FS650R08A4P2 [INFINEON]

Wave baseplate;
FS650R08A4P2
型号: FS650R08A4P2
厂家: Infineon    Infineon
描述:

Wave baseplate

文件: 总17页 (文件大小:2483K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HybridPACK™ꢀDC6ꢀModule  
FS650R08A4P2  
DC6iꢀvariant  
FinalꢀDataꢀSheet  
V3.0,ꢀ2020-05-06  
AutomotiveꢀHighꢀPower  
FS650R08A4P2  
HybridPACK™ꢀDC6ꢀModule  
1ꢀꢀꢀꢀꢀFeaturesꢀ/ꢀDescription  
HybridPACK™ꢀDC6iꢀmoduleꢀwithꢀEDT2ꢀIGBTꢀandꢀDiode  
T
T
T
VCES = 750 V  
IC = 650 A  
Typical Applications  
Description  
• Automotive Applications  
• Hybrid Electrical Vehicles (H)EV  
• Motor Drives  
• Commercial Agriculture Vehicles  
Optimized for automotive applications with DC link  
The HybridPACKTM DC6i is a very compact six-pack  
module (750V/650A) optimized for hybrid and  
electric vehicles. The power module implements the  
new EDT2 IGBT generation, which is an automotive  
Micro-Pattern Trench-Field-Stop cell design  
optimized for electric drive train applications. The  
chipset has benchmark current density combined  
with short circuit ruggedness and increased  
blocking voltage for reliable inverter operation under  
harsh environmental conditions. The EDT2 IGBTs  
also show excellent light load power losses, which  
helps to improve system efficiency over a real  
driving cycle. The EDT2 IGBT was optimized for  
applications with switching frequencies in the range  
of 10 kHz.  
voltages up to 470 V  
Electrical Features  
• Blocking voltage 750V  
• Low VCEsat  
• Low Switching Losses  
• Low Qg and Crss  
• Low Inductive Design  
• Tvj op = 150°C  
The new HybridPACKTM DC6i power module family  
comes with mechanical guiding elements  
Short-time extended Operation Temperature  
Tvj op = 175°C  
supporting easy assembly processes for customers.  
Furthermore, the press-fit pins for the signal  
terminals avoid additional time consuming selective  
solder processes, which provides cost savings on  
system level and increases system reliability. The  
direct cooled baseplate with ribbon bonds structure  
in the FS650R08A4P2 product shows superior  
thermal characteristics. Due to the high clearance &  
creepage distances, the module family is also well  
suited for increased system working voltages and  
supports modular inverter approaches.  
Mechanical Features  
• 2.5kV AC 1min Insulation  
• High Creepage and Clearance Distances  
• Compact design  
• High Power Density  
• Direct Cooled Base Plate with Ribbon Bonds  
• Guiding elements for PCB and cooler assembly  
• Integrated NTC temperature sensor  
• PressFIT Contact Technology  
• RoHS compliant  
Product Name  
Ordering Code  
SP001714512  
FS650R08A4P2  
Final Data Sheet  
2
V3.0,ꢀꢀ2020-05-06  
FS650R08A4P2  
HybridPACK™ DC6 Module  
2
IGBT,Inverter  
2.1 Maximum Rated Values  
Parameter  
Conditions  
Symbol  
VCES  
ICN  
Value  
750  
Unit  
V
Collector-emitter voltage  
Tvj = 25°C  
Implemented collector current  
Continuous DC collector current  
Repetitive peak collector current  
Total power dissipation  
650  
A
TF = 65°C, Tvj max = 175°C  
tP = 1 ms  
