_FLL  
DeepSleep to Active  
transition time (FLL  
clock, SRAM execution)  
µs When using the FLL to generate  
80 MHz from the 8-MHz IMO.  
Measured from wakeup  
interrupt during DeepSleep  
until the FLL locks.  
SID63D  
SID63B  
SID68  
tDS_ACT_FLL1 DeepSleep to Active  
transition time (FLL  
21.5[50] µs When using the FLL to generate  
80 MHz from the 8-MHz IMO.  
Measured from wakeup  
clock, flash execution)  
interrupt during DeepSleep  
until flash execution.  
tDS_ACT_PLL  
DeepSleep to Active  
transition time (PLL  
clock, SRAM or flash  
execution)  
60[50]  
µs When using the PLL to generate  
80 MHz from the 8-MHz IMO.  
Measured from wakeup  
interrupt during DeepSleep  
until the PLL locks.  
tHVR_ACT  
Release time from HV  
reset (POR, BOD, OVD,  
OCD, WDT, Hibernate  
wakeup, or XRES_L)  
release until CM0+  
begins executing ROM  
boot  
265  
µs Without boot runtime.  
Guaranteed by design  
SID68A  
tLVR_ACT  
Release time from LV  
reset (Fault, Internal  
system reset, MCWDT,  
or CSV) during  
10  
µs Without boot runtime.  
Guaranteed by design  
Active/Sleep until  
CM0+ begins executing  
ROM boot  
Datasheet  
91  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-3  
DC specifications, CPU current and transition time specifications (continued)  
All specifications are valid for –40 °C TA 125 °C and for 2.7 V to 5.5 V except where noted.  
Spec ID  
Parameter  
Description  
Min Typ Max Units  
Details/conditions  
SID68B  
tLVR_DS  
Release time from LV  
reset (Fault, or  
15  
µs Without boot runtime.  
Guaranteed by design  
MCWDT) during  
DeepSleep until CM0+  
begins executing ROM  
boot  
SID80A  
SID80B  
SID81A  
tRB_N  
tRB_S  
tFB  
ROM boot startup time  
or wakeup time from  
hibernate in NORMAL  
protection state  
ROM boot startup time  
or wakeup time from  
hibernate in SECURE  
protection state  
Flash boot startup  
time or wakeup time  
from hibernate in  
NORMAL/SECURE  
protection state  
1800  
2740  
80  
µs Guaranteed by Design,  
(Flash boot version 3.1.0.556  
and later)  
µs Guaranteed by Design,  
(Flash boot version 3.1.0.556  
and later)  
µs Guaranteed by Design,  
TOC2_FLAGS = 0x2CF,  
Listen window = 0 ms  
(Flash boot version 3.1.0.556  
and later)  
SID81B  
tFB_A  
Flash boot with app  
authentication time in  
NORMAL/SECURE  
protection state  
5000  
µs Guaranteed by Design, TOC2_-  
FLAGS = 0x24F, Listen window =  
0 ms, Public key exponent e =  
0x010001, APP size is 64 KB with  
the last 256 bytes being a digital  
signature in  
RSASSA-PKCS1-v1.5.  
Valid for RSA2K.  
(Flash boot version 3.1.0.556  
and later)  
Regulator specifications  
SID600  
SID601  
VCCD  
IDD_ACT  
Core supply voltage  
1.05 1.1  
1.15  
150  
V
Regulator operating  
current in  
80  
1.5  
µA Guaranteed by design  
Active/Sleep mode  
SID602  
SID604  
SID603  
IDD_DPSLP  
Regulator operating  
current in  
20  
µA Guaranteed by design  
mA Without triggering OVD  
DeepSleep mode  
IOUT  
Available regulator  
output current for  
operation  
150  
375  
IRUSH  
In-rush current  
mA Average VDDD current until Cs1  
(connected to VCCD pin) is  
charged after Active regulator is  
turned on  
Datasheet  
92  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
27.4  
Reset specifications  
All specifications are valid for –40 °C TA 125 °C and for 2.7 V to 5.5 V except where noted.  
Table 27-4 XRES_L reset  
Details/  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
Units  
conditions  
XRES_L DC specifications  
SID73  
IDD_XRES  
IDD when XRES_L asserted  
0.9  
mA TA = 125 °C, VDDD  
5.5 V, process  
=
worst (FF)  
SID74  
SID75  
VIH  
VIL  
Input voltage HIGH threshold 0.7 × VDDD  
V
V
CMOS input  
CMOS input  
Input voltage LOW threshold  
0.3 ×  
VDDD  
SID76  
SID77  
SID78  
RPULLUP  
CIN  
VHYSXRES  
Pull-up resistor  
Input capacitance  
Input voltage hysteresis  
7
20  
5
kΩ  
pF  
V
0.05 ×  
VDDD  
XRES_L AC specifications  
SID70  
tXRES_ACT  
XRES_L release to Active  
transition  
time  
265  
µs Without boot  
runtime.  
Guaranteed by  
design  
SID71  
SID72  
tXRES_PW  
tXRES_FT  
XRES_L pulse width  
Pulse suppression width  
5
100  
µs  
ns  
release  
HV/LV reset  
System clock  
System reset  
release  
RESET  
ACTIVE  
MODES  
1
2
3
4
1:  
2:  
3:  
4:  
SID68/68A/68B: Time from HV/LV reset release until CM0+ begins executing ROM boot  
SID80A/80B: ROM boot code operation  
SID81A/81B: Flash boot code operation  
User code operation  
Figure 27-3  
Reset sequence  
Datasheet  
93  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
27.5  
I/O  
All specifications are valid for –40 °C TA 125 °C and for 2.7 V to 5.5 V except where noted.  
Table 27-5  
I/O specifications  
Spec ID  
Parameter Description  
Min  
Typ  
Max  
Units Details/conditions  
GPIO_STD specifications for ports P1 through P23  
SID650  
VOL1_GPIO_STD Output voltage  
LOW level  
0.6  
V
V
V
V
V
V
V
V
V
V
V
V
IOL = 6 mA  
drive_sel<1:0> = 0b0X,  
4.5 V VDDD or VDDIO_1  
or VDDIO_2 5.5 V  
SID650C VOL1C_GPIO_STD Output voltage  
LOW level  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
IOL = 5 mA  
drive_sel<1:0> = 0b0X,  
4.5 V VDDD or VDDIO_1  
or VDDIO_2 5.5 V  
SID651  
SID652  
VOL2_GPIO_STD Output voltage  
LOW level  
IOL = 2 mA  
drive_sel<1:0> = 0b0X,  
2.7 V VDDD or VDDIO_1  
or VDDIO_2 < 4.5 V  
VOL3_GPIO_STD Output voltage  
LOW level  
IOL = 1 mA  
drive_sel<1:0> = 0b10,  
2.7 V VDDD or VDDIO_1  
or VDDIO_2 < 4.5 V  
SID652C VOL3C_GPIO_STD Output voltage  
LOW level  
IOL = 2 mA  
drive_sel<1:0> = 0b10,  
4.5 V VDDD or VDDIO_1  
or VDDIO_2 5.5 V  
SID653  
VOL4_GPIO_STD Output voltage  
LOW level  
IOL = 0.5 mA  
drive_sel<1:0> = 0b11,  
2.7 V VDDD or VDDIO_1  
or VDDIO_2 < 4.5 V  
SID653C VOL4C_GPIO_STD Output voltage  
LOW level  
IOL = 1 mA  
drive_sel<1:0> = 0b11,  
4.5 V VDDD or VDDIO_1  
or VDDIO_2 5.5 V  
SID654  
SID655  
SID656  
VOH1_GPIO_STD Output voltage  
HIGH level  
(VDDD or VDDIO_1 or  
IOH = –2 mA  
VDDIO_2 – 0.5  
)
drive_sel<1:0> = 0b0X,  
2.7 V VDDD or VDDIO_1  
or VDDIO_2 < 4.5 V  
VOH2_GPIO_STD Output voltage  
HIGH level  
(VDDD or VDDIO_1 or  
IOH = –5 mA  
VDDIO_2 – 0.5  
)
drive_sel<1:0> = 0b0X,  
4.5 V VDDD or VDDIO_1  
or VDDIO_2 5.5 V  
VOH3_GPIO_STD Output voltage  
HIGH level  
(VDDD or VDDIO_1 or  
IOH = –1 mA  
VDDIO_2 – 0.5  
)
drive_sel<1:0> = 0b10,  
2.7 V VDDD or VDDIO_1  
or VDDIO_2 < 4.5 V  
SID656C VOH3C_GPI-  
Output voltage  
HIGH level  
(VDDD or VDDIO_1 or  
IOH = –2 mA  
VDDIO_2 – 0.5  
)
drive_sel<1:0> = 0b10,  
4.5 V VDDD or VDDIO_1  
or VDDIO_2 5.5 V  
O_STD  
SID657  
VOH4_GPIO_STD Output voltage  
HIGH level  
(VDDD or VDDIO_1 or  
IOH = –0.5 mA  
VDDIO_2 – 0.5  
)
drive_sel<1:0> = 0b11,  
2.7 V VDDD or VDDIO_1  
or VDDIO_2 < 4.5 V  
Datasheet  
94  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-5  
Spec ID  
I/O specifications (continued)  
Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
SID657C VOH4C_GPI-  
Output voltage  
HIGH level  
(VDDD or VDDIO_1 or  
V
IOH = –1 mA  
VDDIO_2 – 0.5  
)
drive_sel<1:0> = 0b11,  
4.5 V VDDD or VDDIO_1  
or VDDIO_2 5.5 V  
O_STD  
SID658  
RPD_GPIO_STD Pull-down resis-  
tance  
RPU_GPIO_STD Pull-up resistance  
25  
25  
50  
100  
kΩ  
SID659  
SID660  
50  
100  
kΩ  
V
VIH_CMOS_GPI- Input voltage  
0.7 × (VDDD or  
HIGH threshold in  
CMOS mode  
V
DDIO_1 or VDDIO_2  
O_STD  
)
)
SID661  
SID662  
SID663  
SID664  
SID665  
VIH_TTL_GPI-  
O_STD  
Input voltage  
HIGH threshold in  
TTL mode  
2.0  
V
V
V
V
V
VIH_AUTO_GPI- Input voltage  
0.8 × (VDDD or  
HIGH threshold in  
AUTO mode  
V
DDIO_1 or VDDIO_2  
O_STD  
VIL_CMOS_GPI- Input voltage  
0.3 × (VDDD  
LOW threshold in  
CMOS mode  
or VDDIO_1 or  
O_STD  
VDDIO_2  
)
VIL_TTL_GPI-  
O_STD  
Input voltage  
LOW threshold in  
TTL mode  
0.8  
VIL_AUTO_GPI- Input voltage  
0.5 × (VDDD  
LOW threshold in  
AUTO mode  
or VDDIO_1 or  
O_STD  
VDDIO_2  
)
SID666  
SID668  
SID669  
SID670  
VHYST_CMOS_G- Hysteresis in  
CMOS mode  
0.05 × (VDDD or  
V
V
V
DDIO_1 or VDDIO_2  
PIO_STD  
)
VHYST_AUTO_G- Hysteresis in  
0.05 × (VDDD or  
5
AUTO mode  
VDDIO_1 or VDDIO_2  
PIO_STD  
)
Cin_GPIO_STD  
Input pin capaci-  
tance  
pF For 10 MHz  
IIL_GPIO_STD  
Input leakage  
current  
–250  
0.02  
250  
nA For GPIO_STD except  
P21.0, P21.1, P21.2,  
P21.3, P23.3, P23.4.  
V
DDIO_1 = VDDIO_2 =  
VDDD = VDDA = 5.5 V,  
VSSD < VI < VDDD  
,
VDDIO_1, VDDIO_2  
–40 °C TA 125 °C  
TYP: TA = 25 °C,  
VDDIO_1 = VDDIO_2  
=
V
DDD = VDDA = 5.0 V  
Datasheet  
95  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-5  
Spec ID  
I/O specifications (continued)  
Parameter Description  
Min  
Typ  
Max  
Units Details/conditions  
SID670C IIL_GPIO_STD_B Input leakage  
current  
–700  
0.02  
700  
nA Only for P21.0, P21.1,  
P21.2, P21.3, P23.3,  
P23.4.  
V
DDIO_1 = VDDIO_2  
VDDD = VDDA = 5.5 V,  
SSD < VI < VDDD  
=
V
,
VDDIO_1, VDDIO_2  
–40 °C TA 125 °C  
TYP: TA = 25 °C,  
V
DDIO_1 = VDDIO_2  
=
V
DDD = VDDA = 5.0 V  
SID671  
SID672  
SID673  
tR or tF  
Rise time or fall  
of VDDIO  
Rise time or fall  
1
1
1
10  
20  
20  
ns 20-pF load,  
drive_sel<1:0> = 0b00  
(fast)_20_0_GPI- time (10% to 90%  
)
O_STD  
tR or tF  
ns 50-pF load,  
drive_sel<1:0> = 0b00  
(fast)_50_0_GPI- time (10% to 90%  
of VDDIO  
)
O_STD  
tR or tF  
Rise time or fall  
ns 20-pF load,  
drive_sel<1:0> = 0b01,  
guaranteed by design  
ns 10-pF load,  
drive_sel<1:0> = 0b10,  
guaranteed by design  
ns 6-pF load,  
drive_sel<1:0> = 0b11,  
guaranteed by design  
ns 10-pF to 400-pF load,  
RPU = 767 Ω,  
(fast)_20_1_GPI- time (10% to 90%  
of VDDIO  
)
O_STD  
SID674  
SID675  
SID676  
tR or tF  
Rise time or fall  
1
1
20  
20  
(fast)_10_2_GPI- time (10% to 90%  
of VDDIO  
)
O_STD  
tR or tF  
Rise time or fall  
(fast)_6_3_GPI- time (10% to 90%  
of VDDIO  
)
O_STD  
tF (fast)_100_G- Fall time (30% to  
PIO_STD  
0.35  
250  
70% of VDDIO  
)
drive_sel<1:0>= 0b00,  
Freq = 100 kHz  
SID677  
tF (fast)_400_G- Fall time (30% to  
PIO_STD  
0.35  
250  
ns 10-pF to 400-pF load,  
RPU = 350 Ω,  
70% of VDDIO  
)
drive_sel<1:0>= 0b00,  
Freq = 400 kHz  
SID678  
SID679  
fIN_GPIO_STD  
fOUT_GPI-  
Input frequency  
Output frequency  
80  
50  
MHz  
MHz 20 pF load,  
drive_sel<1:0>= 00,  
4.5 V VDDD or VDDIO_1  
or VDDIO_2 5.5 V  
O_STD0H  
SID680  
SID681  
fOUT_GPI-  
O_STD0L  
Output frequency  
Output frequency  
32  
25  
MHz 20 pF load,  
drive_sel<1:0>= 00,  
2.7 V VDDD or VDDIO_1  
or VDDIO_2 < 4.5 V  
MHz 20 pF load,  
drive_sel<1:0>= 01,  
4.5 V VDDD or VDDIO_1  
or VDDIO_2 5.5 V  
fOUT_GPI-  
O_STD1H  
Datasheet  
96  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-5  
I/O specifications (continued)  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
SID682  
fOUT_GPI-  
O_STD1L  
Output frequency  
15  
MHz 20 pF load,  
drive_sel<1:0>= 01,  
2.7 V VDDD or VDDIO_1  
or VDDIO_2 < 4.5 V  
SID683  
SID684  
SID685  
SID686  
fOUT_GPI-  
O_STD2H  
Output frequency  
Output frequency  
Output frequency  
Output frequency  
25  
15  
15  
10  
MHz 10 pF load,  
drive_sel<1:0>= 10,  
4.5 V VDDD or VDDIO_1  
or VDDIO_2 5.5 V  
MHz 10 pF load,  
drive_sel<1:0>= 10,  
2.7 V VDDD or VDDIO_1  
or VDDIO_2 < 4.5 V  
fOUT_GPI-  
O_STD2L  
fOUT_GPI-  
O_STD3H  
MHz 6 pF load,  
drive_sel<1:0>= 11,  
4.5 V VDDD or VDDIO_1  
or VDDIO_2 5.5 V  
fOUT_GPI-  
O_STD3L  
MHz 6 pF load,  
drive_sel<1:0>= 11,  
2.7 V VDDD or VDDIO_1  
or VDDIO_2 < 4.5 V  
GPIO_ENH specifications only for P0  
SID650A VOL1_GPIO_ENH Output voltage  
LOW level  
0.6  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
V
V
V
V
V
V
V
V
V
IOL = 6 mA  
drive_sel<1:0> = 0b0X,  
2.7 V VDDD 5.5 V  
SID650D VOL1D_GPI-  
Output voltage  
LOW level  
IOL = 5 mA  
drive_sel<1:0> = 0b0X,  
4.5 V VDDD 5.5 V  
O_ENH  
SID651A VOL2_GPIO_ENH Output voltage  
LOW level  
IOL = 2 mA, 3 mA  
drive_sel<1:0> = 0b0X,  
2.7 V VDDD < 4.5 V  
SID652A VOL3_GPIO_ENH Output voltage  
LOW level  
IOL = 1 mA  
drive_sel<1:0> = 0b10,  
2.7 V VDDD < 4.5 V  
SID652D VOL3D_GPI-  
Output voltage  
LOW level  
IOL = 2 mA  
drive_sel<1:0> = 0b10,  
4.5 V VDDD 5.5 V  
O_ENH  
SID653A VOL4_GPIO_ENH Output voltage  
LOW level  
IOL = 0.5 mA  
drive_sel<1:0> = 0b11,  
2.7 V VDDD < 4.5 V  
SID653D VOL4D_GPI-  
Output voltage  
LOW level  
IOL = 1 mA  
drive_sel<1:0> = 0b11,  
4.5 V VDDD 5.5 V  
O_ENH  
SID654A VOH1_GPIO_ENH Output voltage  
HIGH level  
VDDD – 0.5  
VDDD – 0.5  
IOL = –2 mA  
drive_sel<1:0> = 0b0X,  
2.7 V VDDD < 4.5 V  
SID655A VOH2_GPIO_ENH Output voltage  
HIGH level  
IOL = –5 mA  
drive_sel<1:0> = 0b0X,  
4.5 V VDDD 5.5 V  
Datasheet  
97  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-5  
Spec ID  
I/O specifications (continued)  
Parameter Description  
Min  
Typ  
Max  
Units Details/conditions  
SID656A VOH3_GPIO_ENH Output voltage  
HIGH level  
VDDD – 0.5  
V
IOL = –1 mA  
drive_sel<1:0> = 0b10,  
2.7 V VDDD < 4.5 V  
SID656D VOH3D_GPI-  
Output voltage  
HIGH level  
VDDD – 0.5  
VDDD – 0.5  
VDDD – 0.5  
25  
V
IOL = –2 mA  
drive_sel<1:0> = 0b10,  
4.5 V VDDD 5.5 V  
O_ENH  
SID657A VOH4_GPIO_ENH Output voltage  
HIGH level  
V
IOL = –0.5 mA  
drive_sel<1:0> = 0b11,  
2.7 V VDDD < 4.5 V  