IC nom  
ICRM  
3751)  
1300  
4881)  
+/-20  
A
A
TF = 75°C, Tvj max = 175°C  
Ptot  
W
V
Gate-emitter peak voltage  
VGES  
2.2 Characteristic Values  
min. typ. max.  
Collector-emitter saturation voltage  
IC = 375 A, VGE = 15 V  
IC = 375 A, VGE = 15 V  
IC = 375 A, VGE = 15 V  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
1.10 1.35  
1.15  
1.15  
VCE sat  
V
V
IC = 650 A, VGE = 15 V  
IC = 650 A, VGE = 15 V  
Tvj = 25°C  
Tvj = 175°C  
1.30  
1.45  
Gate threshold voltage  
IC = 11.5 mA, VCE = VGE  
Tvj = 25°C  
Tvj = 175°C  
4.90 5.80 6.50  
4,10  
VGEth  
Gate charge  
VGE = -8 V ... 15 V, VCE = 400V  
QG  
RGint  
Cies  
Coes  
Cres  
ICES  
IGES  
3.55  
1.0  
µC  
Internal gate resistor  
Tvj = 25°C  
Tvj = 25°C  
Tvj = 25°C  
Tvj = 25°C  
Tvj = 25°C  
Tvj = 25°C  
Input capacitance  
f = 1 MHz, VCE = 50 V, VGE = 0 V  
f = 1 MHz, VCE = 50 V, VGE = 0 V  
f = 1 MHz, VCE = 50 V, VGE = 0 V  
VCE = 750 V, VGE = 0 V  
65.0  
0.83  
0.25  
1.0  
nF  
nF  
nF  
mA  
nA  
Output capacitance  
Reverse transfer capacitance  
Collector-emitter cut-off current  
Gate-emitter leakage current  
Turn-on delay time, inductive load  
VCE = 0 V, VGE = 20 V  
400  
IC = 375 A, VCE = 400 V  
VGE = -8 V / +15 V  
RGon = 2.4 Ω  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
0.30  
0.32  
0.33  
td on  
µs  
µs  
µs  
µs  
Rise time, inductive load  
IC = 375 A, VCE = 400 V  
VGE = -8 V / +15 V  
RGon = 2.4 Ω  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
0.07  
0.08  
0.08  
tr  
Turn-off delay time, inductive load  
Fall time, inductive load  
IC = 375 A, VCE = 400 V  
VGE = -8 V / +15 V  
RGoff = 5.1 Ω  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
0.80  
0.88  
0.92  
td off  
IC = 375 A, VCE = 400 V  
VGE = -8 V / +15 V  
RGoff = 5.1 Ω  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
0.06  
0.07  
0.08  
tf  
Turn-on energy loss per pulse  
IC = 375 A, VCE = 400 V, LS = 20 nH  
VGE = -8 V / +15 V  
RGon = 2.4 Ω  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
8.00  
11.5  
13.0  
Eon  
mJ  
di/dt (Tvj 25°C) = 7000 A/µs  
di/dt (Tvj 175°C) = 4000 A/µs  
Turn-off energy loss per pulse  
IC = 375 A, VCE = 400 V, LS = 20 nH  
VGE = -8 V / +15 V  
RGoff = 5.1 Ω  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
18.0  
23.5  
24.5  
Eoff  
mJ  
A
dv/dt (Tvj 25°C) = 3800 V/µs  
dv/dt (Tvj 175°C) = 3300 V/µs  
SC data  
VGE 15 V, VCC = 400 V  
VCEmax = VCES -LsCE ·di/dt  
tP 6 µs, Tvj = 25°C  
tP 3 µs, Tvj = 175°C  
3900  
3200  
ISC  
Thermal resistance, junction to cooling fluid per IGBT; V/t = 10 dm³/min, TF = 75°C  
RthJF  
0.1702) 0.2052) K/W  
1503)  
Temperature under switching conditions  
top continuous  
-40  
for 10s within a period of 30s, occurence maximum 3000  
times over lifetime  
Tvj op  
150  
175  
°C  
1) Verified by characterization / design not by test.  
2) Cooler design and flow direction according to application note AN-HPDC6i-AN-HP1-DC6i-Assembly-Instructions. Cooling fluid 50% water / 50% ethylenglycol.  
3) For Tvjop > 150°C: Baseplate temperature has to be limited to 125°C.  