SID657D VOH4D_GPI-  
Output voltage  
HIGH level  
V
IOL = –1 mA  
drive_sel<1:0> = 0b11,  
4.5 V VDDD 5.5 V  
O_ENH  
SID658A RPD_GPIO_ENH Pull-down  
resistance  
50  
100  
kΩ  
SID659A RPU_GPIO_ENH Pull-up resistance  
SID660A VIH_CMOS_GPI- Input voltage  
25  
50  
100  
kΩ  
V
0.7 × VDDD  
HIGH threshold in  
CMOS mode  
O_ENH  
2
SID661A VIH_TTL_GPI-  
Input voltage  
HIGH threshold in  
TTL mode  
V
V
V
V
V
O_ENH  
SID662A VIH_AUTO_GPI- Input voltage  
0.8 × VDDD  
HIGH threshold in  
AUTO mode  
O_ENH  
SID663A VIL_CMOS_GPI- Input voltage  
0.3 × VDDD  
0.8  
LOW threshold in  
CMOS mode  
Input voltage  
LOW threshold in  
TTL mode  
O_ENH  
SID664A VIL_TTL_GPI-  
O_ENH  
SID665A VIL_AUTO_GPI- Input voltage  
0.5 × VDDD  
LOW threshold in  
AUTO mode  
O_ENH  
SID666A VHYST_CMOS_G- Hysteresis in  
CMOS mode  
0.05 × VDDD  
0.05 × VDDD  
V
V
PIO_ENH  
SID668A VHYST_AUTO_G- Hysteresis in  
AUTO mode  
PIO_ENH  
SID669A Cin_GPIO_ENH Input pin  
capacitance  
5
pF For 10 MHz  
SID670A IIL_GPIO_ENH  
Input leakage  
current  
–350  
0.055  
350  
nA VDDD = VDDA = 5.5 V,  
VSSD < VI < VDDD  
,
–40 °C TA 125 °C  
TYP: TA = 25 °C,  
VDDD = VDDA = 5.0 V  
SID671A tR or tF  
Rise time or fall  
1
1
10  
20  
ns 20-pF load,  
(fast)_20_0_GPI- time (10% to 90%  
drive_sel<1:0> = 0b00,  
slow = 0  
of VDDIO  
)
O_ENH  
SID672A tR or tF  
Rise time or fall  
ns 50-pF load,  
(fast)_50_0_GPI- time (10% to 90%  
drive_sel<1:0> = 0b00,  
slow = 0  
of VDDIO  
)
O_ENH  
Datasheet  
98  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-5  
Spec ID  
I/O specifications (continued)  
Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
SID673A tR or tF  
Rise time or fall  
1
20  
ns 20-pF load,  
drive_sel<1:0> = 0b01,  
slow = 0,  
(fast)_20_1_GPI- time (10% to 90%  
of VDDIO  
)
O_ENH  
guaranteed by design  
SID674A tR or tF  
Rise time or fall  
1
1
20  
20  
ns 10-pF load,  
drive_sel<1:0> = 0b10,  
slow = 0,  
(fast)_10_2_GPI- time (10% to 90%  
of VDDIO  
)
O_ENH  
guaranteed by design  
SID675A tR or tF  
Rise time or fall  
ns 6-pF load,  
(fast)_6_3_GPI- time (10% to 90%  
drive_sel<1:0> = 0b11,  
slow = 0,  
guaranteed by design  
of VDDIO  
)
O_ENH  
SID676A tF_I2C  
Fall time (30% to  
20 × (VDDD  
5.5)  
/
/
250  
160  
ns 10-pF to 400-pF load,  
drive_sel<1:0> = 0b00,  
slow = 1,  
(slow)_GPIO_EN 70% of VDDIO  
)
H
minimum RPU = 400 Ω  
SID677A tR or tF  
Rise time or fall  
20 × (VDDD  
5.5)  
ns 20-pF load,  
drive_sel<1:0> = 0b00,  
slow = 1,  
(slow)_20_GPI- time (10% to 90%  
of VDDIO  
)
O_ENH  
output frequency = 1  
MHz  
SID678A tR or tF  
Rise time or fall  
20 × (VDDD  
5.5)  
/
250  
ns 400-pF load,  
drive_sel<1:0> = 0b00,  
slow = 1,  
(slow)_400_GPI- time (10% to 90%  
of VDDIO  
)
O_ENH  
output frequency =  
400 kHz  
SID679A fIN_GPIO_ENH  
SID680A fOUT_GPI-  
Input frequency  
Output frequency  
80  
50  
MHz  
MHz 20-pF load,  
drive_sel<1:0>= 0b00,  
4.5 V VDDD 5.5 V  
O_ENH0H  
SID681A fOUT_GPI-  
Output frequency  
Output frequency  
Output frequency  
Output frequency  
Output frequency  
Output frequency  
32  
25  
15  
25  
15  
15  
MHz 20-pF load,  
drive_sel<1:0>= 0b00,  
2.7 V VDDD < 4.5 V  
MHz 20-pF load,  
drive_sel<1:0>= 0b01,  
4.5 V VDDD 5.5 V  
MHz 20-pF load,  
drive_sel<1:0>= 0b01,  
2.7 V VDDD < 4.5 V  
MHz 10-pF load,  
drive_sel<1:0>= 0b10,  
4.5 V VDDD 5.5 V  
O_ENH0L  
SID682A fOUT_GPI-  
O_ENH1H  
SID683A fOUT_GPI-  
O_ENH1L  
SID684A fOUT_GPI-  
O_ENH2H  
SID685A fOUT_GPI-  
MHz 10-pF load,  
drive_sel<1:0>= 0b10,  
2.7 V VDDD < 4.5 V  
O_ENH2L  
SID686A fOUT_GPI-  
MHz 6-pF load,  
drive_sel<1:0>= 0b11,  
4.5 V VDDD 5.5 V  
O_ENH3H  
Datasheet  
99  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-5  
Spec ID  
I/O specifications (continued)  
Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
SID687A fOUT_GPI-  
Output frequency  
10  
MHz 6-pF load,  
drive_sel<1:0>= 0b11,  
2.7 V VDDD < 4.5 V  
O_ENH3L  
GPIO input specifications  
SID98  
tFT  
Analog glitch  
filter (pulse  
suppression  
width)  
Minimum pulse  
width for GPIO  
interrupt  
50[51]  
ns One filter per port  
group  
SID99  
tINT  
160  
ns  
Note  
51.If longer pulse suppression width is required, use Smart I/O.  
Datasheet  
100  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
27.6  
Analog peripherals  
All specifications are valid for –40 °C TA 125 °C and for 2.7 V to 5.5 V except where noted.  
27.6.1  
SAR ADC  
0xFFF  
Actual conversion  
characteristics  
1.5 LSb  
0xFFE  
0xFFD  
1 LSb (N - 1) + 0.5 LSb  
VNT  
0x003  
0x002  
0x001  
Actual conversion  
characteristics  
Ideal  
characteristics  
0.5 LSb  
VREFH  
VREFL  
Analog input  
[LSb]  
[V]  
Total error of digital output N = ( VNT {1 LSb × (N – 1) + 0.5 LSb} ) / 1 LSb  
1 LSb (Ideal value) = (VREFH – VREFL) / 4096  
N: A/D converter digital output value  
VZT (Ideal value): VREFL + 0.5 LSb [V]  
VFST (Ideal value): VREFH – 1.5 LSb [V]  
VNT: Voltage at which the digital output changes from N – 1 to N  
Figure 27-4  
ADC characteristics and error definitions  
Table 27-6  
12-bit SAR ADC DC specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
12  
Units  
bits  
V
Details/conditions  
SID100  
SID101  
SID102  
A_RES  
SAR ADC resolution  
A_VINS  
Input voltage range  
VREFH voltage range  
VREFL  
2.7  
VREFH  
VDDA  
A_VREFH  
V
ADC performance degrades when  
high reference is higher than  
supply  
[52]  
SID102A  
SID103  
A_VDDA  
A_VREFL  
VDDA voltage range  
VREFL voltage range  
2.7  
5.5  
V
V
VSSA  
VSSA  
ADC performance degrades when  
low reference is lower than ground  
SID103A  
SID19A  
Vband_gap  
Internal band gap reference  
voltage  
0.882  
0.9  
0.918  
0.25  
V
CLAMP_COU-  
Ratio of current collected on a pin  
to the positive current injected into  
a neighboring pin  
%
PLING_RATIO_POS  
SID19B  
SID19C  
Note  
CLAMP_COU-  
Ratio of current collected on a pin  
to the negative current injected  
into a neighboring pin  
1.2  
50  
%
PLING_RATIO_NEG  
RCLAMP_INTERNAL  
Internal pin resistance to current  
collection point  
Ω
52.VDDD must be greater than 0.8 × VDDA when ADC[2] is enabled. VDDIO_1 must be greater than 0.8 × VDDA when ADC[0] is enabled.  
Datasheet  
101  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
27.6.2  
Calculating the impact of neighboring pins  
The three ADC specifications based on SID19A, SID19B, and SID19C, can be used to calculate the pin leakage and  
resulting ADC offset caused by injection current using the below formula:  
ILEAK = IINJECTED × CLAMP_COUPLING_RATIO  
VERROR = ILEAK × (RCLAMP_INTERNAL + RSOURCE  
)
Code Error = VERROR × 212 / VREF  
Where:  
I
I
INJECTED is the injected current in mA.  
LEAK is the calculated leakage current in mA.  
VERROR is the voltage error calculated due to leakage currents in V.  
VREF is the ADC reference voltage in V.  
Differential linearity error  
Integral linearity error  
0xFFF  
Ideal  
characteristics  
Actual conversion  
characteristics  
N + 1  
0xFFE  
VFST  
Actual conversion  
characteristics  
(Measured value)  
(1 LSb [N - 1] + VZT)  
0xFFD  
N
VNT  
(Measured value)  
0x004  
0x003  
0x002  
0x001  
N - 1  
Actual conversion  
characteristics  
V(N+  
1)T  
(Measured value)  
VNT  
(Measured value)  
Ideal  
characteristics  
Actual conversion  
characteristics  
N -2  
VZT  
(Measured value)  
VREFL  
Analog input  
VREFL  
Analog input  
VREFH  
VREFH  
Figure 27-5  
Integral and differential linearity errors  
Datasheet  
102  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
EXTERNAL CIRCUIT  
INTERNAL EQUIVALENT CIRCUIT  
VDDIO  
Channel selection MUX and ADC  
REXT  
RVIN  
CVIN  
CEXT  
CIN  
ESD Protection  
REXT: Source impedance  
CEXT: On-PCB capacitance  
CIN: I/O pad or Input capacitance  
RVIN: ADC equivalent input resistance  
CVIN: ADC equivalent input capacitance  
K: Constant for sampling accuracy, K = ln(abs(4096/LSbSAMPLE))  
Sampling Time (tSAMPLE) requirement is shown in the following equation  
tSAMPLE > K x { CVIN x ( RVIN + REXT ) + ( CIN + CEXT ) x (REXT) } [seconds]  
K = value of 9.0 is recommended to get ±0.5 LSb sampling accuracy at 12-bit (LSbSAMPLE = ±0.5)  
Figure 27-6  
Table 27-7  
ADC equivalent circuit for analog input  
SAR ADC AC specifications  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
SID104  
SID105  
SID114  
VZT  
Zero transition voltage  
–20  
20  
mV VDDA = 2.7 V to 5.5 V,  
–40 °C TA 125 °C  
before offset  
adjustment  
VFST  
Full-scale transition  
voltage  
–20  
20  
mV VDDA = 2.7 V to 5.5 V,  
–40 °C TA 125 °C  
before offset  
adjustment  
fADC_4P5  
ADC operating frequency  
ADC operating frequency  
Analog input sample time 412  
2
2
26.67  
13.34  
MHz 4.5 V VDDA 5.5 V  
MHz 2.7 V VDDA < 4.5 V  
SID114A fADC_2P7  
SID113 tS_4P5  
ns 4.5 V VDDA 5.5 V  
Guaranteed by design  
SID113A tS_2P7  
Analog input sample time 600  
ns 2.7 V VDDA < 4.5 V  
Guaranteed by design  
SID113B tS_DR_4P5  
Analog input sample time  
when input is from  
2
µs 4.5 V VDDA 5.5 V  
Guaranteed by design  
diagnostic reference  
SID113C tS_DR_2P7  
SID113D tS_TS  
Analog input sample time 2.5  
when input is from  
µs 2.7 V VDDA < 4.5 V  
Guaranteed by design  
diagnostic reference  
Analog input sample time  
for temperature sensor  
3
µs 2.7 V VDDA 5.5 V  
Guaranteed by design  
Datasheet  
103  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-7  
Spec ID Parameter  
SID106 tST_4P5  
SAR ADC AC specifications (continued)  
Description  
Min  
Typ  
Max  
1
Units Details/conditions  
Max throughput (Sample  
per second)  
Msps 4.5 V VDDA 5.5 V,  
80MHz/3=26.67MHz,  
11 sampling cycles,  
15 conversion cycles  
SID106A tST_2P7  
Max throughput (Sample  
per second)  
0.5  
Msps 2.7 V VDDA < 4.5 V  
80 MHz / 6 = 13.3 MHz,  
11 sampling cycles,  
15 conversion cycles  
SID107  
SID108  
CVIN  
ADC input sampling  
capacitance  
Input path ON resistance  
(4.5 V to 5.5 V)  
Input path ON resistance  
(2.7 V to 4.5 V)  
Diagnostic path ON resis-  
tance (4.5 V to 5.5 V)  
4.8  
9.4  
13.9  
40  
50  
4
pF Guaranteed by design  
kΩ Guaranteed by design  
kΩ Guaranteed by design  
kΩ Guaranteed by design  
kΩ Guaranteed by design  
%
RVIN1  
SID108A RVIN2  
SID108B RDREF1  
SID108C RDREF2  
Diagnostic path ON resis-  
tance (2.7 V to 4.5 V)  
SID119  
SID109  
ACC_RLAD Diagnostic reference  
resistor ladder accuracy  
A_TE  
–4  
–5  
Total error  
5
LSb  
VDDA = VREFH = 2.7 V to  
5.5 V, VREFL = VSSA  
–40 °C TA 125 °C  
Total error after offset  
and gain adjustment  
at 12 bit resolution  
mode  
SID109A A_TEB  
Total error  
–12  
12  
LSb VDDA = VREFH = 2.7 V to  
5.5 V, VREFL = VSSA  
–40 °C TA 125 °C  
Total error before  
offset and gain  
adjustment at 12 bit  
resolution mode  
SID110  
SID111  
SID112  
A_INL  
A_DNL  
A_CE  
Integral nonlinearity  
–2.5  
–0.99  
–1  
2.5  
1.9  
1
LSb VDDA = 2.7 V to 5.5 V,  
–40 °C TA 125 °C  
Differential nonlinearity  
LSb  
LSb  
V
DDA = 2.7 V to 5.5 V,  
–40 °C TA 125 °C  
Channel-to-channel  
V
DDA = 2.7 V to 5.5 V,  
variation (for channels  
connected to same ADC)  
–40 °C TA 125 °C  
SID115  
IAIC  
Analog input leakage  
current  
–350  
70  
350  
nA When input pad is  
selected for  
conversion  
SID116  
SID117  
IDIAGREF  
IVDDA  
Diagnostic reference  
current  
Analog power supply  
current while ADC is  
operating  
70  
µA  
360  
550  
µA Per enabled ADC  
Datasheet  
104  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-7  
SAR ADC AC specifications (continued)  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
SID117A IVDDA_DS  
Analog power supply  
current while ADC is not  
operating  
21  
µA Per enabled ADC  
SID118  
IVREF  
Analog reference voltage  
current while ADC is  
operating  
Analog reference voltage  
current while ADC is not  
operating  
360  
1.8  
550  
5
µA Per enabled ADC  
µA Per enabled ADC  
SID118A IVREF_LEAK  
27.6.3  
Temperature sensor  
Table 27-8  
Temperature sensor specifications  
Spec ID Parameter  
Description  
Min  
–5  
Typ  
Max  
5
Units  
Details/conditions  
SID201  
TSENSACC2 Temperature sensor  
accuracy 2  
°C –40 °C TJ 150 °C  
This spec is valid when using  
ADC[0] (VDDIO_1), ADC[1]  
(VDDIO_2) or ADC[2] (VDDD  
)
with the following condi-  
tions:  
a. 3.0 V VDDD, VDDIO_1 or  
VDDIO_2 = VDDA = VREFH 3.6 V  
or  
b. 4.5 V VDDD, VDDIO_1 or  
VDDIO_2 = VDDA = VREFH 5.5 V  
SID201A TSENSACC3 Temperature sensor  
accuracy 3  
–10  
10  
°C –40 °C TJ 150 °C  
This spec is valid when using  
ADC[0] (VDDIO_1) or ADC[2]  
(VDDD) with the following  
condition:  
2.7 V VDDD or VDDIO_1 5.5 V  
and  
2.7 V VDDA = VREFH 5.5 V  
and  
0.8 × VDDA < VDDD or VDDIO_1  
27.6.4  
Voltage divider accuracy  
Table 27-9  
Voltage divider accuracy  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/conditions  
SID202 VMONDIV  
Uncorrected monitor  
voltage divider accuracy  
(measured by ADC),  
compared to ideal  
supply/2  
–20  
2
20  
%
Any HV supply pad  
within 2.7 V–5.5 V  
operating range  
Datasheet  
105  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
27.7  
AC specifications  
Unless otherwise noted, the timings are defined with the guidelines mentioned in the Figure 27-7.  