Final Data Sheet  
3
V3.0, 2020-05-06  
FS650R08A4P2  
HybridPACK™ DC6 Module  
3
Diode, Inverter  
3.1 Maximum Rated Values  
Parameter  
Conditions  
Symbol  
VRRM  
IFN  
Value  
750  
Unit  
V
Repetitive peak reverse voltage  
Implemented forward current  
Continuous DC forward current  
Repetitive peak forward current  
I²t - value  
Tvj = 25°C  
650  
A
IF  
3751)  
A
tP = 1 ms  
IFRM  
1300  
A
VR = 0 V, tP = 10 ms, Tvj = 150°C  
VR = 0 V, tP = 10 ms, Tvj = 175°C  
16500  
14000  
A²s  
A²s  
I²t  
3.2 Characteristic Values  
min. typ. max.  
Forward voltage  
IF = 375 A, VGE = 0 V  
IF = 375 A, VGE = 0 V  
IF = 375 A, VGE = 0 V  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
1.45 1.65  
1.35  
1.30  
VF  
V
IF = 650 A, VGE = 0 V  
IF = 650 A, VGE = 0 V  
Tvj = 25°C  
Tvj = 175°C  
1.70  
1.60  
Peak reverse recovery current  
Recovered charge  
IF = 375 A, - diF/dt = 4000 A/µs (Tvj = 150°C) Tvj = 25°C  
205  
320  
345  
VR = 400 V  
VGE = -8 V  
Tvj = 150°C  
Tvj = 175°C  
IRM  
A
IF = 375 A, - diF/dt = 4000 A/µs (Tvj = 150°C) Tvj = 25°C  
24.5  
47.5  
56.0  
VR = 400 V  
VGE = -8 V  
Tvj = 150°C  
Tvj = 175°C  
Qr  
µC  
mJ  
Reverse recovery energy  
IF = 375 A, - diF/dt = 4000 A/µs (Tvj = 150°C) Tvj = 25°C  
8.60  
16.0  
19.0  
VR = 400 V  
VGE = -8 V  
Tvj = 150°C  
Tvj = 175°C  
Erec  
RthJF  
Tvj op  
Thermal resistance, junction to cooling fluid per diode; V/t = 10 dm³/min, TF = 75°C  
Temperature under switching conditions top continuous  
0.2302) 0.2752) K/W  
1503)  
-40  
150  
for 10s within a period of 30s, occurence maximum 3000  
times over lifetime  
175  
°C  
4
NTC-Thermistor  
min. typ. max.  
Parameter  
Conditions  
Symbol  
R25  
Value  
Unit  
kΩ  
%
Rated resistance  
Deviation of R100  
Power dissipation  
B-value  
TC = 25°C  
5.00  
TC = 100°C, R100 = 493 Ω  
TC = 25°C  
R/R  
P25  
-5  
5
20.0 mW  
R2 = R25 exp [B25/50(1/T2 - 1/(298,15 K))]  
R2 = R25 exp [B25/80(1/T2 - 1/(298,15 K))]  
R2 = R25 exp [B25/100(1/T2 - 1/(298,15 K))]  
B25/50  
B25/80  
B25/100  
3375  
3411  
3433  
K
K
K
B-value  
B-value  
Specification according to the valid application note.  
1) Verified by characterization / design not by test.  
2) Cooler design and flow direction according to application note AN-HPDC6i-AN-HP1-DC6i-Assembly-Instructions. Cooling fluid 50% water / 50% ethylenglycol.  
3) For Tvjop > 150°C: Baseplate temperature has to be limited to 125°C.  
Final Data Sheet  
4
V3.0, 2020-05-06  
FS650R08A4P2  
HybridPACK™ DC6 Module  
5
Module  
Parameter  
Conditions  
Symbol  
Value  
2.5  
Unit  
Isolation test voltage  
Material of module baseplate  
Internal isolation  
RMS, f = 50 Hz, t = 1 min  
VISOL  
kV  
Cu/Ni/Al1)  
2)  
basic insulation (class 1, IEC 61140)  
Al2O3  
Creepage distance  
terminal to heatsink  
terminal to terminal  
18.2  
8.2  
dCreep  
mm  
mm  
Clearance  
terminal to heatsink  
terminal to terminal  
18.2  
5.9  
dClear  
CTI  
Comperative tracking index  
> 200  
min. typ. max.  
Pressure drop in cooling circuit  
V/t = 10.0 dm³/min; TF = 75°C  
p  
903)  
mbar  
bar  
Maximum pressure in cooling circuit  
Tbaseplate < 40°C  
Tbaseplate 40°C  
(relative pressure)  
2.5  
2.0  
p
Stray inductance module  
Storage temperature  
LsCE  
Tstg  
M
15  
nH  
°C  
-40  
3.00  
3.0  
125  
Mounting torque for modul mounting  
Terminal connection torque  
Weight  
Screw M5 baseplate to heatsink  
Screw M5  
6.00 Nm  
M
-
6.0  
Nm  
g
G
490  
1) Ni plated Cu baseplate with Al ribbon bonds.  
2) Improved Al2O3 ceramic.  
3) Cooler design and flow direction according to application note AN-HPDC6i-AN-HP1-DC6i-Assembly-Instructions. Cooling fluid 50% water / 50% ethylenglycol.  
Final Data Sheet  
5
V3.0, 2020-05-06  
FS650R08A4P2  
HybridPACK™ DC6 Module  
6
Characteristics Diagrams  
output characteristic IGBT,Inverter (typical)  
IC = f (VCE  
output characteristic IGBT,Inverter (typical)  
IC = f (VCE  
)
)
VGE = 15 V  
Tvj = 150°C  
1300  
1300  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
VGE = 19V  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VGE = 17V  
VGE = 15V  
VGE = 13V  
VGE = 11V  
VGE = 9V  
0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2  
0,0 0,4 0,8 1,2 1,6 2,0 2,4 2,8 3,2 3,6 4,0  
VCE [V]  
VCE [V]  
transfer characteristic IGBT,Inverter (typical)  
switching losses IGBT,Inverter (typical)  
Eon = f (IC), Eoff = f (IC),  
IC = f (VGE  
)
VCE = 20 V  
VGE = +15 V / -8 V, RGon = 2.4 , RGoff = 5.1 , VCE = 400 V  
1300  
55  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
Eon, Tvj = 150°C  
Eoff, Tvj = 150°C  
Eon, Tvj = 175°C  
Eoff, Tvj = 175°C  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
5
0
6
7
8
9
10  
11  
12  
0
100  
200  
300  
400  
500  
600  
700  
VGE [V]  
IC [A]  
Final Data Sheet  
6
V3.0, 2020-05-06  
FS650R08A4P2  
HybridPACK™ DC6 Module  
switching losses IGBT,Inverter (typical)  
Eon = f (RG), Eoff = f (RG),  
transient thermal impedance IGBT,Inverter  
ZthJF = f (t), cooler design according to AN-HPDC6i  
VGE = +15V / -8V, IC = 450 A, VCE = 400 V  
V/t = 10 dm³/min; Tf = 75°C; 50% water / 50% ethylenglycol  
80  
1
Eon, Tvj = 150°C  
Eoff, Tvj = 150°C  
ZthJF : IGBT  
Eon, Tvj = 175°C  
Eoff, Tvj = 175°C  
70  
60  
0,1  
50  
40  
30  
20  
10  
0
0,01  
i:  
1
2
3
4
ri[K/W]: 0,01 0,07 0,08 0,045  
τi[s]:  
0,001 0,03 0,25 1,5  
0,001  
0,001  
0
2
4
6
8
10 12 14 16 18 20 22 24  
0,01  
0,1  
1
10  
RG []  
t [s]  
reverse bias safe operating area IGBT,Inverter (RBSOA)  
IC = f (VCE  
thermal impedance IGBT,Inverter  
RthJF = f (V/t), cooler design according to AN-HPDC6i  
)
VGE = +15V / -8V, RGoff = 5,1 , Tvj = 175°C  
Tf = 75°C; 50% water / 50% ethylenglycol  
1400  
0,225  
RthJF: IGBT  
1300  
1200  
1100  
1000  
900  
0,220  
0,215  
0,210  
0,205  
0,200  
0,195  
800  
700  
600  
500  
400  
300  
IC, Modul  
IC, Chip  
200  
100  
0
0
100  
200  
300  
400  
VCE [V]  
500  
600  
700  
800  
4
5
6
7
8
9
10  
11  
12  
13  
14  
V/t [dm³/min]  
Final Data Sheet  
7
V3.0, 2020-05-06  
FS650R08A4P2  
HybridPACK™ DC6 Module  
capacity characteristic IGBT,Inverter (typical)  