Definition of rise / fall times  
VDDD or VDDIO_1/2  
80 %  
80 %  
20 %  
20 %  
VSSD  
tR  
tF  
Time Reference Point Definition  
VDDD or VDDIO_1/2  
0.5 x VDDD or VDDIO_1/2  
VSSD  
Timing Reference Points  
Figure 27-7  
AC timings specifications  
Datasheet  
106  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
27.8  
Digital peripherals  
All specifications are valid for –40 °C TA 125 °C and for 2.7 V to 5.5 V except where noted.  
Table 27-10 Timer/counter/PWM (TCPWM) specifications  
Spec ID Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
SID120A fC  
TCPWM operating  
frequency  
80  
MHz fC = peripheral clock  
SID121  
SID122  
SID123  
tPWMENEXT  
tPWMEXT  
tCRES  
Input trigger pulse width for 2 / fC  
all trigger events  
ns Trigger Events can be  
Stop, Start, Reload,  
Count, Capture, or  
Kill depending on  
which mode of  
operation is selected.  
Output trigger pulse widths 2 / fC  
ns Minimum possible  
width of Overflow,  
Underflow, and  
Counter = Compare  
(CC) value trigger  
outputs  
Resolution of counter  
PWM resolution  
1 / fC  
ns Minimum time  
between successive  
counts  
ns Minimumpulsewidth  
of PWM output  
ns Minimumpulsewidth  
between Quadrature  
phase inputs.  
SID124  
SID125  
tPWMRES  
tQRES  
1 / fC  
2 / fC  
Quadrature inputs  
resolution  
TCPWM Timing Diagrams  
Input Signal  
VIH  
VIL  
1
2
1
2
VOH  
VOL  
Output Signal  
1: tPWMENEXT, tQRES  
2: tPWMEXT  
Figure 27-8  
TCPWM timing diagrams  
Datasheet  
107  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-11 Serial communication block (SCB) specifications  
Spec ID Parameter  
Description  
Min  
Typ  
Max Units Details/conditions  
80  
MHz  
SID129A fSCB  
SCB operating frequency  
I2C interface-standard-mode  
SID130 fSCL  
SCL clock frequency  
100  
kHz  
ns  
SID131 tHD;STA  
SID132 tLOW  
SID133 tHIGH  
SID134 tSU;STA  
Hold time, START condition  
Low period of SCL  
4000  
4700  
4000  
4700  
ns  
High period of SCL  
ns  
Setup time for a repeated  
START  
ns  
SID135 tHD;DAT  
SID136 tSU;DAT  
SID138 tF  
Data hold time, for receiver  
Data setup time  
0
ns  
250  
ns  
Fall time of SCL and SDA  
Setup time for STOP  
300  
ns Input and output  
SID139 tSU;STO  
SID140 tBUF  
4000  
4700  
ns  
ns  
Bus-free time between  
START and STOP  
SID141 CB  
Capacitive load for each bus  
line  
400  
pF  
ns  
ns  
SID142 tVD;DAT  
Time for datasignal from SCL  
LOW to SDA output  
3450  
SID143 tVD;ACK  
SID144 VOL  
Data valid acknowledge time  
LOW level output voltage  
0
3450  
0.4  
V
Open-drain at 3 mA  
sink current  
SID145 IOL  
I2C interface-fast-mode  
LOW level output current  
3
mA VOL = 0.4 V  
SID150 fSCL_F  
SCL clock frequency  
Hold time, START condition  
Low period of SCL  
400  
kHz  
ns  
SID151 tHD;STA_F  
SID152 tLOW_F  
SID153 tHIGH_F  
SID154 tSU;STA_F  
600  
1300  
600  
600  
ns  
High period of SCL  
ns  
Setup time for a repeated  
START  
ns  
SID155 tHD;DAT_F  
SID156 tSU;DAT_F  
SID158 tF_F  
Data hold time, for receiver  
Data setup time  
0
ns  
ns  
100  
Fall time of SCL and SDA  
20 ×  
300  
ns Input and output,  
GPIO_ENH: slow  
(VDDD  
/
mode, 400 pF load  
5.5)  
SID158A tFA_F  
Fall time of SCL and SDA  
Setup time for STOP  
0.35  
300  
ns Input and output  
GPIO_STD:  
drive_sel<1:0>= 0b00  
MIN: 10 pF load,  
RPU = 35.41 kΩ  
MAX: 400 pF load,  
RPU = 350 Ω  
SID159 tSU;STO_F  
600  
ns Input and output  
Datasheet  
108  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-11 Serial communication block (SCB) specifications (continued)  
Spec ID Parameter  
Description  
Min  
Typ  
Max Units Details/conditions  
SID160 tBUF_F  
Bus free time between  
START and STOP  
1300  
ns  
pF  
ns  
SID161 CB_F  
Capacitive load for each bus  
line  
400  
900  
SID162 tVD;DAT_F  
Time for datasignal from SCL  
LOW to SDA output  
SID163 tVD;ACK_F  
SID164 tSP_F  
Data valid acknowledge time  
900  
50  
ns  
ns  
Pulse width of spikes that  
must be suppressed by the  
input filter  
SID165 VOL_F  
LOW level output voltage  
0
0.4  
V
Open-drain at 3 mA  
sink current  
SID165 IOL_F  
SID167 IOL2_F  
LOW level output current  
LOW level output current  
3
6
mA VOL = 0.4 V  
mA VOL = 0.6 V[53]  
I2C interface-fast-plus mode  
SID170 fSCL_FP  
SID171 tHD;STA_FP  
SID172 tLOW_FP  
SID173 tHIGH_FP  
SID174 tSU;STA_FP  
SCL clock frequency  
1
MHz  
ns  
Hold time, START condition  
Low period of SCL  
260  
500  
260  
260  
ns  
High period of SCL  
ns  
Setup time for a repeated  
START  
ns  
SID175 tHD;DAT_FP  
SID176 tSU;DAT_FP  
SID178 tF_FP  
Data hold time, for receiver  
Data setup time  
0
ns  
ns  
50  
Fall time of SCL and SDA  
20 ×  
160  
ns Input and output  
20-pF load  
(VDDD  
GPIO_ENH: slow mode  
/5.5)  
260  
500  
SID179 tSU;STO_FP  
SID180 tBUF_FP  
Setup time for STOP  
ns Input and output  
ns  
Bus free time between  
START and STOP  
SID181 CB_FP  
Capacitive load for each bus  
line  
20  
pF  
ns  
SID182 tVD;DAT_FP  
Time for datasignal from SCL  
LOW to SDA output  
450  
SID183 tVD;ACK_FP  
SID184 tSP_FP  
Data valid acknowledge time  
450  
50  
ns  
ns  
Pulse width of spikes that  
must be suppressed by the  
input filter  
SID186 VOL_FP  
LOW level output voltage  
0
3
0.4  
V
Open-drain at 3-mA  
sink current  
SID187 IOL_FP  
LOW level output current  
mA VOL = 0.4 V[54]  
Notes  
53.In order to drive full bus load at 400 kHz, 6 mA IOL is required at 0.6 V VOL  
.
54.In order to drive full bus load at 1 MHz, 20 mA IOL is required at 0.4 V VOL. However, this device does not support it.  
Datasheet  
109  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-11 Serial communication block (SCB) specifications (continued)  
Spec ID Parameter  
Description  
Min  
Typ  
Max Units Details/conditions  
SPI interface master (Full-clock mode: LATE_MISO_SAMPLE = 1) [Conditions: drive_sel<1:0>= 0x]  
SID190B fSPI  
SPI operating frequency  
10  
MHz Do not use half-clock  
mode:  
LATE_MISO_SAMPLE =  
0
SID191 tDMO  
SID192 tDSI  
SID193 tHMO  
SPI Master: MOSI valid after  
SCLK driving edge  
40  
0
15  
ns  
SPI Master: MISO valid before  
SCLK capturing edge  
ns  
SPI Master: Previous MOSI  
data hold time  
ns  
SID194 tW_SCLK_H_L SPISCLKpulsewidthHIGHor  
LOW  
0.4 × (1  
ns  
/ fSPI  
)
SID196 tDHI  
SPI Master: MISO hold time  
after SCLK capturing edge  
0
ns  
SID198 tEN_SETUP  
SID199 tEN_SHOLD  
SID195 CSPIM_MS  
SSEL valid, before the first  
SCK capturing edge  
0.5 ×  
ns Min is half clock period  
ns Min is half clock period  
pF  
(1/fSPI  
)
)
SSEL hold, after the last SCK 0.5 ×  
capturing edge  
(1/fSPI  
SPI capacitive load  
10  
SPI interface slave (internally clocked) [Conditions: drive_sel<1:0>= 0x]  
SID205 fSPI_INT  
SID206 tDMI_INT  
SPI operating frequency  
5
10  
MHz  
ns  
SPI Slave: MOSI Valid before  
Sclock capturing edge  
SID207 tDSO_INT  
SID208 tHSP  
SPI Slave: MISO Valid after  
Sclock driving edge, in the  
internal-clocked mode  
62  
ns  
SPI Slave: Previous MISO  
data hold time  
3
ns  
ns  
ns  
ns  
SID209 tEN_SETUP_INT SPI Slave: SSEL valid to first  
SCK valid edge  
33  
33  
20  
SID210 tEN_HOLD_INT SPI Slave Select active (LOW)  
from last SCLK hold  
SID211 tEN_SET-  
SPI Slave: from SSEL valid, to  
SCK falling edge before the  
first data bit  
UP_PRE  
SID212 tEN_HOLD_PRE SPI Slave: from SCK falling  
edge before the first data bit,  
20  
20  
20  
ns  
ns  
ns  
to SSEL invalid  
SID213 tEN_SETUP_CO SPI Slave: from SSEL valid, to  
SCK falling edge in the first  
data bit  
SID214 tEN_HOLD_CO SPI Slave: from SCK falling  
edge in the first data bit, to  
SSEL invalid  
SID215 tW_DIS_INT  
SPI Slave Select inactive time  
40  
20  
ns  
ns  
SID216 tW_SCLKH_INT SPI SCLK pulse width HIGH  
Datasheet  
110  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-11 Serial communication block (SCB) specifications (continued)  
Spec ID Parameter  
Description  
Min  
20  
12  
Typ  
Max Units Details/conditions  
SID217 tW_SCLKL_INT SPI SCLK pulse width LOW  
ns  
ns  
pF  
SID218 tSIH_INT  
SID219 CSPIS_INT  
SPI MOSI hold from SCLK  
SPI Capacitive Load  
10  
SPI interface slave (externally clocked) [Conditions: drive_sel<1:0>= 0x]  
SID220B fSPI_EXT  
SID221 tDMI_EXT  
SPI operating frequency  
5
10  
MHz  
ns  
SPI Slave: MOSI Valid before  
Sclock capturing edge  
SID222 tDSO_EXT  
SID223 tHSO_EXT  
SPI Slave: MISO Valid after  
Sclock driving edge, in the  
external-clocked mode  
32  
ns  
SPI Slave: Previous MISO  
data hold time  
3
ns  
ns  
ns  
SID224 tEN_SET-  
SPI Slave: SSEL valid to first  
SCK valid edge  
40  
40  
UP_EXT  
SID225 tEN_HOLD_EXT SPI Slave Select active (LOW)  
from last SCLK hold  
SID226 tW_DIS_EXT  
SPI Slave Select inactive time  
80  
34  
34  
20  
ns  
ns  
ns  
ns  
pF  
ns  
SID227 tW_SCLKH_EXT SPI SCLK pulse width HIGH  
SID228 tW_SCLKL_EXT SPI SCLK pulse width LOW  
SID229 tSIH_EXT  
SID230 CSPIS_EXT  
SID231 tVSS_EXT  
SPI MOSI hold from SCLK  
SPI Capacitive Load  
10  
33  
SPI Slave: MISO valid after  
SSEL falling edge (CPHA = 0)  
UART interface  
SID240 fBPS  
Data rate  
10  
Mbps  
Datasheet  
111  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
8
7
9
70%  
30%  
70%  
70%  
70%  
30%  
6
SDA  
SCL  
30%  
30%  
12  
8
9
4
70%  
70%  
70%  
70%  
30%  
70%  
30%  
30%  
30%  
30%  
30%  
30%  
2
1
3
START condition  
11  
70%  
30%  
70%  
30%  
70%  
70%  
SDA  
SCL  
30%  
70%  
2
14  
10  
13  
70%  
70%  
30%  
9th clock  
5
Repeated START  
condition  
STOP condition  
START condition  
1: SCL clock period = 1/fSCL  
2: Hold time, START condition = tHD;STA  
3: LOW period of SCL = tLOW  
4: HIGH period of SCL = tHIGH  
5: Setup time for a repeated START = tSU;STA  
6: Data hold time, for receiver = tHD;DAT  
7: Data setup time = tSU;DAT  
8: Fall time of SCL and SDA = tF  
9: Rise time of SCL and SDA = tR  
10: Setup time for STOP = tSU;STO  
11: Bus-free time between START and STOP = tBUF  
12: Time for data signal from SCL LOW to SDA output = tVD;DAT  
13: Data valid acknowledge time = tVD;ACK  
14: Pulse width of spikes that must be suppressed by the input filter = tSP  
Figure 27-9  
I2C timing diagrams  
Datasheet  
112  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
SPI Master Timing Diagrams (LATE_MISO_SAMPLE=1)  
CPHA=0  
9
SSEL  
2
1
3
SCLK  
(CPOL=0)  
4
4
SCLK  
(CPOL=1)  
5
6
MISO  
(input)  
7
8
MOSI  
(output)  
1: SCLK period = 1 / fSPI  
2: Enable lead time (setup)= tEN_SETUP = Depends on SPI_CTRL.SSEL_SETUP_DEL (Refer to the Register TRM)  
3: Enable trail time (hold)= tEN_HOLD = Depends on SPI_CTRL.SSEL_HOLD_DEL (Refer to the Register TRM)  
4: SCLK high or low time = tW_SCLK_H_L  
5: Input data setup time= tDSI  
6: Input data hold time= tDHI  
7: Output data valid after SCLK driving edge= tDMO  
8: Output data hold time= tHMO  
9: SSEL high pulse width = Depends on SPI_CTRL.SSEL_INTER_FRAME_DEL (Refer to the Register TRM)  
Figure 27-10 SPI master timing diagrams with LOW clock phase  
Datasheet  
113  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
SPI Master Timing Diagrams (LATE_MISO_SAMPLE=1)  
CPHA=1  
9
SSEL  
2
3
1
SCLK  
(CPOL=0)  
4
4
SCLK  
(CPOL=1)  
5
6
MISO  
(input)  
7
8
MOSI  
(output)  
1: SCLK period = 1 / fSPI  
2: Enable lead time (setup) = tEN_SETUP = Depends on SPI_CTRL.SSEL_SETUP_DEL (Refer to the Register TRM)  
3: Enable trail time (hold) = tEN_HOLD = Depends on SPI_CTRL.SSEL_HOLD_DEL (Refer to the Register TRM)  
4: SCLK high or low time = tW_SCLK_H_L  
5: Input data setup time = tDSI  
6: Input data hold time = tHDI  
7: Output data valid after SCLK driving edge = tDMO  
8: Output data hold time = tHMO  
9: SSEL high pulse width = Depends on SPI_CTRL.SSEL_INTER_FRAME_DEL (Refer to the Register TRM)  
Figure 27-11 SPI master timing diagrams with HIGH clock phase  
Datasheet  
114  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
SPI Slave Timing Diagrams  
CPHA=0  
10  
SSEL  
2
1
3
SCLK  
(CPOL=0)  
4
4
SCLK  
(CPOL=1)  
8
7
9
MISO  
(output)  
5
6
MOSI  
(input)  
1: SCLK period = 1 / fSPI_EXT  
2: enable lead time (setup)= tEN_SETUP_EXT  
3: enable trail time (hold)= tEN_HOLD_EXT  
4: SCLK high or low time = tw_SCLKH_EXT = tw_SCLKL_EXT  
5: input data setup time = tDMI_EXT  
6: input data hold time = tSIH_EXT  
7: output data valid after SCLK driving edge= tDSO_EXT  
8: output data valid after SSEL falling edge (CPHA=0)= tVSS_EXT  
9: output data hold time = tHSO  
10: SSEL high pulse width= tDIS_EXT  
Figure 27-12 SPI slave timing diagrams with LOW clock phase  
Datasheet  
115  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
SPI slave Timing Diagrams  
CPHA=1  
9
SSEL  
2
3
1
SCLK  
(CPOL=0)  
4
SCLK  
(CPOL=1)  
7
8
MISO  
(output)  
5
6
MOSI  
(input)  
1: SCLK period = 1 / fSPI_EXT  
2: enable lead time (setup) = tEN_SETUP_EXT  
3: enable trail time (hold) = tEN_HOLD_EXT  
4: SCLK high or low time = tw_SCLKH_EXT = tw_SCLKL_EXT  
5: input data setup time = tDMI_EXT  
6: input data hold time = tSIH_EXT  
7: output data valid after SCLK driving edge = tDSO_EXT  
8: output data hold time = tHSO  
9: SSEL high pulse width = tDIS_EXT  
Figure 27-13 SPI slave timing diagrams with HIGH clock phase  
Datasheet  
116  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
27.8.1  
LIN specifications  
Table 27-12 LIN specifications  
Spec ID Parameter  
SID249A fLIN  
Description  
Internalclockfrequencyto  
the LIN block  
Min  
Typ  
Max  
80  
Units Details/conditions  
MHz  
SID250  
SID250A BR_REF  
BR_NOM  
Bit rate on the LIN bus  
1
1
20  
115.2  
kbps Guaranteed by design  
kbps Guaranteed by design  
Bit rate on the LIN bus (not  
in standard LIN specifi-  
cation) for re-flashing in  
LIN slave mode  
27.8.2  
CAN FD specifications  
Table 27-13 CAN FD specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
SID630A fHCLK  
System clock frequency  
80  
MHz fcclk fhclk,  
Guaranteed by design  
SID631A fCCLK  
CAN clock frequency  
80  
MHz fcclk fhclk,  
Guaranteed by design  
27.9  
Memory  
All specifications are valid for –40 °C TA 125 °C and for 2.7 V to 5.5 V except where noted.  