C = f(VCE  
gate charge characteristic IGBT,Inverter (typical)  
VGE = f(QG)  
)
VGE = 0 V, Tvj = 25°C, f = 1MHz  
VCE = 400 V, IC = 450 A, Tvj = 25°C  
100  
15  
QG  
12  
9
Cies  
Coes  
Cres  
10  
6
3
0
1
-3  
-6  
-9  
0,1  
0
100  
200  
300  
400  
500  
0,0  
0,5  
1,0  
1,5  
2,0  
QG [µC]  
2,5  
3,0  
3,5  
4,0  
VCE [V]  
maximum allowed collector-emitter voltage  
VCES = f(Tvj), verified by characterization / design not by test  
voltage slope IGBT,Inverter (typical)  
dv/dt = f (RG)  
ICES = 1 mA for Tvj 25°C; ICES = 30 mA for Tvj > 25°C  
VGE = +15V / -8V, IC = 375 A, VCE = 400 V Tvj = 150°C  
800  
3,5  
VCES  
dv/dtoff: IGBT  
dv/dton: IGBT  
3,0  
2,5  
2,0  
1,5  
1,0  
0,5  
0,0  
775  
750  
725  
700  
675  
650  
-50 -25  
0
25  
50  
75 100 125 150 175 200  
Tvj [°C]  
0
2
4
6
8
10 12 14 16 18 20 22 24  
RG []  
Final Data Sheet  
8
V3.0, 2020-05-06  
FS650R08A4P2  
HybridPACK™ DC6 Module  
current slope IGBT,Inverter (typical)  
di/dt = f (RG),  
forward characteristic of Diode, Inverter (typical)  
IF = f (VF)  
VGE = +15V / -8V, IC = 375 A, VCE = 400 V Tvj= 150°C  
6
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
di/dtoff: IGBT  
di/dton: IGBT  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
5
4
3
2
1
0
0
2
4
6
8
10 12 14 16 18 20 22 24  
0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2  
RG []  
VF [V]  
switching losses Diode, Inverter (typical)  
Erec = f (IF),  
switching losses Diode, Inverter (typical)  
Erec = f (RG),  
RGon = 2.4 , VCE = 400 V  
IF = 375 A, VCE = 400 V  
28  
22  
Erec, Tvj = 150°C  
Erec, Tvj = 175°C  
Erec, Tvj = 150°C  
Erec, Tvj = 175°C  
26  
20  
24  
22  
20  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
0
100  
200  
300 400  
IF [A]  
500  
600  
700  
0
2
4
6
8
10 12 14 16 18 20 22 24  
RG []  
Final Data Sheet  
9
V3.0, 2020-05-06  
FS650R08A4P2  
HybridPACK™ DC6 Module  
transient thermal impedance Diode, Inverter  
safe operation area Diode, Inverter (SOA)  
ZthJF = f(t), cooler design according to AN-HPDC6i  
V/t = 10 dm³/min; Tf = 75°C; 50% water / 50% ethylenglycol  
IR = f(VR)  
Tvj = 150°C  
1
1400  
1300  
1200  
1100  
1000  
900  
ZthJF : Diode  
0,1  
800  
700  
600  
500  
0,01  
400  
IR, RGon = 0.50 Ω  
IR, RGon = 0.75 Ω  
IR, RGon = 1.00 Ω  
300  
200  
i:  
1
2
3
4
ri[K/W]: 0,017 0,12 0,1 0,038  
τi[s]:  
0,001 0,03 0,25 1,5  
100  
0,001  
0,001  
0
0
0,01  
0,1  
t [s]  
1
10  
100  
200  
300  
400  
VR [V]  
500  
600  
700  
800  
thermal impedance Diode, Inverter  
RthJF = f(V/t), cooler design according to AN-HPDC6i  
NTC-Thermistor-temperature characteristic (typical)  
R = f (T)  
Tf = 75°C; 50% water / 50% ethylenglycol  
0,295  
100000  
RthJF: Diode  
Rtyp  
0,290  
0,285  
0,280  
0,275  
0,270  
0,265  
10000  
1000  
100  
4
5
6
7
8
9
10  
11  
12  
13  
14  
0
20  
40  
60  
80  
TC [°C]  
100  
120  
140  
160  
V/t [dm³/min]  
Final Data Sheet  
10  
V3.0, 2020-05-06  
FS650R08A4P2  
HybridPACK™ DC6 Module  
pressure drop in cooling circuit  