Table 27-14 Flash DC specifications  
Spec ID  
SID260  
Parameter  
VPE  
Description  
Erase and program voltage  
Min Typ Max Units Details/conditions  
2.7 5.5  
V
Table 27-15 Flash AC specifications  
Spec ID Parameter  
Description  
Min Typ Max Units  
Details/conditions  
SID257A fFO  
Maximum flash memory  
operation frequency  
80  
37.5  
MHz Zero wait access to  
code-flash memory up to  
80 MHz  
SID254  
SID255  
tERS_SUS  
Maximum time from erase  
suspend command till erase  
is indeed suspend  
µs  
tERS_RES_SUS Minimum time allowed from 250  
erase resume to erase  
µs Guaranteed by design  
suspend  
Blank check time for N-bytes  
of work-flash  
SID258A tBC_WF_A  
12.5 +  
0.375  
× N  
µs At 80 MHz, N 4 and  
multiple of 4, excludes  
system overhead time  
SID259  
tSECTORE-  
RASE1  
Sector erase time  
(Code-flash: 32 KB)  
Sector erase time  
(Code-flash: 8 KB)  
45  
15  
80  
90  
ms Includes internal  
preprogramming time  
ms Includes internal  
preprogramming time  
SID259A tSECTORE-  
30  
RASE2  
SID261  
tSECTORE-  
RASE3  
Sector erase time  
(Work-flash, 2 KB)  
160  
ms Includes internal  
preprogramming time  
Datasheet  
117  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-15 Flash AC specifications (continued)  
Spec ID Parameter  
Description  
Min Typ Max Units  
Details/conditions  
ms Includes internal  
preprogramming time  
SID262  
SID263  
SID264  
SID265  
SID266  
SID267  
SID268  
tSECTORE-  
RASE4  
Sector erase time  
5
15  
60  
70  
(Work-flash, 128 bytes)  
tWRITE1  
64-bit write time  
(Code-flash)  
256-bit write time  
(Code-flash)  
30  
40  
µs Excludes system  
overhead time  
tWRITE2  
tWRITE3  
tWRITE4  
tFRET1  
µs Excludes system  
overhead time  
4096-bit write time  
320 1200  
µs Excludes system  
overhead time  
(Code-flash)[55]  
32-bit write time  
(Work-flash)  
30  
60  
µs Excludes system  
overhead time  
years TA (power on and off) 85  
Code-flash retention.  
20  
20  
1000 program/erase cycles  
°C average  
tFRET3  
Work-flash retention.  
125,000 program/erase  
cycles  
years TA (power on and off) 85  
°C average  
SID269  
tFRET4  
Work-flash retention.  
250,000 program/erase  
cycles  
10  
years TA (power on and off) 85  
°C average  
SID612  
SID613  
ICC_ACT2  
ICC_ACT3  
Program operating current  
(Code or Work-flash)  
Erase operating current  
(Code or Work-flash)  
15  
15  
48  
48  
mA VDDD = 5 V  
Guaranteed by design  
mA VDDD = 5 V  
Guaranteed by design  
Note  
55.The code-flash includes a 'Write Buffer' of 4096-bit. If the application software writes this buffer multiple times, to get the overall  
write time multiply one sector write time with the corresponding factor (say for factor 64, example, 64 x 512 B = 32 KB [one sector])  
Datasheet  
118  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
27.10  
System resources  
All specifications are valid for –40 °C TA 125 °C and for 2.7 V to 5.5 V except where noted.  
Table 27-16 System resources  
Details/  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max Units  
conditions  
Power-on-reset specifications  
SID270 VPOR_R  
SID276 VPOR_F  
SID271 VPOR_H  
SID272 tDLY_POR  
VDDD rising voltage to de assert  
POR  
VDDD falling voltage to assert  
POR  
1.5  
1.45  
20  
2.35  
2.1  
300  
3
V
V
Guaranteed by  
design  
Level detection hysteresis  
mV Guaranteed by  
design  
µs Guaranteed by  
design  
Delay between VDDD rising  
through 2.3 V and an internal  
deassertion of POR  
SID273 tPOFF  
SID274 POR_RR1  
VDDD Power off time  
100  
µs VDDD < 1.45 V  
V
DDD power ramp rate with  
robust BOD (BOD operation is  
guaranteed)  
100 mV/µs This ramp  
supports robust  
BOD  
SID275 POR_RR2  
VDDD power ramp rate without  
robust BOD  
1000 mV/µs This ramp does not  
support robust  
BOD  
tPOFF must be  
satisfied  
High-voltage BOD (HV BOD) specifications  
SID500 VTR_2P7_R  
HV BOD 2.7 V rising detection  
2.474 2.55 2.627  
V
V
point for VDDD and VDDA  
(default)  
SID501 VTR_2P7_F  
HV BOD 2.7 V falling detection 2.449 2.525 2.601  
point for VDDD and VDDA  
(default)  
SID502 VTR_3P0_R  
SID503 VTR_3P0_F  
HV BOD 3.0 V rising detection  
point for VDDD and VDDA  
HV BOD 3.0 V falling detection  
point for VDDD and VDDA  
2.765 2.85 2.936  
2.74 2.825 2.91  
V
V
SID505 HVBOD_RR_A Power ramp rate: VDDD and  
DDA (Active)  
SID506 HVBOD_RR_DS Power ramp rate: VDDD and  
VDDA (DeepSleep)  
100 mV/µs  
V
10  
mV/µs  
SID507 tDLY_ACT_HVBOD Active mode delay between  
VDDD falling/rising through  
0.5  
µs Guaranteed by  
design  
VTR_2P7_F/R or VTR_3P0_F/R and  
an internal HV BOD signal  
transitioning  
SID507A tDLY_ACT_HVBOD Active mode delay between  
VDDA falling/rising through  
1
µs Guaranteed by  
design  
VTR_2P7_F/R or VTR_3P0_F/R and  
internal HV BOD signal transi-  
tioning  
Datasheet  
119  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-16 System resources (continued)  
Details/  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max Units  
conditions  
SID507B tDLY_DS_HVBOD DeepSleep mode delay  
between VDDD/VDDA  
4
µs Guaranteed by  
design  
falling/rising through  
VTR_2P7_F/R or VTR_3P0_F/R and  
an internal HV BOD signal  
transitioning  
SID508 tRES_HVBOD  
Response time of HV BOD,  
VDDD/VDDA supply. (For  
100  
ns Guaranteed by  
design  
falling-then-rising supply at  
max ramp rate; threshold is  
VTR_2P7_F or VTR_3P0_F.)  
Low-voltage BOD (LV BOD) specifications  
SID510 VTR_R_LVBOD  
LV BOD rising detection point  
for VCCD  
LV BOD falling detection point 0.892 0.92 0.948  
for VCCD  
0.917 0.945 0.973  
V
V
SID511 VTR_F_LVBOD  
SID515 tDLY_ACT_LVBOD Active delay between VCCD  
falling/rising through  
1
µs Guaranteed by  
design  
VTR_R/F_LVBOD and an internal  
LV BOD signal transitioning  
SID515A tDLY_DS_LVBOD  
DeepSleep mode delay  
between VCCD falling/rising  
through VTR_R/F_LVBOD and an  
internal LV BOD signal transi-  
tioning  
12  
µs Guaranteed by  
design  
SID516 tRES_LVBOD  
Response time of LV BOD. (For  
falling-then-rising supply at  
max ramp rate; threshold is  
VTR_F_LVBOD.)  
100  
ns Guaranteed by  
design  
Low-voltage detector (LVD) DC specifications  
SID520 VTR_2P8_F  
SID521 VTR_2P9_F  
SID522 VTR_3P0_F  
SID523 VTR_3P1_F  
SID524 VTR_3P2_F  
SID525 VTR_3P3_F  
SID526 VTR_3P4_F  
SID527 VTR_3P5_F  
SID528 VTR_3P6_F  
LVD 2.8 V falling detection  
point for VDDD  
LVD 2.9 V falling detection  
point for VDDD  
LVD 3.0 V falling detection  
point for VDDD  
LVD 3.1 V falling detection  
point for VDDD  
LVD 3.2 V falling detection  
point for VDDD  
LVD 3.3 V falling detection  
point for VDDD  
LVD 3.4 V falling detection  
point for VDDD  
LVD 3.5 V falling detection  
point for VDDD  
Typ – 2800 Typ +  
4% 4%  
Typ – 2900 Typ +  
4% 4%  
Typ – 3000 Typ +  
4% 4%  
Typ – 3100 Typ +  
4% 4%  
Typ – 3200 Typ +  
4% 4%  
Typ – 3300 Typ +  
4% 4%  
Typ – 3400 Typ +  
4% 4%  
Typ – 3500 Typ +  
4% 4%  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
LVD 3.6 V falling detection  
point for VDDD  
Typ – 3600 Typ +  
4% 4%  
Datasheet  
120  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-16 System resources (continued)  
Details/  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max Units  
conditions  
SID529 VTR_3P7_F  
SID530 VTR_3P8_F  
SID531 VTR_3P9_F  
SID532 VTR_4P0_F  
SID533 VTR_4P1_F  
SID534 VTR_4P2_F  
SID535 VTR_4P3_F  
SID536 VTR_4P4_F  
SID537 VTR_4P5_F  
SID538 VTR_4P6_F  
SID539 VTR_4P7_F  
SID540 VTR_4P8_F  
SID541 VTR_4P9_F  
SID542 VTR_5P0_F  
SID543 VTR_5P1_F  
SID544 VTR_5P2_F  
SID545 VTR_5P3_F  
SID546 VTR_2P8_R  
SID547 VTR_2P9_R  
SID548 VTR_3P0_R  
SID549 VTR_3P1_R  
SID550 VTR_3P2_R  
SID551 VTR_3P3_R  
LVD 3.7 V falling detection  
point for VDDD  
LVD 3.8 V falling detection  
point for VDDD  
LVD 3.9 V falling detection  
point for VDDD  
Typ – 3700 Typ +  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
4% 4%  
Typ – 3800 Typ +  
4% 4%  
Typ – 3900 Typ +  
4% 4%  
LVD 4.0 V falling detection  
point for VDDD  
LVD 4.1 V falling detection  
point for VDDD  
LVD 4.2 V falling detection  
point for VDDD  
LVD 4.3 V falling detection  
point for VDDD  
LVD 4.4 V falling detection  
point for VDDD  
LVD 4.5 V falling detection  
point for VDDD  
LVD 4.6 V falling detection  
point for VDDD  
LVD 4.7 V falling detection  
point for VDDD  
LVD 4.8 V falling detection  
point for VDDD  
LVD 4.9 V falling detection  
point for VDDD  
LVD 5.0 V falling detection  
point for VDDD  
LVD 5.1 V falling detection  
point for VDDD  
LVD 5.2 V falling detection  
point for VDDD  
LVD 5.3 V falling detection  
point for VDDD  
LVD 2.8 V rising detection point Typ – 2825 Typ +  
for VDDD 4% 4%  
LVD 2.9 V rising detection point Typ – 2925 Typ +  
for VDDD 4% 4%  
Typ – 4000 Typ +  
4% 4%  
Typ – 4100 Typ +  
4% 4%  
Typ – 4200 Typ +  
4% 4%  
Typ – 4300 Typ +  
4% 4%  
Typ – 4400 Typ +  
4% 4%  
Typ – 4500 Typ +  
4% 4%  
Typ – 4600 Typ +  
4% 4%  
Typ – 4700 Typ +  
4% 4%  
Typ – 4800 Typ +  
4% 4%  
Typ – 4900 Typ +  
4% 4%  
Typ – 5000 Typ +  
4% 4%  
Typ – 5100 Typ +  
4% 4%  
Typ – 5200 Typ +  
4% 4%  
Typ – 5300 Typ +  
4% 4%  
mV Same as VTR_2P8_F  
+ 25 mV  
mV Same as VTR_2P9_F  
+ 25 mV  
mV Same as VTR_3P0_F  
+ 25 mV  
mV Same as VTR_3P1_F  
+ 25 mV  
mV Same as VTR_3P2_F  
+ 25 mV  
mV Same as VTR_3P3_F  
+ 25 mV  
LVD 3.0 V rising detection point Typ – 3025 Typ +  
for VDDD 4% 4%  
LVD 3.1 V rising detection point Typ – 3125 Typ +  
for VDDD 4% 4%  
LVD 3.2 V rising detection point Typ – 3225 Typ +  
for VDDD 4% 4%  
LVD 3.3 V rising detection point Typ – 3325 Typ +  
for VDDD 4% 4%  
Datasheet  
121  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-16 System resources (continued)  
Details/  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max Units  
conditions  
SID552 VTR_3P4_R  
SID553 VTR_3P5_R  
SID554 VTR_3P6_R  
SID555 VTR_3P7_R  
SID556 VTR_3P8_R  
SID557 VTR_3P9_R  
SID558 VTR_4P0_R  
SID559 VTR_4P1_R  
SID560 VTR_4P2_R  
SID561 VTR_4P3_R  
SID562 VTR_4P4_R  
SID563 VTR_4P5_R  
SID564 VTR_4P6_R  
SID565 VTR_4P7_R  
SID566 VTR_4P8_R  
SID567 VTR_4P9_R  
SID568 VTR_5P0_R  
SID569 VTR_5P1_R  
SID570 VTR_5P2_R  
SID571 VTR_5P3_R  
LVD 3.4 V rising detection point Typ – 3425 Typ +  
mV Same as VTR_3P4_F  
+ 25 mV  
mV Same as VTR_3P5_F  
+ 25 mV  
mV Same as VTR_3P6_F  
+ 25 mV  
for VDDD 4% 4%  
LVD 3.5 V rising detection point Typ – 3525 Typ +  
for VDDD 4% 4%  
LVD 3.6 V rising detection point Typ – 3625 Typ +  
for VDDD 4% 4%  
LVD 3.7 V rising detection point Typ – 3725 Typ +  
for VDDD 4% 4%  
LVD 3.8 V rising detection point Typ – 3825 Typ +  
for VDDD 4% 4%  
LVD 3.9 V rising detection point Typ – 3925 Typ +  
for VDDD 4% 4%  
LVD 4.0 V rising detection point Typ – 4025 Typ +  
for VDDD 4% 4%  
LVD 4.1 V rising detection point Typ – 4125 Typ +  
for VDDD 4% 4%  
LVD 4.2 V rising detection point Typ – 4225 Typ +  
for VDDD 4% 4%  
LVD 4.3 V rising detection point Typ – 4325 Typ +  
for VDDD 4% 4%  
LVD 4.4 V rising detection point Typ – 4425 Typ +  
for VDDD 4% 4%  
LVD 4.5 V rising detection point Typ – 4525 Typ +  
for VDDD 4% 4%  
LVD 4.6 V rising detection point Typ – 4625 Typ +  
for VDDD 4% 4%  
LVD 4.7 V rising detection point Typ – 4725 Typ +  
for VDDD 4% 4%  
LVD 4.8 V rising detection point Typ – 4825 Typ +  
for VDDD 4% 4%  
LVD 4.9 V rising detection point Typ – 4925 Typ +  
for VDDD 4% 4%  
LVD 5.0 V rising detection point Typ – 5025 Typ +  
for VDDD 4% 4%  
LVD 5.1 V rising detection point Typ – 5125 Typ +  
for VDDD 4% 4%  
LVD 5.2 V rising detection point Typ – 5225 Typ +  
for VDDD 4% 4%  
mV Same as VTR_3P7_F  
+ 25 mV  
mV Same as VTR_3P8_F  
+ 25 mV  
mV Same as VTR_3P9_F  
+ 25 mV  
mV Same as VTR_4P0_F  
+ 25 mV  
mV Same as VTR_4P1_F  
+ 25 mV  
mV Same as VTR_4P2_F  
+ 25 mV  
mV Same as VTR_4P3_F  
+ 25 mV  
mV Same as VTR_4P4_F  
+ 25 mV  
mV Same as VTR_4P5_F  
+ 25 mV  
mV Same as VTR_4P6_F  
+ 25 mV  
mV Same as VTR_4P7_F  
+ 25 mV  
mV Same as VTR_4P8_F  
+ 25 mV  
mV Same as VTR_4P9_F  
+ 25 mV  
mV Same as VTR_5P0_F  
+ 25 mV  
mV Same as VTR_5P1_F  
+ 25 mV  
mV Same as VTR_5P2_F  
+ 25 mV  
LVD 5.3 V rising detection point Typ – 5325 Typ +  
mV Same as VTR_5P3_F  
+ 25 mV  
for VDDD  
Power ramp rate: VDDD (Active)  
Power ramp rate: VDDD  
(DeepSleep)  
4%  
4%  
SID573 LVD_RR_A  
SID574 LVD_RR_DS  
100 mV/µs  
10 mV/µs  
Datasheet  
122  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-16 System resources (continued)  
Details/  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max Units  
conditions  
SID575 tDLY_ACT_LVD  
SID575A tDLY_DS_LVD  
SID576 tRES_LVD  
Active mode delay between  
VDDD falling/rising through LVD  
rising/falling point and an  
internal LVD signal  
1
4
µs Guaranteed by  
design  
transitioning  
DeepSleep mode delay  
between VDDD falling/rising  
through LVD rising/falling  
point and an internal LVD  
signal rising  
Response time of LVD, VDDD  
supply. LVD guaranteed to  
generate pulse for VDDD pulse  
width greater than this. (For  
falling-then-rising supply at  
max ramp rate; pulse width is  
time below LVD falling point)  
µs Guaranteed by  
design  
100  
ns Guaranteed by  
design  
High-voltage OVD (HV OVD) specifications  
SID580 VTR_5P0_R  
SID581 VTR_5P0_F  
SID582 VTR_5P5_R  
HV OVD 5.0-V rising detection  
point for VDDD and VDDA  
HV OVD 5.0-V falling detection 5.025 5.18 5.335  
point for VDDD and VDDA  
HV OVD 5.5-V rising detection  
point for VDDD and VDDA  
(default)  
5.049 5.205 5.361  
V
V
V
5.548 5.72 5.892  
SID583 VTR_5P5_F  
HV OVD 5.5-V falling detection 5.524 5.695 5.866  
V
point for VDDD and VDDA  
(default)  
SID585 HVOVD_RR_A Power ramp rate: VDDD and  
VDDA (Active)  
SID586 HVOVD_RR_DS Power ramp rate: VDDD and  
VDDA (DeepSleep)  
SID587 tDLY_ACT_HVOVD Active mode delay between  
VDDD falling/rising through  
100 mV/µs  
10  
1
mV/µs  
µs Guaranteed by  
design  
VTR_5P0_F/R or VTR_5P5_F/R and  
an internal HV OVD signal  
transitioning  
SID587A tDLY_ACT_H-  
Active mode delay between  
VDDA falling/rising through  
VTR_5P0_F/R or VTR_5P5_F/R and  
an internal HV OVD signal  
transitioning  
1.5  
4
µs Guaranteed by  
design  
VOVD_A  
SID587B tDLY_DS_HVOVD DeepSleep mode delay  
between VDDD/VDDA  
µs Guaranteed by  
design  
falling/rising through  
VTR_5P0_F/R or VTR_5P5_F/R and  
an internal HV OVD signal  
transitioning  
Datasheet  
123  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-16 System resources (continued)  
Details/  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max Units  
conditions  
SID588 tRES_HVOVD  
Response time of HV OVD. (For  
rising-then-falling supply at  
max ramp rate; threshold is  
VTR_5P0_R or VTR_5P5_R.)  
100  
ns Guaranteed by  
design  
Low-voltage OVD (LV OVD) specifications  
SID590 VTR_R_LVOVD  
LV OVD rising detection point  
for VCCD  
LV OVD falling detection point 1.237 1.275 1.313  
for VCCD  
1.261  
1.3  
1.339  
V
V
SID591 VTR_F_LVOVD  
SID595 tDLY_ACT_LVOVD Active mode delay between  
VCCD falling/rising through  
1
µs Guaranteed by  
design  
V
TR_F/R_LVOVD and an internal  
LV OVD signal transitioning  
SID595A tDLY_DS_LVOVD  
DeepSleep mode delay  
between VCCD falling/rising  
through VTR_F/R_LVOVD and an  
internal LV OVD signal transi-  
tioning  
12  
µs Guaranteed by  
design  
SID596 tRES_LVOVD  
Response time of LV OVD. (For  
rising-then-falling supply at  
max ramp rate; threshold is  
VTR_R_LVOVD.)  
100  
ns Guaranteed by  
design  
Overcurrent detection (OCD) specifications  
SID598 IOCD  
OCD range for VCCD  
156  
18  
315  
72  
mA Guaranteed by  
design  
mA Guaranteed by  
design  
SID599 IOCD_DPSLP  
OCD range in DeepSleep mode  
VDDD  
6.0 V  
CPU and  
Peripherals  
CPU and  
Peripherals  
Regulators  
I/O  
Regulators  
I/O  
Reset  
By HV O VD  
High-Z  
HV O VD rising trip  
(Default: 5.548 V to  
5.892 V)  
Norm al  
O peration  
Norm al  
O peration  
Enable  
Reset  
By  
XRES_L  
Disable  
High-Z  
HV BO D rising trip  
(Default: 2.474 V to  
2.627 V)  
Reset  
By HV BO D  
PO R rising trip  
(1.5 V to 2.35 V)  
Reset  
High-Z  
By PO R  
CM O S threshold  
(0.7 V)  
Disable  
O FF  
O FF  
-0.3 V  
VDDD  
XRES_L  
LO W Level  
HIG H Level  
Figure 27-14 Device operations supply range  
Datasheet  
124  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
2.3 V  
VDDD  
tDLY_POR  
Internal reset by POR  
VDDD  
tPOFF  
1.45 V  
Figure 27-15 POR specifications  
Datasheet  
125  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
VDDD, VDDA  
VTR_2P7_R or VTR_3P0_R  
VTR_2P7_F or VTR_3P0_F  
Internal HV BOD signal  
tDLY_ACT/DS_HVBOD  
tDLY_ACT/DS_HVBOD  
VDDD, VDDA  
tRES_HVBOD  
VTR_2P7_F or VTR_3P0_F  
Figure 27-16 High-voltage BOD specifications  
Datasheet  
126  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
VCCD  
VTR_R_LVBOD  
VTR_F_LVBOD  
Internal LV BOD signal  
tDLY_ACT/DS_LVBOD  
tDLY_ACT/DS_LVBOD  
VCCD  
tRES_LVBOD  
VTR_F_LVBOD  
Figure 27-17 Low-voltage BOD specifications  
Datasheet  
127  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
VTR_5P0_R or VTR_5P5_R  
VTR_5P0_F or VTR_5P5_F  
VDDD/VDDA  
Internal HV OVD signal  
tDLY_ACT/DS_HVOVD  
tDLY_ACT/DS_HVOVD  
VTR_5P0_R or VTR_5P5_R  
tRES_HVOVD  
VDDD/VDDA  
Figure 27-18 High-voltage OVD specifications  
Datasheet  
128  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
VTR_R_LVOVD  
VTR_F_LVOVD  
VCCD  
Internal LV OVD signal  
tDLY_ACT/DS_LVOVD  
tDLY_ACT/DS_LVOVD  
VTR_R_LVOVD  
tRES_LVOVD  
VCCD  
Figure 27-19 Low-voltage OVD specifications  
Datasheet  
129  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
VDDD  
LVD rising detection point  
LVD falling detection point  
Internal LVD signal  
tDLY_ACT/DS_LVD  
tDLY_ACT/DS_LVD  
VDDD  
tRES_LVD  
LVD falling detection point  
Figure 27-20 LVD specifications  
27.11  
Debug  
All specifications are valid for –40 °C TA 125 °C and for 2.7 V to 5.5 V except where noted.  
27.11.1  
SWD  
Table 27-17 SWD interface specifications [Conditions: drive_sel<1:0>= 00]  
Spec ID  
SID300 fSWDCLK  
SID301 tSWDI_SETUP  
SID302 tSWDI_HOLD  
SID303 tSWDO_VALID  
SID304 tSWDO_HOLD  
Parameter  
Description  
SWD clock input frequency  
SWDI setup time  
SWDI hold time  
SWDO valid time  
Min  
0.25 × T  
0.25 × T  
Typ  
Max Units Details/conditions  
10  
MHz 2.7 V VDDD 5.5 V  
ns T = 1 / fSWDCLK  
ns T = 1 / fSWDCLK  
1
0.5 × T ns T = 1 / fSWDCLK  
ns T = 1 / fSWDCLK  
SWDO hold time  
Datasheet  
130  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
27.11.2  
JTAG  
Table 27-18 JTAG AC specifications [Conditions: drive_sel<1:0>= 00]  
Spec ID  
Parameter  
Description  
TCK HIGH time  
TCK LOW time  
Min  
30  
30  
66.7  
12  
12  
Typ  
Max Units Details/conditions  
SID620 tJCKH  
SID621 tJCKL  
SID622 tJCP  
SID623 tJSU  
SID624 tJH  
SID625 tJZX  
SID626 tJXZ  
SID627 tJCO  
ns 30-pF load  
ns 30-pF load  
ns 30-pF load  
ns 30-pF load  
ns 30-pF load  
ns 30-pF load  
ns 30-pF load  
ns 30-pF load  
TCK clock period  
TDI/TMS setup time  
TDI/TMS hold time  
TDO High-Z to active  
TDO active to High-Z  
TDO clock to output  
30  
30  
30  
tJCKH  
tJCP  
tJCKL  
TCK  
tJH  
tJSU  
TDI/TMS  
TDO  
tJCO  
tJXZ  
tJZX  
Figure 27-21 JTAG timing diagram  
27.11.3  
Trace  
Table 27-19 Trace specifications [Conditions: drive_sel<1:0>= 00]  
Spec ID  
SID1412A CTRACE  
SID1412 tTRACE_CYC  
Parameter  
Description  
Trace Capacitive Load  
Trace clock period  
Min  
40  
Typ  
Max Units Details/conditions  
30  
pF  
ns Trace clock cycle  
time for 25 MHz  
SID1413 tTRACE_CLKL  
SID1414 tTRACE_CLKH  
Trace clock LOW pulse width  
Trace clock HIGH pulse width  
2
2
3
2
ns Clock low pulse  
width  
ns Clock high pulse  
width  
ns Trace data setup  
time  
ns Trace data hold time  
SID1415A tTRACE_SETUP Trace data setup time  
SID1416A tTRACE_HOLD  
Trace data hold time  
Datasheet  
131  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
27.12  
Clock specifications  
All specifications are valid for –40 °C TA 125 °C and for 2.7 V to 5.5 V except where noted.  
The following is a basic requirement on the clock frequency dependency of the cores: Cortex®-M0+ core should  
run at an integer divider from the Cortex®-M4 core clock.  
Example combinations are listed in the Table 27-20.  
Table 27-20 Root and intermediate clocks[56]  
Max frequency  
Clock  
CLK_HF0  
CLK_HF1  
Description  
(MHz)  
80  
Root clock for CPUSS, PERI  
Event generator (CLK_REF), Clock output on EXT_CLK pins (when used as  
output)  
80  
CLK_HF2  
2
CSV  
CLK_FAST  
80  
Generated by dividing CLK_HF0, intermediate clock for CM4  
Generated by clock gating CLK_PERI, intermediate clock for CM0+, Crypto,  
P-DMA, M-DMA  
Generated by clock gating CLK_HF0, intermediate clock for LIN, SCB, PASS,  
CAN, TCPWM, IOSS, CPU trace  
CLK_SLOW  
CLK_PERI  
80  
80  
Table 27-21 IMO AC specifications  
Spec ID  
SID310 fIMOTOL  
SID311 tSTARTIMO  
Parameter  
Description  
IMO operating frequency  
IMO startup time  
Min  
7.92  
Typ  
8
Max Units Details/conditions  
8.08  
7.5  
MHz  
µs Startup time to 90%  
of final frequency  
SID312 IIMO_ACT  
IMO current  
13.5  
22  
µA Guaranteed by  
design  
Table 27-22 ILO AC specifications  
Spec ID  
SID320 fILOTRIM  
SID321 tSTARTILO  
Parameter  
Description  
ILO operating frequency  
ILO startup time  
Min  
Typ  
Max Units Details/conditions  
31.1296 32.768 34.4064 kHz  
8
12  
µs Startuptimeto90% of  
final frequency  
SID323 IILO  
ILO current  
500  
2800  
nA Guaranteed by design  
Note  
56.Intermediate clocks that are not listed have the same limitations as that of their parent clock.  
Datasheet  
132  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-23 ECO specifications  
Spec ID  
SID330 fECO  
SID332 RFDBK  
Parameter  
Description  
Crystal frequency range  
Feedback resistor value.  
Min: RTRIM = 3; Max: RTRIM =  
0 with 100 kΩ step size on  
RTRIM  
Min  
3.988  
100  
Typ  
Max Units Details/conditions  
33.34 MHz  
400  
2000  
10  
kΩ Guaranteed by design  
SID333 IECO3  
ECO current at TJ = 150 °C  
µA Maximum operation  
current with a 33-MHz  
crystal, max 18-pF  
load  
SID334 tSTART_4M  
4-MHz ECO startup time[57]  
ms Time from set  
CLK_ECO_-  
CONFIG.ECO_EN to 1  
until  
CLK_ECO_STATUS.EC  
O_READY is set to 1  
(See Clock Timing  
Diagrams)  
SID335 tSTART_33M  
33-MHz ECO startup time[57]  
1
ms Time from set  
CLK_ECO_-  
CONFIG.ECO_EN to 1  
until  
CLK_ECO_STATUS.EC  
O_READY is set to 1  
(See Clock Timing  
Diagrams)  
VDDD  
MCU  
ITrim  
Rf  
RTrim  
ECO_IN: External crystal oscillator input pin  
ECO_OUT: External crystal oscillator output pin  
C1, C2: Load Capacitors  
C3*, C4*: Stray Capacitance of the PCB  
ECO_IN  
VSSD  
C1  
C2  
C3*  
C4*  
GTrim  
VSSD  
ECO_OUT  
Rd  
0R  
Rd  
FTrim  
Figure 27-22 ECO connection scheme[58]  
Notes  
57.Mainly depends on the external crystal.  
58.Refer to the family-specific Architecture TRM for more information on crystal requirements (002-19314, TRAVEO™ T2G Automotive  
MCU body controller entry architecture technical reference manual).  
Datasheet  
133  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-24 PLL specifications  
Spec ID Parameter  
SID340 PLL_LOCK  
SID341A fPLL_OUT  
Description  
Time to achieve PLL lock  
Output frequency from PLL  
block  
Min  
11  
Typ  
Max Units Details/conditions  
35  
80  
µs  
MHz  
SID342 PLL_LJIT1  
SID343 PLL_LJIT2  
SID344 PLL_LJIT3  
SID345A PLL_LJIT5  
Long term jitter  
Long term jitter  
Long term jitter  
Long term jitter  
PLL input frequency  
–0.25  
0.25  
ns For 125 ns  
fPLL_VCO: 320 MHz  
fPLL_OUT: 40 MHz to 80 MHz  
fPLL_PFD: 8 MHz  
fPLL_IN: ECO  
–0.5  
0.5  
ns For 500 ns  
f
PLL_VCO: 320 MHz  
fPLL_OUT: 40 MHz to 80 MHz  
fPLL_PFD: 8 MHz  
fPLL_IN: ECO  
–0.5  
0.5  
ns For 1000 ns  
f
PLL_VCO: 320 MHz  
fPLL_OUT: 40 MHz to 80 MHz  
fPLL_PFD: 8 MHz  
fPLL_IN: ECO  
–0.75  
0.75  
ns For 10000 ns  
f
PLL_VCO: 320 MHz  
fPLL_OUT: 40 MHz to 80 MHz  
fPLL_PFD: 8 MHz  
fPLL_IN: ECO  
SID346 fPLL_IN  
SID347 IPLL_320M1  
3.988  
740  
33.34 MHz  
PLL operating current  
(fOUT = 80 MHz)  
1110  
1125  
1125  
780  
µA fIN = 4 MHz,  
fPFD = 4 MHz,  
fVCO = 320 MHz,  
fOUT = 80 MHz  
SID347A IPLL_320M2  
SID347B IPLL_320M3  
SID348 IPLL_80M1  
SID348A IPLL_80M2  
SID348B IPLL_80M3  
PLL operating current  
(fOUT = 80 MHz)  
750  
750  
520  
530  
530  
µA  
fIN = 8 MHz,  
fPFD = 8 MHz,  
fVCO = 320 MHz,  
fOUT = 80 MHz  
PLL operating current  
(fOUT = 80 MHz)  
µA fIN = 16 MHz,  
fPFD = 8 MHz,  
fVCO = 320 MHz,  
fOUT = 80 MHz  
PLL operating current  
(fOUT = 80 MHz)  
µA fIN = 4 MHz,  
fPFD = 4 MHz,  
fVCO = 240 MHz,  
fOUT = 80 MHz  
PLL operating current  
(fOUT = 80 MHz)  
795  
µA fIN = 8 MHz,  
fPFD = 8 MHz,  
fVCO = 240 MHz,  
fOUT = 80 MHz  
PLL operating current  
(fOUT = 80 MHz)  
795  
µA  
fIN = 16 MHz,  
fPFD = 8 MHz,  
fVCO = 240 MHz,  
f
OUT = 80 MHz  
Datasheet  
134  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-24 PLL specifications (continued)  
Spec ID Parameter  
SID348C fPLL_VCO  
SID349C fPLL_PFD  
Description  
VCO frequency  
PFD frequency  
Min  
170  
3.988  
Typ  
Max Units Details/conditions  
400 MHz  
8
MHz  
Table 27-25 FLL specifications  
Spec ID Parameter  
Description  
FLL wake up time  
Min  
Typ  
Max Units Details/conditions  
SID350A tFLL_WAKE_A  
3.5  
µs Wakeup with < 10 °C  
temperature change  
while in DeepSleep.  
fFLL_IN = 8 MHz,  
f
FLL_OUT = 80 MHz,  
Time from stable  
reference clock until  
FLL frequency is  
within 5% of final  
value  
SID351 fFLL_OUT  
SID352 FLL_CJIT  
Output frequency from FLL  
block  
24  
–1  
80  
1
MHz Output range of FLL  
divided-by-2 output  
FLL frequency accuracy  
%
This is added to the  
error of the source  
SID353 fFLL_IN  
SID354 IFLL  
Input frequency  
0.25  
80  
MHz  
FLL operating current  
250  
360  
µA Reference clock: IMO,  
CCO frequency: 160  
MHz, FLL frequency:  
80 MHz, guaranteed  
by design  
Datasheet  
135  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
VDDD  
MCU  
Rf  
WCO_IN: Watch crystal oscillator input pin  
WCO_OUT: Watch crystal oscillator output pin  
C1, C2: Load Capacitors  
WCO_IN  
VSSD  
C3*, C4*: Stray Capacitance of the PCB  
C1  
C2  
C3*  
C4*  
VSSD  
WCO_OUT  
Rd  
0R  
Figure 27-23 WCO connection scheme[60]  
Table 27-26 WCO specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max Units Details/conditions  
SID360 fWCO  
Watch Crystal frequency  
32.768  
kHz Maximum drive level:  
0.5 µW  
SID361 WCO_DC  
SID362 tSTART_WCO  
WCO duty cycle  
WCO start up time[59]  
10  
90  
%
1000  
ms For Grade-S devices  
Time from set  
CTL.WCO_EN to 1  
until  
STATUS.WCO_OK is  
set to 1. (See Clock  
Timing Diagrams)  
SID362E tSTART_WCOE  
WCO start up time[59]  
1400  
ms For Grade-E devices  
Time from set  
CTL.WCO_EN to 1  
until  
STATUS.WCO_OK is  
set to 1. (See Clock  
Timing Diagrams)  
SID363 IWCO  
WCO current  
1.4  
µA  
Table 27-27 External clock input specifications  
Spec ID Parameter  
Description  
Min  
Typ  
Max Units Details/conditions  
SID366 fEXT  
External clock input  
frequency  
0.25  
80  
MHz For EXT_CLK pin (all  
input level settings:  
CMOS, TTL,  
Automotive)  
SID367 EXT_DC  
External clock duty cycle  
45  
55  
%
Notes  
59.Mainly depends on the external crystal.  