p = f (V/t), cooler design according to AN-HPDC6i  
Tf = 75°C; 50% water / 50% ethylenglycol  
160  
p: Modul  
140  
120  
100  
80  
60  
40  
20  
0
4
5
6
7
8
9
10  
11  
12  
13  
14  
V/t [dm³/min]  
Final Data Sheet  
11  
V3.0, 2020-05-06  
FS650R08A4P2  
HybridPACK™ DC6 Module  
7
Circuit diagram  
H_P_DC6i  
P1  
P2  
P3  
T1  
C1  
C3  
C5  
T
T2  
G1  
E1  
G3  
E3  
G5  
E5  
T3  
U
V
W
T
T4  
T5  
G2  
E2  
G4  
E4  
G6  
E6  
T
T6  
N1  
N2  
N3  
Final Data Sheet  
12  
V3.0, 2020-05-06  
FS650R08A4P2  
HybridPACK™ DC6 Module  
8
Package outlines  
5
,
5
,
0
5
0
,
140B0,4  
B
0
B
5
,
B
5
6
3
5
,
,
2
0
1
1
2
2
63,55  
62,85  
)
x
9
(
102,4 max. Reserved area  
A
5
,
0
47,6  
43,5  
36,8  
3,05 max. loop height  
B
5
43B0,3  
0
,
4
7
,
1
0
B
29,05  
21,75  
6
C ( 5 : 1 )  
,
A ( 2 : 1 )  
(4)  
2
1
1
14B0,3  
C
6,9  
0
0
5,85  
6,55  
)
2
(
** Pin positions checked  
with pin gauge according  
to Application Note  
0
1
5
5
5
8
5
5
2
5
5
5
9
4
,
,
,
,
,
,
1
**ABC  
21x  
6
3
8
6
3
6
L
7
,
,
5
,
,
3
,
2
,
0
4
2
3
2
7
5
8
0
0
2
4
4
6
1
1
P6,6B0,1  
2
2
6
0
0
1
1
P1,0ABC  
L
9x  
(15)  
D-D ( 1 : 1 )  
V
W
U
77,5  
P1,0ABC  
L
5
1
9,8 min.  
,
P0,2ABC  
L
3x  
0
B
D
D
B
1
,
9
,
0
4
57  
B
a
P
e
4
E5  
G5  
E3  
A
,
r
E1  
G1  
2
a
G3  
C3  
T4  
P
d
C
e
C5  
C1  
T1  
v
r
for Ejot  
PT30x10  
e
5
5
T6  
s
T2  
0
1
,
,
e
0
0
T5  
T3  
R
(23,57)  
+
-
.
x
5
G2  
E2  
G4  
E4  
a
,
G6  
5
m
P
4
E6  
,
5
8
B ( 2 : 1 )  
10,5 min.  
1
,
4
0
0
B
4
,
5
P
B
5
M
20,5  
N1  
N3  
P2  
N2  
P1  
P3  
12,85B0,2 (4x) (Control board height)  
All dimensions are measured in the delivered state.  
)
0
1
1
7
2
3
5
6
7
8
4
6
1
1
1
1
3
5
7
9
2
6
1
5
1
1
(
Sprue area, max. height 0,6mm  
Final Data Sheet  
13  
V3.0, 2020-05-06  
FS650R08A4P2  
HybridPACK™ DC6 Module  
9
Label Codes  
9.1 Module Code  
Code Format  
Data Matrix  
Encoding  
ASCII Text  
Symbol Size  
Standard  
16x16  
IEC24720 and IEC16022  
Code Content  
Content  
Digit  
1 - 5  
6 - 11  
12 - 19  
20 - 21  
22 - 23  
Example (below)  
Module Serial Number  
Module Material Number  
Production Order Number  
Datecode (Production Year)  
Datecode (Production Week)  
71549  
142846  
55054991  
15  
30  
Example  
71549142846550549911530  
9.2 Packing Code  
Code Format  
Code128  
Code Set A  
34 digits  
Encoding  
Symbol Size  
Standard  
IEC8859-1  
Code Content  
Content  
Identifier  
X
1T  
S
9D  
Q
Digit  
2 - 9  
12 - 19  
21 - 25  
28 - 31  
33 - 34  
Example (below)  
Backend Construction Number  
Production Lot Number  
Serial Number  
Date Code  
Box Quantity  
95056609  
2X0003E0  
754389  
1139  
15  
Example  
X950566091T2X0003E0S754389D1139Q15  
Final Data Sheet  
14  
V3.0, 2020-05-06  
FS650R08A4P2  
HybridPACK™ DC6 Module  
Revision History  
Major changes since previous revision  
Revision History  
Reference  
V1.0  
Date  
Description  
2017-08-31  
2018-01-18  
2018-06-25  
2019-02-12  
2019-10-30  
2020-05-06  
Target datasheet  
V1.1  
Change of package designation  
Extention of target data (E, Rth, ...)  
New package outlines / pinning  