60.Please refer to family specific Architecture TRM for more information on crystal requirements (002-19314, TRAVEO™ T2G Automotive  
MCU body controller entry architecture technical reference manual).  
Datasheet  
136  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
27.12.1  
Clock timing diagrams  
ECO: 4 MHz  
PLL: 80 MHz  
FLL: 80 MHz  
CLK_ECO_STATUS.ECO_EN  
Active  
4 MHz  
ECO_OUT  
CLK_ECO_STATUS.ECO_READY  
10 ms  
CLK_PLL_CONFIG.ENABLE  
CLK_PLL_STATUS.LOCKED  
80 MHz  
35 µs  
PLL_OUTPUT  
CLK_FLL_CONFIG.FLL_ENABLE  
CLK_FLL_STATUS.LOCKED  
CCO is already up-and-running  
3.5 µs  
80 MHz  
FLL_OUTPUT  
Figure 27-24 ECO to PLL or FLL diagram  
Datasheet  
137  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
WCO: 32.768 kHz  
FLL: 80 MHz  
CTL.WCO_EN  
Active  
32.768 kHz  
WCO_OUT  
STATUS.WCO_OK  
1000 ms  
CLK_FLL_CONFIG.FLL_ENABLE  
CLK_FLL_STATUS.LOCKED  
CCO is already up-and-running  
3.5 µs  
80 MHz  
FLL_OUTPUT  
Figure 27-25 WCO to FLL diagram  
Table 27-28 MCWDT timeout specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max Units Details/conditions  
SID410 tMCWDT1  
Minimum MCWDT timeout  
58.12  
µs When using the ILO  
(32.768 kHz + 5%) and  
16-bit MCWDT counter  
Guaranteed by design  
SID411 tMCWDT2  
Maximum MCWDT timeout  
2.11  
s
When using the ILO  
(32.768 kHz – 5%) and  
16-bit MCWDT counter  
Guaranteed by design  
Datasheet  
138  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Electrical specifications  
Table 27-29 WDT timeout specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max Units Details/conditions  
SID412 tWDT1  
SID413 tWDT2  
SID414 tWDT3  
Minimum WDT timeout  
58.12  
38.33  
µs When using the ILO  
(32.768 kHz + 5%) and  
32-bit WDT counter  
Guaranteed by design  
Maximum WDT timeout  
Default WDT timeout  
h
When using the ILO  
(32.768 kHz – 5%) and  
32-bit WDT counter  
Guaranteed by design  
1000  
ms When using the ILO  
and 32-bit WDT  
counter at 0x8000  
(default value),  
guaranteed by design  
Datasheet  
139  
002-25756 Rev. *C  
2022-10-07  
28  
Ordering information  
The CYT2B6 microcontroller part numbers and features are listed in Table 28-1. The Arm® TAP JTAG ID is 0x6BA0 0477.  
Table 28-1  
CYT2B6 ordering information[61]  
[62]  
[62]  
[63]  
[64]  
[65]  
[66]  
[67]  
CYT2B63BAS  
CYT2B63BAE  
CYT2B63BADQ0AZSGS  
CYT2B63BADQ0AZEGS  
CYT2B63CADQ0AZSGS  
CYT2B63CADQ0AZEGS  
CYT2B64BADQ0AZSGS  
CYT2B64BADQ0AZEGS  
CYT2B64CADQ0AZSGS  
CYT2B64CADQ0AZEGS  
CYT2B65BADQ0AZSGS  
CYT2B65BADQ0AZEGS  
CYT2B65CADQ0AZSGS  
CYT2B65CADQ0AZEGS  
64-LQFP  
576  
576  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
22  
22  
22  
22  
28  
28  
28  
28  
32  
32  
32  
32  
6
6
6
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
3
3
3
3
4
4
4
4
4
4
4
4
eSHE  
eSHE  
HSM  
HSM  
eSHE  
eSHE  
HSM  
HSM  
eSHE  
eSHE  
HSM  
HSM  
S
E
0x2E349069  
64-LQFP  
64-LQFP  
64-LQFP  
80-LQFP  
80-LQFP  
80-LQFP  
80-LQFP  
100-LQFP  
100-LQFP  
100-LQFP  
100-LQFP  
0x2E349069  
0x2E349069  
0x2E349069  
0x2E351069  
0x2E351069  
0x2E351069  
0x2E351069  
0x2E359069  
0x2E359069  
0x2E359069  
0x2E359069  
CYT2B63CAS  
CYT2B63CAE  
576  
576  
576  
576  
576  
576  
576  
576  
576  
576  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
S
E
S
E
S
E
S
E
S
E
[62]  
CYT2B64BAS  
CYT2B64BAE  
[62]  
CYT2B64CAS  
CYT2B64CAE  
[62]  
CYT2B65BAS  
CYT2B65BAE  
[62]  
CYT2B65CAS  
CYT2B65CAE  
Notes  
61.Supported shipment types are “Tray” (default) and “Tape and Reel”. Add the character ‘T’ at the end to get the ordering code for “Tape and Reel” shipment type.  
62.3DES/SHA-1/SHA-2/SHA-3/CRC/Vector unit for asymmetric cryptography features are not supported.  
63.Code-flash size 576 KB = 32 KB × 14 (Large Sectors) + 8 KB × 16 (Small Sectors)  
64.Work-flash size 64 KB = 2 KB × 24 (Large Sectors) + 128 B × 128 (Small Sectors).  
65.S-grade Temperature (–40 °C to 105 °C).  
66.E-grade Temperature (–40 °C to 125 °C).  
67.JTAG ID CODE bits 12 through 27, represents the Silicon ID of the device.  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Ordering information  
28.1  
Part number nomenclature  
Table 28-2  
Device code nomenclature  
Field Description  
Value  
Meaning  
CY  
T
Cypress Prefix  
Category  
CY  
T
TRAVEO™  
2
B
Family Name  
Application  
2
B
TRAVEO™ T2G (Core M4)  
Body  
Code-flash/Work-flash/SRAM  
quantity  
576 KB / 64 KB / 64 KB  
D
P
6
3
4
5
B
C
A
S
E
64-LQFP  
80-LQFP  
100-LQFP  
eSHE – on, HSM – off, RSA - 2K  
eSHE – on, HSM – on, RSA - 2K  
No options  
S-grade (–40 °C to 105 °C)  
E-grade (–40 °C to 125 °C)  
Packages  
H
I
Hardware Option  
Marketing Option  
Temperature Grade  
C
Table 28-3  
Ordering code nomenclature  
Field Description  
Value  
Meaning  
CY  
T
Cypress Prefix  
Category  
CY  
T
TRAVEO™  
2
B
Family Name  
Application  
2
B
TRAVEO™ T2G (Core M4)  
Body  
Code-flash/Work-flash/SRAM  
quantity  
576 KB / 64 KB / 64 KB  
D
P
6
3
4
64 LQFP  
80 LQFP  
Packages  
5
100 LQFP  
B
C
A
D
Q
0
AZ  
S
E
ES  
GS  
Blank  
T
eSHE – on, HSM – off, RSA - 2K  
eSHE – on, HSM – on, RSA - 2K  
No options  
First revision  
UMC (Fab 12i) Singapore  
Reserved  
H
Hardware Option  
I
Marketing Option  
Revision  
Fab Location  
Reserved  
R
F
X
K
Package Code  
LQFP  
S-grade (–40 °C to 105 °C)  
E-grade (–40 °C to 125 °C)  
Engineering samples  
Standard grade of automotive  
Tray shipment  
C
Q
S
Temperature Grade  
Quality Grade  
Shipment Type  
Tape and Reel shipment  
Datasheet  
141  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Packaging  
29  
Packaging  
CYT2B6 is offered in the packages listed in the Table 29-1.  
Table 29-1  
Package information  
Contact/  
[72]  
Package  
Dimensions  
Coefficient of thermal expansion  
I/O pins  
Lead pitch  
[70]  
[71]  
100-LQFP  
80-LQFP  
64-LQFP  
14 × 14 × 1.7 mm (max)  
12 × 12 × 1.7 mm (max)  
10 × 10 × 1.7 mm (max)  
0.5 mm  
0.5 mm  
0.5 mm  
a1 = 8.5 ppm/°C, a2 = 33.6 ppm/°C  
78  
63  
49  
[70]  
[71]  
a1 = 8.5 ppm/°C, a2 = 33.5 ppm/°C  
[70]  
[71]  
a1 = 8.5 ppm/°C, a2 = 33.2 ppm/°C  
Table 29-2  
Parameter  
Package characteristics  
Description  
Conditions  
S-grade  
E-grade  
Min  
–40  
–40  
Typ  
Max  
105  
125  
150  
37.6  
32.7  
29.8  
32.0  
26.7  
21.3  
7.8  
Units  
°C  
T
T
Operating ambient temperature  
Operating ambient temperature  
Operating junction temperature  
A
°C  
A
T
°C  
J
64 LQFP  
80 LQFP  
100 LQFP  
64 LQFP  
80 LQFP  
100 LQFP  
64 LQFP  
80 LQFP  
100 LQFP  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
Package thermal resistance,  
R
[68, 69]  
θJA  
θJB  
θJC  
junction to ambient θ  
JA  
R
R
Package θ  
JB  
Package thermal resistance,  
junction to case θ  
6.6  
JC  
5.6  
Table 29-3  
Package  
Solder reflow peak temperature, package moisture sensitivity level (MSL), IPC/JEDEC  
J-STD-2  
Maximum time at peak temperature  
Maximum peak temperature (°C)  
MSL  
(seconds)  
30 seconds  
30 seconds  
30 seconds  
100 LQFP  
80 LQFP  
64 LQFP  
260  
260  
260  
3
3
3
Notes  
68.Board condition complies to JESD51-7(4 Layers).  
69.Maximum value °C/Watt shown is for TA = 125 °C.  
70.a1 = CTE (Coefficient of Thermal Expansion) value below Tg (ppm/°C) (Tg is glass transition temperature which is 131°C).  
71.a2 = CTE value above Tg (ppm/°C).  
72.The numbers are estimated values based simulation only and are based on a single bill of material combination per package type.  
Datasheet  
142  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Packaging  
4
4
5
D
D
5
7
7
D1  
D1  
75  
51  
51  
75  
76  
50  
50  
76  
E1  
E1  
E
E
5
5
4
4
7
7
3
6
100  
26  
26  
100  
1
1
25  
25  
2
5
7
e
0.10  
C
A-B  
D
3
BOTTOM VIEW  
0.20  
C A-B D  
b
8
0.08  
C
A-B  
D
TOP VIEW  
2
A
9
A
SEATING  
PLANE  
c
0.25  
A1  
A'  
b
0.08  
C
L1  
10  
SECTION A-A'  
L
SIDE VIEW  
DETAIL A  
NOTES :  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING  
LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.  
3. DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.  
DIMENSIONS  
SYMBOL  
MIN. NOM. MAX.  
1.70  
A
A1  
b
0.05  
0.15  
0.09  
0.15  
0.27  
0.20  
4. TO BE DETERMINED AT SEATING PLANE C.  
5. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.  
ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.  
DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED  
AT DATUM PLANE H.  
6. DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED  
WITHIN THE ZONE INDICATED.  
c
D
16.00 BSC  
14.00 BSC  
0.50 BSC  
D1  
e
E
16.00 BSC  
14.00 BSC  
7. REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY  
SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST  
FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS.  
BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER  
SECTIONS OF THE MOLDER BODY.  
8. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. THE DAMBAR  
PROTRUSION (S) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b  
MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON  
THE LOWER RADIUS OR THE LEAD FOOT.  
E1  
L
0.45 0.60 0.75  
1.00 REF  
L1  
9. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD  
BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.  
002-11500 *B  
10. A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO  
THE LOWEST POINT OF THE PACKAGE BODY.  
Figure 29-1  
100-LQFP package outline  
Datasheet  
143  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Packaging  
4
D
D1  
5
7
60  
41  
41  
60  
61  
40  
40  
61  
5
7
E1  
E
4
3
6
80  
21  
21  
80  
1
20  
20  
1
2
5
7
D
0.10  
C
C
A-B D  
BOTTOM VIEW  
3
e
0.08  
A-B  
D
b
0.20  
C A-B D  
8
TOP VIEW  
2
A
A
SEATING  
PLANE  
9
c
A'  
0.25  
0.08  
C
A1 10  
L1  
b
L
SIDE VIEW  
SECTION A-A'  
DIMENSIONS  
SYMBOL  
MIN. NOM. MAX.  
1.70  
A
A1  
b
0.05  
0.15  
0.09  
0.15  
0.27  
0.20  
c
D
14.00 BSC.  
D1  
e
12.00 BSC.  
0.50 BSC  
E
14.00 BSC.  
E1  
L
12.00 BSC.  
0.45 0.60 0.75  
1.00 REF  
L1  
002-11501 *A  
Figure 29-2  
80-LQFP package outline  
Datasheet  
144  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Packaging  
4
D
D1  
5
7
48  
33  
33  
48  
32  
32  
49  
49  
5
7
E1  
E
4
3
6
17  
17  
64  
64  
1
16  
16  
1
2
5
7
e
A-B D  
3
0.10  
0.08  
C
A-B  
D
BOTTOM VIEW  
0.20  
C
C
A-B  
D
8
b
TOP VIEW  
2
A
9
c
A
SEATING  
PLANE  
b
0.25  
A1  
A'  
SECTION A-A'  
0.08  
C
L1  
10  
L
SIDE VIEW  
DIMENSIONS  
SYMBOL  
MIN. NOM. MAX.  
1.70  
A
A1  
b
0.00  
0.15  
0.09  
0.20  
0.2  
0.20  
12.00 BSC.  
7
c
D
D1  
e
10.00 BSC.  
0.50 BSC  
E
12.00 BSC.  
E1  
L
10.00 BSC.  
0.45 0.60 0.75  
1.00 REF  
L1  
002-11499 *A  
Figure 29-3  
64-LQFP package outline  
Datasheet  
145  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Appendix  
30  
Appendix  
30.1  
Bootloading or End-of-line Programming  
• Triggered at device startup, if a trigger condition is applied  
• Either CAN or LIN communication may be used  
• Bootloader polls for the communication on CAN or LIN at separate time frames, until the overall 300-second  
timeout is reached  
• If a bootloader command is received on either communication interface, the polling stops and bootloader starts  
using this interface  
150 ms  
10 ms  
10 ms  
CAN,  
100 Kbps  
Polling  
CAN,  
500 Kbps  
Polling  
LIN,  
20 Kbps  
Polling  
CAN,  
100 Kbps  
Polling  
Bootloader  
Stopped  
….  
Overall bootloading time, if no communication ( 300 s)  
Figure 30-1  
Table 30-1  
Bootloading sequence  
CAN interface details  
Sl. No.  
CAN interface  
Configuration  
1
2
3
4
5
6
7
8
9
CAN Mode  
CAN Instance  
CAN TX  
CAN RX  
CAN Transceiver NSTB / EN (Low)  
CAN Transceiver EN / EN (High)  
CAN RX Message ID  
CAN TX Message ID  
Baud  
Classic CAN  
CAN0, Channel#1  
P0.2 / CAN0_1_TX  
P0.3 / CAN0_1_RX  
P23.3 (optional)  
P2.1 (optional)  
0x1A1  
0x1B1  
100 or 500 kbps alternating  
VSS  
CAN  
Transceiver  
TRAVEOTM T2G MCU  
EN (Low)  
NSTB  
EN  
EN (High)  
TX  
TX  
RX  
RX  
Figure 30-2  
MCU to CAN transceiver connections  
Datasheet  
146  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Appendix  
Table 30-2  
LIN interface details  
LIN interface  
Sl. No.  