Preliminary datasheet  
Final datasheet  
V1.2  
V1.3  
V2.0  
V3.0  
Final Data Sheet  
15  
V3.0, 2020-05-06  
FS650R08A4P2  
HybridPACK™ DC6 Module  
Terms & Conditions of usage  
Edition 2018-08-01  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2018 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any  
examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon  
Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of  
intellectual property rights of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office  
(http://www.infineon.com)  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the  
nearest Infineon Technologies Office.  
These components are not designed for “special applications” that demand extremely high reliability or safety such as aerospace, defense or life  
support devices or systems (Class III medical devices). If you intend to use the components in any of these special applications, please contact  
your local representative at International Rectifier HiRel Products, Inc. or the Infineon support (https://www.infineon.com/support) to review  
product requirements and reliability testing.  
Infineon Technologies components may be used in special applications only with the express written approval of Infineon Technologies. Class  
III medical devices are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they  
fail, it is reasonable to assume that the health of the user or other persons may be endangered.  
Trademarks  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™,  
DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™,  
HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™,  
PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™,  
SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™,  
µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of  
DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.  
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of  
Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION  
FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor  
Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO.,  
MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave  
Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun  
Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co.  
TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited.  
VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of  
WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.  
Last update  
2011-11-11  
Final Data Sheet  
16  
V3.0, 2020-05-06  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

FS660R08A6P2FB

Short Tabs
INFINEON

FS660R08A6P2FLB

Flat Baseplate
INFINEON

FS6M07652

Fairchild Power Switch(FPS)
FAIRCHILD

FS6M07652RT

Current-Mode SMPS Controller
ETC

FS6M07652RTC

Fairchild Power Switch(FPS)
FAIRCHILD

FS6M07652RTC-TU

SMPS Controller
ETC

FS6M07652RTC-YDT

SMPS Controller
ETC

FS6M07652RTCTU

Fairchild Power Switch(FPS)
FAIRCHILD

FS6M07652RTCYDT

Fairchild Power Switch(FPS)
FAIRCHILD

FS6M12653RTC

Fairchild Power Switch(FPS)
FAIRCHILD