Configuration  
1
2
LIN Type  
LIN Mode  
LIN0, Channel#1  
Slave  
3
4
LIN Checksum Type  
LIN TX  
Classic  
P0.1 / LIN1_TX  
P0.0 / LIN1_RX  
P2.1 (optional)  
P23.3 (optional)  
0x46  
5
6
7
8
LIN RX  
LIN EN / EN (High)  
LIN EN (Low)  
LIN TX PID  
9
LIN RX PID  
0x45  
10  
11  
12  
Baud  
20 or 115.2 kbps  
11  
1 bit  
Break Field Length  
Break Delimiter Length  
VDDD / VDDIO  
LIN  
Transceiver  
TRAVEOTM T2G MCU  
EN (Low)  
EN (High)  
EN  
TX  
RX  
TX  
RX  
Figure 30-3  
MCU to LIN transceiver connections  
30.2  
External IP revisions  
Table 30-3  
IP revisions  
Module  
IP  
Revision  
M_TTCAN IP revision: Rev.3.2.3  
Cortex-M0+-r0p1  
Vendor  
Bosch  
CANFD  
mxttcanfd  
armcm0p  
Arm® Cortex®-M0+  
Arm® Cortex®-M4  
Arm® Coresight  
Arm®  
Arm®  
Arm®  
armcm4  
Cortex-M4-r0p1  
armcoresighttk  
CoreSight-SoC-TM100-r3p2  
Datasheet  
147  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Acronyms  
31  
Acronyms  
Table 31-1  
Acronyms used in the document  
Acronym  
A/D  
Description  
Analog to Digital  
Acronym  
JTAG  
Description  
Joint test action group  
Low drop out regulators  
ABS  
Absolute  
LDO  
ADC  
Analog to Digital converter  
LIN  
Local Interconnect Network, a  
communications protocol  
AES  
Advanced encryption standard  
LVD  
OTA  
Low voltage detection  
AHB  
AMBA (advanced microcontroller bus  
architecture) high-performance bus,  
Arm® data transfer bus  
Over-the-air programming  
Arm®  
Advanced RISC machine, a CPU archi-  
tecture  
OTP  
One-time programmable  
Over voltage detection  
ASIL  
BOD  
Automotive safety integrity level  
Brown-out detection  
OVD  
P-DMA  
Peripheral-Direct Memory Access  
same as DW  
CAN FD  
CMOS  
Controller Area Network with Flexible  
Data rate  
PLL  
Phase Locked Loop  
Complementary metal-oxide-semicon-  
ductor  
POR  
Power-on reset  
CPU  
CRC  
Central Processing Unit  
PPU  
Peripheral protection unit  
Cyclic redundancy check, an  
error-checking protocol  
PRNG  
Pseudorandom number generator  
CSV  
CTI  
Clock supervisor  
PWM  
Pulse-width modulation  
Microcontroller Unit  
Cross trigger interface  
Data encryption standard  
Design-For-Test  
MCU  
DES  
DFT  
DW  
MCWDT  
M-DMA  
MISO  
Multi-counter watchdog timer  
Memory-Direct Memory Access  
SPI Master-in slave-out  
Memory mapped I/O  
Datawire same as P-DMA  
ECC  
Error correcting code/Elliptical curve  
cryptography  
MMIO  
ECO  
ETM  
External crystal oscillator  
Embedded Trace Macrocell  
MOSI  
MPU  
MTB  
MUL  
MUX  
NVIC  
RAM  
RISC  
ROM  
RSA  
SPI Master-out slave-in  
Memory protection unit  
Micro trace buffer  
EVTGEN Event Generator  
FLL  
Frequency Locked Loop  
Multiplier  
FPU  
GHS  
GPIO  
HSM  
I/O  
Floating point unit  
Multiplexer  
Green Hills tool chain with Multi IDE  
General purpose input/output  
Hardware security module  
Input/output  
Nested vectored interrupt controller  
Random access memory  
Reduced-instruction-set computing  
Read only memory  
I2C  
Inter-Integrated Circuit, a communica-  
tions protocol  
Rivest-Shamir-Adleman Public Key  
Encryption Algorithm  
ILO  
Internal low-speed oscillator  
RTC  
Real-time clock  
Datasheet  
148  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Acronyms  
Table 31-1  
Acronyms used in the document (continued)  
Description Acronym  
Internal main oscillator  
Acronym  
IMO  
Description  
Successive approximation register  
Serial communication block  
I2C serial clock  
SAR  
IOSS  
IPC  
Input/output sub-system  
Inter-processor communication  
Infrared interface  
SCB  
SCL  
IrDA  
SDA  
I2C serial data  
IRQ  
Interrupt request  
SECDED  
Single error correction, double error  
detection  
SHA  
SHE  
SMPU  
SPI  
Secure hash algorithm  
TCPWM  
TTL  
Timer/Counter Pulse-width modulator  
Transistor-transistor logic  
Secure hardware extension  
Shared memory protection unit  
TRNG  
True random number generator  
Serial peripheral interface, a communica- UART  
tions protocol  
Universal Asynchronous Transmitter  
Receiver  
SRAM  
SWD  
SWJ  
Static random access memory  
Serial wire debug  
WCO  
WDT  
Watch crystal oscillator  
Watchdog timer reset  
Serial wire JTAG  
Datasheet  
149  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Errata  
32  
Errata  
This section describes the errata for the CYT2B6 product family. Details include errata trigger conditions, scope  
of impact, available workaround, and silicon revision applicability. Contact your local Infineon Sales Represen-  
tative if you have questions.  
Part numbers affected  
Part numbers  
All CYT2B6 parts  
CYT2B6 qualification status  
Production samples  
Datasheet  
150  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Errata  
CYT2B6 errata summary  
The following table defines the errata applicability to available CYT2B6 family devices.  
Items  
Errata ID  
CYT2B6  
Silicon rev.  
Fix status  
[1.] Crypto LSL1, LSR1, LSL1_WITH_CARRY, & LSR1_WITH_CARRY  
No silicon fix planned.  
Use workaround.  
53  
instructions may work incorrectly in certain scenarios  
No silicon fix planned.  
Use workaround.  
[2] Crypto MEM_BUF may be corrupted  
42  
67  
68  
69  
96  
[3] ConfigureFmInterrupt API assumes a parameter with 8 bytes  
No silicon fix planned.  
Use workaround.  
boundary, but actual boundary is 4 bytes  
No silicon fix planned.  
Use workaround.  
[4] SMPU/MPU/PPU protection region size is limited to 2 GB  
[5] DirectExecute API may return error if called with arguments placed  
No silicon fix planned.  
Use workaround.  
in SRAM memory  
No silicon fix planned.  
Use workaround.  
[6] CAN FD RX FIFO top pointer feature does not function as expected  
[7] CAN FD debug message handling state machine does not reset to  
No silicon fix planned.  
Use workaround.  
97  
98  
Idle state when CANFD_CH_CCCR.INIT is set  
[8] TPIU peripheral ID mismatch  
No fix planned  
No silicon fix planned.  
Use workaround  
[9] Limitation of the memory hole in SCB register space  
124  
CYT2B63BADQ0AZSGS  
CYT2B63BADQ0AZEGS  
CYT2B63CADQ0AZSGS  
CYT2B63CADQ0AZEGS  
CYT2B64BADQ0AZSGS  
CYT2B64BADQ0AZEGS  
CYT2B64CADQ0AZSGS  
CYT2B64CADQ0AZEGS  
CYT2B65BADQ0AZSGS  
CYT2B65BADQ0AZEGS  
CYT2B65CADQ0AZSGS  
CYT2B65CADQ0AZEGS  
No silicon fix planned.  
Use workaround  
[10] WDT service can be missed  
129  
147  
[11] CAN FD controller message order inversion when transmitting  
from dedicated Tx Buffers configured with same Message ID  
No silicon fix planned.  
Use workaround  
D
[12] CAN FD incomplete description of Dedicated Tx buffers and Tx  
Queue related to transmission from multiple buffers configured with  
the same Message ID  
No silicon fix planned.  
Use workaround. TRM  
was updated.  
167  
[13] Misleading status is returned for Flash and eFuse system calls, if  
there are pending NC ECC faults in SRAM controller #0  
No silicon fix planned.  
TRM will be updated.  
175  
176  
185  
No silicon fix planned.  
TRM will be updated.  
[14] WDT reset causes loss of SRAM retention  
[15] Crypto ECC errors may be set after boot with application authen-  
No silicon fix planned.  
TRM will be updated.  
tication  
Will be fixed to update  
the Flash settings, via  
Manufacturing  
Test  
Program Update for  
Code Flash setting; this  
fix is transferred to  
TRAVEO™ T2G devices  
during Infineon Factory  
Test Flow. Fixed devices  
will be identified by  
Device Date Code, which  
is marked on every  
TRAVEO™ T2G device.  
[16]Incomplete erase of Code Flash cells could happen Erase Suspend  
/ Erase Resume is used along with Erase Sector operation in  
Non-Blocking mode  
198  
199  
[17]Limitation for keeping the port state from peripheral IP after  
wakeup from DeepSleep  
No silicon fix planned.  
TRM will be updated.  
Datasheet  
151  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Errata  
1. Crypto LSL1, LSR1, LSL1_WITH_CARRY, & LSR1_WITH_CARRY instructions may work incorrectly in certain scenarios  
Problem definition  
LSL1, LSR1, LSL1_WITH_CARRY, and LSR1_WITH_CARRY instructions should ignore the value in IW[3:0]  
(shift by 1 instruction does not use these fields). But because of a HW issue, shift does not work if the  
register data field pointed by IW[3:0] is ‘0’ (destination data is same as source data).  
Parameters affected  
Trigger condition(s)  
Scope of impact  
Workaround  
NA  
Using LSL1, LSR1, LSL1_WITH_CARRY, and LSR1_WITH_CARRY instructions  
The shift does not happen (destination data is same as source data).  
IW[3:0] should be pointed to a dummy register where the data field of the register is a non-zero value  
(rsrc0->data[12:0]).  
Since the stack pointer (r15) points to a non-zero value (to use the LSL1 instruction, you must have  
allocated at least one register, so that SP will not be zero), it is safe to use r15 as rsrc0.  
static __forceinline void LSL1 (int rdst, int rsrc1)  
{
AHB_WRITE_W (MMIO_CRYPTO_INSTR_FF_WR, (CRYPTO_VU_LSL_OPC << 24)  
| (rdst << 12)  
| (rsrc1 << 4)  
| 15);  
}
This software workaround applies to other instructions such as LSR1, LSL1_WITH_CARRY & LSR1_WITH_-  
CARRY as well.  
Fix status  
No silicon fix planned. Use workaround.  
2. Crypto MEM_BUF may be corrupted  
Problem definition  
The SRAM in the Crypto block is 8 KB but the address decode is wired to create four 8-KB images of the  
SRAM within a 32-KB address space. Writes to memory space above the initial 8-KB image will corrupt SRAM  
contents.  
Parameters affected  
Trigger condition(s)  
Scope of impact  
Workaround  
NA  
Any write to address between 0x40108000 and 0x4010FFFF.  
CRYPTO MEM_BUF may be corrupted.  
The software should ensure that there is no access beyond 8 KB MEM_BUF address range from either MMIO  
writes or address overflows while executing Crypto operations.  
Fix status  
No silicon fix planned. Use workaround.  
3. ConfigureFmInterrupt API assumes a parameter with 8 bytes boundary, but actual boundary is 4 bytes  
Problem definition  
STATUS_ADDR_PROTECTED will be returned if the ConfigureFmInterrupt API is called with arguments stored  
in SRAM with 4-byte boundary (available SRAM or protected boundary SRAM).  
Parameters affected  
Trigger condition(s)  
NA  
Call ConfigureFmInterrupt API with arguments stored in SRAM at 4 bytes boundary of available SRAM or  
protected boundary of SRAM.  
Scope of impact  
Workaround  
Fix status  
ConfigureFmInterrupt API will fail by returning STATUS_ADDR_PROTECTED error status when called with  
argument having 4 bytes boundary of available SRAM or protected boundary of SRAM.  
Allow 4 bytes margin (that is, assume that the API parameter size is 8 and store the arguments) for ConfigureF-  
mInterrupt API parameter.  
No silicon fix planned. Use workaround.  
Datasheet  
152  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Errata  
4. SMPU/MPU/PPU protection region size is limited to 2 GB  
Problem definition  
If SMPU/MPU/PPU protection block size is configured for 4 GB (PROT_SMPU_SMPU_-  
STRUCT_ATT0.REGION.SIZE = 31), then during protection check in SROM, the value of the internal uint32  
variable will overflow (4G = 0x1 0000 0000). Therefore, SROM assumes the protection size equals zero, and no  
protection will be applied.  
Parameters affected  
Trigger condition(s)  
Scope of impact  
NA  
Configure SMPU/MPU/PPU to protect with region size equal to 4 GB or the region size with value 31u.  
If SMPU/MPU/PPU is configured to protect region size of 4 GB, then SROM software does not apply any  
protection as per the request.  
Workaround  
Fix status  
Use two protection blocks of region size equal to 2 GB if 4-GB region size protection is required.  
No silicon fix planned. Use workaround.  
5. DirectExecute API may return error if called with arguments placed in SRAM memory  
Problem definition  
If DirectExecute API is called in the master PC (other than PC0 or PC1) with arguments in  
SRAM_SCRATCH_ADDR, then the API will return STATUS_ADDR_PROTECTED status.  
Parameters affected  
Trigger condition(s)  
Scope of impact  
NA  
Call DirectExecute API with arguments in SRAM_SCRATCH_ADDR and master PC configured > 1.  
DirectExecute API, if called with master PC configured > 1 and arguments in SRAM_SCRATCH_ADDR, the API  
will return STATUS_ADDR_PROTECTED.  
Workaround  
Fix status  
Call DirectExecute API with master PC0 or PC1, if arguments are stored in SRAM memory.  
No silicon fix planned. Use workaround.  
6. CAN FD RX FIFO top pointer feature does not function as expected  
Problem definition  
The RX FIFO top pointer function calculates the address for received messages in Message RAM by hardware.  
This address should restart from the start address after reading all messages of RX FIFO n size (n: 0 or 1).  
However, the address does not restart from the start address when the RX FIFO n size is set to 1  
(CANFD_CH_RXFnC.FnS = 0x01). This results in CPU/DMA reading messages from the wrong address in  
Message RAM.  
Parameters affected  
Trigger condition(s)  
NA  
RX FIFO top pointer function is used when RX FIFO n size is set to 1 element  
(CANFD_CH_RXFnC.FnS = 0x01).  
Scope of impact  
Workaround  
Received message cannot be correctly read by using the RX FIFO top pointer function, when the RX FIFO n  
size is set to 1 element.  
Any of the following.  
1) Set RX FIFO n size to 2 or more when using the RX FIFO top pointer function.  
2) Do not use the RX FIFO top pointer function when RX FIFO n size is set to 1 element. Instead of reading  
received messages from the RX FIFO top pointer, read directly from the Message RAM.  
Fix status  
No silicon fix planned. Use workaround.  
Datasheet  
153  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Errata  
7. CAN FD debug message handling state machine does not reset to Idle state when CANFD_CH_CCCR.INIT is set  
Problem definition  
If either of the CANFD_CH_CCCR.INIT bits is set by the Host or when the M_TTCAN module enters BusOff state,  
the debug message handling state machine stays in its current state instead of being reset to Idle state. Config-  
uring the CANFD_CH_CCCR.CCE bit does not change CANFD_CH_RXF1S.DMS.  
Parameters affected  
Trigger condition(s)  
Scope of impact  
NA  
Either of the CANFD_CH_CCCR.INIT bits is set by the Host or when the M_TTCAN module enters BusOff state.  
The errata is limited to the use case when the Debug on CAN functionality is active. Normal operation of the  
CAN module is not affected, in which case the debug message handling state machine always remains in Idle  
state. In the described use case, the debug message handling state machine is stopped and remains in the  
current state signaled by the CANFD_CH_RXF1S.DMS bit. If CANFD_CH_RXF1S.DMS is set to 0b11, the DMA  
request remains active.  
Workaround  
Fix status  
In case the debug message handling state machine stops while CANFD_CH_RXF1S.DMS is 0b01 or 0b10, it can  
be reset to Idle state by hardware reset or by reception of debug messages after CANFD_CH_CCCR.INIT is reset  
to zero.  
No silicon fix planned. Use workaround.  
8. TPIU peripheral ID mismatch  
Problem definition  
Parameters affected  
Trigger condition(s)  
Scope of impact  
Workaround  
TPIU peripheral ID indicates that it is M3-TPIU instead of M4-TPIU.  
NA  
When the debugger reads PID registers for component identification.  
The only impact is that the debuggers read the TPIU as M3-TPIU.  
No specific workaround required. Debuggers can use trace features.  
No fix planned  
Fix status  
9. Limitation of the memory hole in SCB register space  
Problem definition  
The memory hole [offset address: 0x1000 to 0xFFFF] inside the SCB register space is not aligned to the below  
defined spec. Since the offset address bits [15:12] are ignored and treated as 4'b0000, write/read access to the  
offset address [0x1000 to 0xFFFF] will actually happen to [0x0000 to 0x0FFF].  
- Access to address gaps in mapped memory space: writes are ignored and any read returns a zero.  
Parameters affected  
Trigger condition(s)  
Scope of impact  
NA  
Access to the memory hole [offset address: 0x1000 to 0xFFFF] in the SCB register space  
The memory hole [offset address: 0x1000 to 0xFFFF] in the SCB register space is not aligned to other IP  
registers.  
Workaround  
Fix status  
Do not access to the memory hole [offset address: 0x1000 to 0xFFFF] in SCB register space.  
No fix planned  
10. WDT service can be missed  
Problem definition  
If WDT service happens within 4 ILO clock cycles before DeepSleep entry, it clears the counter but does not  
fully complete an internal handshake. A service after DeepSleep wakeup may then be missed if it occurs less  
than 2 ILO clock cycles after the processor resumes clocking. After this time, the internal handshake is  
complete and servicing works normally.  
Parameters affected  
Trigger condition(s)  
NA  
Service WDT within four ILO clock cycles before DeepSleep entry and within two ILO clock cycles of processor  
clock resuming  
Scope of impact  
WDT service after DeepSleep wakeup may be ignored and WDT continues counting.  
This can cause unintended WARN_ACTION or UPPER_ACTION, including interrupt, fault, and/or reset.  
Datasheet  
154  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Errata  
Workaround  
Fix status  
Wait 130 µs or more after DeepSleep wakeup. (For example, to measure 130 µs, software can read the  
WDT_CNT register at wake up and make sure that WDT_CNT was incremented of 4 units before servicing  
WDT).  
Afterwards, write '1' to WDT service (WDT_SERVICE.SERVICE) after waiting until WDT service  
(WDT_SERVICE.SERVICE) reads '0'.  
No silicon fix planned. Use workaround.  
11. CAN FD controller message order inversion when transmitting from dedicated Tx Buffers configured with same Message ID  
Problem definition  
Configuration:  
Several Tx buffers are configured with the same Message ID. Transmission of these Tx buffers is requested  
sequentially with a delay between the individual Tx requests.  
Expected behavior:  
When multiple Tx buffers that are configured with the same Message ID have pending Tx requests, they shall  
be transmitted in ascending order of their Tx buffer numbers. The Tx buffer with lowest buffer number and  
pending Tx request is transmitted first.  
Observed behavior:  
It may happen, depending on the delay between the individual Tx requests, that in the case where multiple  
Tx Buffers are configured with the same Message ID the Tx buffers are not transmitted in order of the Tx Buffer  
number (lowest number first).  
Parameters affected  
Trigger condition(s)  
Scope of impact  
NA  
When multiple Tx buffers that are configured with the same Message ID have pending Tx requests.  
In the case described it may happen, that Tx buffers configured with the same Message ID and pending Tx  
request are not transmitted with lowest Tx Buffer number first (message order inversion).  
Workaround  
Any of the following:  
1) First write the group of Tx message with the same Message ID to the Message RAM and then afterwards  
request transmission of all these messages concurrently by a single write access to CANFDx_CHy_TXBAR.  
Before requesting a group of Tx messages with this Message ID ensure that no message with this Message ID  
has a pending Tx request.  
2) Use the Tx FIFO instead of dedicated Tx buffers for the transmission of several messages with the same  
Message ID in a specific order.  
Applications not able to use workaround #1 or #2 can implement a counter within the data section of their  
messages sent with same ID in order to allow the recipients to determine the correct sending sequence.  
Fix status  
No silicon fix planned. Use workaround.  
Datasheet  
155  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Errata  
12. CAN FD incomplete description of Dedicated Tx buffers and Tx Queue related to transmission from multiple buffers  
configured with the same Message ID  
Problem Definition  
The following are the updated description in Sections "Dedicated Tx Buffers" and "Tx Queue" of the Archi-  
tecture TRM related to the transmission from multiple buffers configured with the same Message ID.  
Dedicated Tx buffers  
- TRM Statement: If multiple Tx buffers are configured with the same Message ID, the Tx buffer with the  
lowest buffer number is transmitted first.  
- Enhancement: These Tx buffers shall be requested in ascending order with lowest buffer number first.  
Alternatively all Tx buffers configured with the same Message ID can be requested simultaneously by a  
single write access to CANFDx_CHy_TXBAR.  
Tx queue  
- TRM statement: If multiple queue buffers are configured with the same Message ID, the queue buffer with  
the lowest buffer number is transmitted first.  
- Replacement: If multiple Tx queue buffers are configured with the same Message ID, the transmission  
order depends on numbers of the buffers where the messages were stored for transmission. As these buffer  
numbers depend on the then current states of the PUT Index, a prediction of the transmission order is not  
possible.  
- TRM statement: An Add Request cyclically increments the Put Index to the next free Tx Buffer.  
- Replacement: The PUT Index always points to that free buffer of the Tx Queue with the lowest number.  
Parameters Affected  
Trigger Condition(s)  
Scope of Impact  
NA  
Using multiple dedicated Tx buffers or Tx queue buffers configured with the same Message ID.  
If the dedicated Tx buffers with the same Message ID are not requested in ascending order or at the same  
time, or if there are multiple Tx queue buffers with the same Message ID, it cannot be guaranteed, that these  
messages are transmitted in ascending order with lowest buffer number first.  
Workaround  
Fix Status  
In case a defined order of transmission is required, the Tx FIFO shall be used for transmission of messages  
with the same Message ID. Alternatively dedicated Tx buffers with the same Message ID shall be requested  
in ascending order with lowest buffer number first or by a single write access to CANFDx_CHy_TXBAR.  
Alternatively a single Tx Buffer can be used to transmit those messages one after the other.  
No silicon fix planned. Use workaround. TRM was updated accordingly.  
13.Misleading status is returned for Flash and eFuse system calls, if there are pending NC ECC faults in SRAM controller #0  
Problem Definition  
Flash and eFuse system calls will return misleading status of 0xF0000005 (“Page is write protected”) even  
for non-protected row, or 0xF0000002 (“Invalid eFuse address”) for valid eFuse address in case of pending  
NC ECC faults in SRAM controller #0.  
Parameters Affected  
Trigger Condition(s)  
Scope of Impact  
Return status of Flash and eFuse system calls.  
NC ECC fault(s) pending in SRAM controller #0 and SWPUs are populated in the design.  
Flash and eFuse system calls will not work until the NC ECC fault(s) pending in SRAM controller #0 is/are  
properly handled.  
Workaround  
Fix Status  
If the NC ECC fault(s) are not due to HW malfunction (i.e. if the faults are due to usage of non-initialized  
SRAM or improper SRAM initialization), then clearing of these pending faults will resolve the issue.  
No silicon fix planned. TRM will be updated.  
Datasheet  
156  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Errata  
14.WDT reset causes loss of SRAM retention  
Problem Definition  
The “Reset Cause Distribution” table in the Architecture TRM shows that the WDT reset can retain SRAM if  
there is an orderly shutdown of the SRAM only during a warning interrupt. However, this is wrong. WDT  
reset causes loss of SRAM retention.  
Parameters Affected  
Trigger Condition(s)  
Scope of Impact  
Workaround  
NA  
WDT reset  
WDT reset causes loss of SRAM retention.  
None  
Fix Status  
No silicon fix planned. TRM will be updated.  
15.Crypto ECC errors may be set after boot with application authentication  
Problem Definition  
Due to the improper initialization of the Crypto memory buffer, Crypto ECC errors may be set after boot  
with application authentication.  
Parameters Affected  
Trigger Condition(s)  
Scope of Impact  
Workaround  
N/A  
Boot device with application authentication.  
Crypto ECC errors may be set after boot with application authentication.  
Clear or ignore Crypto ECC errors which generated during boot with application authentication.  
No silicon fix planned. TRM will be updated.  
Fix Status  
16.Incomplete erase of Code Flash cells could happen Erase Suspend / Erase Resume is used along with Erase Sector operation  
in Non-Blocking mode  
Problem Definition  
Code Flash memory can be erased in “Non-Blocking” mode; a Non-Blocking mode supported option allows  
users to suspend an ongoing erase sector operation. When an ongoing erase operation is interrupted using  
“Erase Suspend” and “Erase Resume”, Flash cells may not have been erased completely, even after the  
erase operation complete is indicated by FLASHC_STATUS register. Only Code Flash is impacted by this  
issue, Work Flash and Supervisory Flash (SFlash) are not impacted.  
Parameters Affected  
Trigger Condition(s)  
N/A  
Using EraseSector System Call in Non-Blocking mode for CM0+ to erase Code Flash and the ongoing erase  
operation is interrupted using EraseSuspend and EraseResume System calls.  
Scope of Impact  
When Code Flash sectors are erased in Non-Blocking mode and the ongoing erase operation is interrupted  
by Erase Suspend / Erase Resume, it cannot be guaranteed that the Code Flash cells are fully erased. Any  
read on the Code Flash area after the erase is complete or read on the programmed data after ProgramRow  
is complete can trigger ECC errors.  
Workaround  
Use any of the following:  
1) Use Non-Blocking mode for EraseSector, but do not interrupt the erase operation using Erase Suspend/  
Erase Resume.  
2) If a Code Flash sector erase operation is interrupted using Erase Suspend / Erase Resume, then erase the  
same sector again without Erase Suspend / Erase Resume before reading the sector or programming the  
sector.  
Fix Status  
Will be fixed to update the Flash settings via Manufacturing Test Program Update for Code Flash setting;  
this fix is transferred to TRAVEO™ T2G devices during Infineon Factory Test Flow. Fixed devices will be  
identified by Device Date Code, which is marked on every TRAVEO™ T2G device.  
Datasheet  
157  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Errata  
17.Limitation for keeping the port state from peripheral IP after wakeup from DeepSleep  
Problem Definition  
The port state is not retained when the port selects peripheral IP (except for LIN or CAN FD) and MCU wakes  
up from DeepSleep.  
Parameters Affected  
Trigger Condition(s)  
Scope of Impact  
Workaround  
N/A  
The port selects peripherals (except LIN or CAN FD) and MCU wakes up from DeepSleep.  
Unexpected port output change might affect user system.  
If the port selects peripherals (except LIN or CAN FD), and the port output value needs to be maintained  
after wakeup from DeepSleep, set HSIOM_PRTx_PORT_SEL.IOy_SEL = 0 (GPIO) before DeepSleep and set  
the required output value in GPIO configuration registers. After wakeup, change HSIOM_PRTx-  
_PORT_SEL.IOy_SEL back to the peripheral module as needed.  
Fix Status  
No silicon fix planned. TRM will be updated to add above workaround.  
Datasheet  
158  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Revision history  
Revision history  
Document  
Date of release  
version  
Description of changes  
**  
2020-02-07  
2020-06-29  
New datasheet  
*A  
Changed datasheet status to Preliminary.  
Updated Features list:  
- Updated TCPWM (16-bit) and Internal low-speed oscillator in Table 1-1.  
- Added .  
Updated ILO Clock Source description in Clock system.  
Updated the block of CLOCK_PATH3 in the CYT2B6 clock diagram.  
Updated VCCD in Power pin assignments.  
Removed associated footnotes in Alternate pin functions in Active mode table.  
Added Pin mux descriptions.  
Updated MUX Group 10 in Trigger inputs.  
Updated Peripheral clock assignments.  
Updated Fault assignments.  
Updated Miscellaneous configuration for CYT2B6 devices.  
Updated Figure 27-2  
Updated Ordering information.  
Updated Device code nomenclature and Ordering code nomenclature.  
Added note in Package characteristics.  
Added External IP revisions.  
*B  
2021-07-08  
Updated Features.  
Updated Features list.  
Updated Communication peripheral instance list.  
Updated System resources.  
Updated I/Os.  
Updated High-speed I/O matrix connections.  
Updated Alternate function pin assignments.  
Updated Triggers one-to-one.  
Updated Faults.  
Updated Miscellaneous configuration.  
Updated Electrical specifications.  
Updated Part number nomenclature.  
Updated Appendix.  
Updated Errata.  
*C  
2022-10-07  
Migrated to IFX template.  
Updated Clock system.  
Updated Pin assignment.  
Updated Alternate function pin assignments.  
Updated Packaging.  
Updated Errata.  
Datasheet  
159  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Revision history change log  
Revision history change log  
Rev. *C Section updates  
Section  
Change Description  
Current Spec (Rev. *B)  
New Spec (Rev. *C)  
Reason for change  
3.2.3 Clock  
System  
Updated IMO Clock Source  
description  
The IMO operates at a frequency of 8 The IMO operates at a frequency of around Correction  
MHz ±1%. The internal trim settings 8 MHz.  
for the IMO can be dynamically  
updated to provide a tolerance < 1%.  
9. Pin  
Updated Figure 9-2, 9-4, 9-6 Identifier (n) does not present  
Added identifier (n).  
New addition  
New addition  
Assignment  
13. Alternate  
Function Pin  
Assignments  
Updated Table 13-1  
Updated Table 13-1  
(none)  
Added note [27]: Refer to Table 13-2 for  
more information on pin multiplexer  
abbreviations used.  
13. Alternate  
Function Pin  
Assignments  
Identifier (n) and note do not present Added identifier (n).  
New addition  
Improvement  
Added note [28]: For any function marked  
with an identifier (n), the AC timing is only  
guaranteed within the respective group  
"n".  
27. Electrical  
Specifications  
Updated Figure 27-14  
OVD, BOD  
HV OVD, HV BOD  
XRES_L: Hight Level (left side) / Low XRES_L: LOW Level (left side) / HIGH Level  
Level (right side)  
(right side)  
27. Electrical  
Updated Table 27-17 title  
SWD Interface Specifications  
SWD Interface Specifications [Conditions: New addition  
drive_sel<1:0>= 00]  
Specifications  
27. Electrical  
Updated Table 27-18 title  
Updated Table 27-19 title  
Updated Table 26-20  
JTAG AC Specifications  
Trace Specifications  
JTAG AC Specifications [Conditions:  
drive_sel<1:0>= 00]  
New addition  
New addition  
Correction  
Specifications  
27. Electrical  
Specifications  
Trace Specifications [Conditions:  
drive_sel<1:0>= 00]  
27. Electrical  
Specifications  
CLK_HF2 / Max Frequency (MHz):  
8
CLK_HF2 / Max Frequency (MHz):  
2
29. Packaging Added note 72  
-
[72]: The numbers are estimated values  
based simulation only and are based on a  
single bill of material combination per  
package type.  
Added note  
32. Errata  
Updated errata  
-
Updated the workaround 1) of errata ID  
147.  
Added errata  
Added errata ID 167, 175, 176, 185, 198, 199.  
Rev *C Electrical Specification Updates  
Changed  
Item  
Reason for  
Change  
Section  
Spec ID  
Description  
Current Spec (Rev. *B)  
New Spec (Rev. *C)  
27. Electrical SID40  
Specifications  
Power supply voltage Note  
[42]: 5.0 V ±10% is supported [46]: 5.0 V ±10% is supported with a higher Correction  
with a higher OVD setting  
OVD setting option for VDDD and VDDA. This  
option for VDDD and VDDA. setting provides robust protection for  
This setting provides robust internal and interface timing, but OVD reset  
protection for internal and  
interface timing, but OVD  
reset occurs at a voltage  
occurs at a voltage above the specified  
operating conditions. A lower OVD setting  
option is available (consistent with up to 5.0  
abovethe specified operating V) and guarantees that all operating condi-  
conditions. A lower OVD  
setting option is available  
tions are met. Voltage overshoot to a higher  
OVD setting range for VDDD and VDDA is  
(consistent with up to 5.0 V) permissible, provided the duration is less  
and guarantees that all  
than 2 hours cumulated. Note that during  
operating conditions are met. overshoot voltage condition electrical  
parameters are not guaranteed.  
27. Electrical SID63  
Specifications SID63A  
SID63B  
DeepSleep to Active  
transition time  
Note [50]  
(none)  
Added Note[50]: At cold temperature -5°C to Added note  
-40°C, the DeepSleep to Active transition  
time can be higher than the max time  
indicated by as much as 20 us  
SID63C  
SID63D  
27. Electrical SID200  
Specifications  
Temperature Sensor  
accuracy 1  
All  
Temperature Sensor  
accuracy 1  
(none)  
Merged to  
SID201  
Datasheet  
160  
002-25756 Rev. *C  
2022-10-07  
TRAVEO™ T2G 32-bit Automotive MCU  
Based on Arm® Cortex®-M4 dual  
Revision history change log  
Rev *C Electrical Specification Updates (continued)  
Changed  
Reason for  
Change  
Section  
Spec ID  
Description  
Current Spec (Rev. *B)  
New Spec (Rev. *C)  
- 40 °C =< TJ =< 150 °C  
Item  
27. Electrical SID201  
Specifications  
Temperature Sensor  
accuracy 2  
Description - 40 °C =< TJ < 150 °C  
Details/Con This spec is valid when using This spec is valid when using ADC[0]  
ditions  
Merged with  
SID200  
ADC[0] (VDDIO_1), ADC[1]  
(VDDIO_1), ADC[1] (VDDIO_2) or ADC[2]  
(VDDIO_2) or ADC[2] (VDDD) (VDDD) with the following conditions:  
with the following conditions: a. 3.0 V =< VDDD, VDDIO_1 or VDDIO_2 =  
a. 3.0 V =< VDDD, VDDIO_1 or VDDA = VREFH =< 3.6 V  
VDDIO_2 = VDDA = VREFH =< or  
3.6 V  
b. 4.5 V =< VDDD, VDDIO_1 or VDDIO_2 =  
VDDA = VREFH =< 5.5 V  
or  
b. 4.5 V =< VDDD, VDDIO_1 or  
VDDIO_2 = VDDA = VREFH =<  
5.5 V  
27. Electrical SID334  
Specifications  
4-MHz ECO start-up  
time  
Details/Con Start-up time to 90% of final Time from set CLK_ECO_CONFIG.ECO_EN Correction  
ditions  
frequency  
to 1 until CLK_ECO_STATUS.ECO_READY is  
set to 1. (See Clock Timing Diagrams)  
27. Electrical SID335  
Specifications  
33-MHz ECO start-up  
time  
Details/Con Start-up time to 90% of final Time from set CLK_ECO_CONFIG.ECO_EN Correction  
ditions  
frequency  
to 1 until CLK_ECO_STATUS.ECO_READY is  
set to 1. (See Clock Timing Diagrams)  
27. Electrical SID362  
Specifications  
WCO start up time  
Details/Con For Grade-S devices  
ditions  
For Grade-S devices  
Correction  
Correction  
Time from set CTL.WCO_EN to 1 until  
STATUS.WCO_OK is set to 1. (See Figure  
Clock Timing Diagrams)  
27. Electrical SID362E WCO start up time  
Specifications  
Details/Con For Grade-E devices  
ditions  
For Grade-E devices  
Time from set CTL.WCO_EN to 1 until  
STATUS.WCO_OK is set to 1. (See Clock  
Timing Diagrams)  
Datasheet  
161  
002-25756 Rev. *C  
2022-10-07  
Please read the Important Notice and Warnings at the end of this document  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
For further information on the product, technology,  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
Edition 2022-10-07  
Published by  
delivery terms and conditions and prices please  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
Infineon Technologies AG  
81726 Munich, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Do you have a question about this  
document?  
Go to www.infineon.com/support  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  
002-25756 Rev. *C  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY