FS660R08A6P2FLB [INFINEON]

Flat Baseplate;
FS660R08A6P2FLB
型号: FS660R08A6P2FLB
厂家: Infineon    Infineon
描述:

Flat Baseplate

文件: 总15页 (文件大小:6231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HybridPACK™ꢀDriveꢀModule  
FS660R08A6P2FLB  
FinalꢀDataꢀSheet  
V3.0,ꢀ2019-05-20  
AutomotiveꢀHighꢀPower  
FS660R08A6P2FLB  
HybridPACK™ꢀDriveꢀModule  
1ꢀꢀꢀꢀꢀFeaturesꢀ/ꢀDescription  
HybridPACK™ꢀDriveꢀmoduleꢀwithꢀEDT2ꢀIGBTꢀandꢀDiode  
T
T
T
VCES = 750 V  
IC = 660 A  
Typical Applications  
Description  
• Automotive Applications  
• Hybrid Electrical Vehicles (H)EV  
• Motor Drives  
The HybridPACKTM Drive is a very compact  
six-pack module optimized for hybrid and electric  
vehicles. The product FS660R08A6P2FLB comes  
with a flat baseplate and is a 750V/660A module  
derivate within the HybridPACK Drive family. The  
power module implements the new EDT2 IGBT  
generation, which is an automotive Micro-Pattern  
Trench-Field-Stop cell design optimized for electric  
drive train applications. The chipset has benchmark  
current density combined with short circuit  
ruggedness and increased blocking voltage for  
reliable inverter operation under harsh  
• Commercial Agriculture Vehicles  
Electrical Features  
• Blocking voltage 750V  
• Low VCEsat  
• Low Switching Losses  
• Low Qg and Crss  
• Low Inductive Design  
• Tvj op = 150°C  
environmental conditions. The EDT2 IGBTs also  
show excellent light load power losses, which helps  
to improve system efficiency over a real driving  
cycle. The EDT2 IGBT was optimized for  
applications with switching frequencies in the range  
of 10 kHz.  
Short-time extended Operation Temperature  
Tvj op = 175°C  
The new The HybridPACKTM Drive power module  
family comes with mechanical guiding elements  
supporting easy assembly processes for customers.  
Furthermore, the press-fit pins for the signal  
terminals avoid additional time consuming selective  
solder processes, which provides cost savings on  
system level and increases system reliability. The  
two products in the The HybridPACKTM Drive family  
with flat baseplate in the FS660R08A6P2FLB and  
PinFin baseplate in the FS820R08A6P2LB allow a  
very cost effective scaling for different inverter  
power levels at a minimum inverter design effort.  
Mechanical Features  
• 4.2kV DC 1sec Insulation  
• High Creepage and Clearance Distances  
• Compact design  
• High Power Density  
• Copper Base Plate  
• Guiding elements for PCB and cooler assembly  
• Integrated NTC temperature sensor  
• PressFIT Contact Technology  
• RoHS compliant  
• UL 94 V0 module frame  
Product Name  
Ordering Code  
SP001850450  
FS660R08A6P2FLB  
Final Data Sheet  
2
V3.0,ꢀꢀ2019-05-20  
FS660R08A6P2FLB  
HybridPACK™ Drive Module  
2
IGBT,Inverter  
2.1 Maximum Rated Values  
Parameter  
Conditions  
Symbol  
VCES  
ICN  
Value  
750  
Unit  
V
Collector-emitter voltage  
Tvj = 25°C  
Implemented collector current  
Continuous DC collector current  
Repetitive peak collector current  
Total power dissipation  
660  
A
TC = 80°C, Tvj max = 175°C  
tP = 1 ms  
IC nom  
ICRM  
4501)  
1320  
10531)  
+/-20  
A
A
TC = 75°C, Tvj max = 175°C  
Ptot  
W
V
Gate-emitter peak voltage  
VGES  
2.2 Characteristic Values  
min. typ. max.  
Collector-emitter saturation voltage  
IC = 450 A, VGE = 15 V  
IC = 450 A, VGE = 15 V  
IC = 450 A, VGE = 15 V  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
1.10 1.35  
1.15  
1.15  
VCE sat  
V
V
IC = 660 A, VGE = 15 V  
IC = 660 A, VGE = 15 V  
Tvj = 25°C  
Tvj = 175°C  
1.25  
1.35  
Gate threshold voltage  
IC = 9.60 mA, VCE = VGE  
Tvj = 25°C  
Tvj = 175°C  
4.90 5.80 6.50  
4,10  
VGEth  
Gate charge  
VGE = -8 V ... 15 V, VCE = 400V  
QG  
RGint  
Cies  
Coes  
Cres  
4.40  
0.7  
µC  
Internal gate resistor  
Input capacitance  
Tvj = 25°C  
Tvj = 25°C  
Tvj = 25°C  
Tvj = 25°C  
f = 1 MHz, VCE = 50 V, VGE = 0 V  
f = 1 MHz, VCE = 50 V, VGE = 0 V  
f = 1 MHz, VCE = 50 V, VGE = 0 V  
80.0  
1.00  
0.30  
nF  
nF  
nF  
Output capacitance  
Reverse transfer capacitance  
Collector-emitter cut-off current  
VCE = 750 V, VGE = 0 V  
VCE = 750 V, VGE = 0 V  
Tvj = 25°C  
Tvj = 175°C  
1.0  
5
ICES  
IGES  
td on  
mA  
nA  
Gate-emitter leakage current  
VCE = 0 V, VGE = 20 V  
Tvj = 25°C  
400  
Turn-on delay time, inductive load  
IC = 450 A, VCE = 400 V  
VGE = -8 V / +15 V  
RGon = 2.4 Ω  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
0.28  
0.29  
0.30  
µs  
µs  
µs  
µs  
Rise time, inductive load  
IC = 450 A, VCE = 400 V  
VGE = -8 V / +15 V  
RGon = 2.4 Ω  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
0.07  
0.08  
0.08  
tr  
Turn-off delay time, inductive load  
Fall time, inductive load  
IC = 450 A, VCE = 400 V  
VGE = -8 V / +15 V  
RGoff = 5.1 Ω  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
0.94  
1.05  
1.05  
td off  
IC = 450 A, VCE = 400 V  
VGE = -8 V / +15 V  
RGoff = 5.1 Ω  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
0.04  
0.05  
0.06  
tf  
Turn-on energy loss per pulse  
IC = 450 A, VCE = 400 V, LS = 20 nH  
VGE = -8 V / +15 V  
RGon = 2.4 Ω  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
13.5  
17.5  
18.0  
Eon  
mJ  
di/dt (Tvj 25°C) = 5500 A/µs  
di/dt (Tvj 150°C) = 5000 A/µs  
Turn-off energy loss per pulse  
IC = 450 A, VCE = 400 V, LS = 20 nH  
VGE = -8 V / +15 V  
RGoff = 5.1 Ω  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
23.5  
29.0  
30.0  
Eoff  
mJ  
A
dv/dt (Tvj 25°C) = 3100 V/µs  
dv/dt (Tvj 150°C) = 2500 V/µs  
SC data  
VGE 15 V, VCC = 400 V  
VCEmax = VCES -LsCE ·di/dt  
tP 6 µs, Tvj = 25°C  
tP 3 µs, Tvj = 175°C  
4800  
3900  
ISC  
Thermal resistance, junction to case  
Thermal resistance, case to heatsink  
per IGBT  
per IGBT  
RthJC  
RthCH  
0.080 0.095 K/W  
0.0502)  
K/W  
°C  
λPaste = 1 W/(m·K)  
/
λgrease = 1 W/(m·K)  
Temperature under switching conditions  
top continuous  
-40  
150  
1503)  
175  
for 10s within a period of 30s, occurence maximum 3000  
times over lifetime  
Tvj op  
1) Verified by characterization / design not by test.  
2) cooler alpha = 1500 W/(m²K); RthHF_typ = 0,06 K/W  
3) For Tvjop > 150°C: Baseplate temperature has to be limited to 125°C.  
Final Data Sheet  
3
V3.0, 2019-05-20  
FS660R08A6P2FLB  
HybridPACK™ Drive Module  
3
Diode, Inverter  
3.1 Maximum Rated Values  
Parameter  
Conditions  
Symbol  
VRRM  
IFN  
Value  
750  
Unit  
V
Repetitive peak reverse voltage  
Implemented forward current  
Continuous DC forward current  
Repetitive peak forward current  
I²t - value  
Tvj = 25°C  
660  
A
IF  
4501)  
A
tP = 1 ms  
IFRM  
1320  
A
VR = 0 V, tP = 10 ms, Tvj = 150°C  
VR = 0 V, tP = 10 ms, Tvj = 175°C  
19000  
16000  
A²s  
A²s  
I²t  
3.2 Characteristic Values  
min. typ. max.  
Forward voltage  
IF = 450 A, VGE = 0 V  
IF = 450 A, VGE = 0 V  
IF = 450 A, VGE = 0 V  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
1.45 1.65  
1.30  
1.25  
VF  
V
IF = 660 A, VGE = 0 V  
IF = 660 A, VGE = 0 V  
Tvj = 25°C  
Tvj = 175°C  
1.60  
1.45  
Peak reverse recovery current  
Recovered charge  
IF = 450 A, - diF/dt = 5000 A/µs (Tvj = 150°C) Tvj = 25°C  
250  
350  
370  
VR = 400 V  
VGE = -8 V  
Tvj = 150°C  
Tvj = 175°C  
IRM  
A
IF = 450 A, - diF/dt = 5000 A/µs (Tvj = 150°C) Tvj = 25°C  
20.0  
40.0  
45.0  
VR = 400 V  
VGE = -8 V  
Tvj = 150°C  
Tvj = 175°C  
Qr  
µC  
mJ  
Reverse recovery energy  
IF = 450 A, - diF/dt = 5000 A/µs (Tvj = 150°C) Tvj = 25°C  
7.00  
13.0  
15.0  
VR = 400 V  
VGE = -8 V  
Tvj = 150°C  
Tvj = 175°C  
Erec  
Thermal resistance, junction to case  
Thermal resistance, case to heatsink  
per diode  
RthJC  
RthCH  
0.125 0.150 K/W  
per diode  
λPaste = 1 W/(m·K)  
0.0502)  
K/W  
°C  
/
λgrease = 1 W/(m·K)  
Temperature under switching conditions  
top continuous  
-40  
150  
1503)  
175  
for 10s within a period of 30s, occurence maximum 3000  
times over lifetime  
Tvj op  
4
NTC-Thermistor  
min. typ. max.  
Parameter  
Conditions  
Symbol  
R25  
Value  
Unit  
kΩ  
%
Rated resistance  
Deviation of R100  
Power dissipation  
B-value  
TC = 25°C  
5.00  
TC = 100°C, R100 = 493 Ω  
TC = 25°C  
R/R  
P25  
5
5
20.0 mW  
R2 = R25 exp [B25/50(1/T2 - 1/(298,15 K))]  
R2 = R25 exp [B25/80(1/T2 - 1/(298,15 K))]  
R2 = R25 exp [B25/100(1/T2 - 1/(298,15 K))]  
B25/50  
B25/80  
B25/100  
3375  
3411  
3433  
K
K
K
B-value  
B-value  
Specification according to the valid application note.  
1) Verified by characterization / design not by test.  
2) cooler alpha = 1500 W/(m²K); RthHF_typ = 0,06 K/W  
3) For Tvjop > 150°C: Baseplate temperature has to be limited to 125°C.  
Final Data Sheet  
4
V3.0, 2019-05-20  
FS660R08A6P2FLB  
HybridPACK™ Drive Module  
5
Module  
Parameter  
Conditions  
Symbol  
Value  
Unit  
Isolation test voltage  
RMS, f = 0 Hz, t = 1 sec  
VISOL  
4.2  
kV  
Maximum RMS module terminal current  
TF = 75°C, TCt = 105°C  
TC = 85°C, TCt = 105°C  
500  
500  
ItRMS  
A
Material of module baseplate  
Internal isolation  
Cu+Ni1)  
2)  
basic insulation (class 1, IEC 61140)  
Al2O3  
Creepage distance  
terminal to heatsink  
terminal to terminal  
9.0  
9.0  
dCreep  
mm  
mm  
Clearance  
terminal to heatsink  
terminal to terminal  
4.5  
4.5  
dClear  
CTI  
Comperative tracking index  
Maximum pressure in cooling circuit  
> 200  
min. typ. max.  
Tbaseplate < 40°C  
Tbaseplate > 40°C  
(relative pressure)  
3.03)  
2.5  
p
bar  
Stray inductance module  
LsCE  
RCC'+EE'  
Tstg  
8.0  
nH  
mΩ  
°C  
Module lead resistance, terminals - chip  
Storage temperature  
TC = 25 °C, per switch  
0.75  
-40  
125  
Mounting torque for modul mounting  
Screw M4 baseplate to heatsink  
Screw EJOT Delta PCB to frame  
1.80 2.00 2.20  
0.45 0.50 0.554)  
M
G
Nm  
g
Weight  
600  
1) Ni plated Cu baseplate.  
2) Improved Al2O3 ceramic.  
3) According to application note AN-HPD-ASSEMBLY  
4) EJOT Delta PT WN 5451 30x10. Effective mounting torque according to application note AN-HPD-ASSEMBLY  
Final Data Sheet  
5
V3.0, 2019-05-20  
FS660R08A6P2FLB  
HybridPACK™ Drive Module  
6
Characteristics Diagrams  
output characteristic IGBT,Inverter (typical)  
IC = f (VCE  
output characteristic IGBT,Inverter (typical)  
IC = f (VCE  
)
)
VGE = 15 V  
Tvj = 150°C  
1300  
1300  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
VGE = 19V  
VGE = 17V  
VGE = 15V  
VGE = 13V  
VGE = 11V  
VGE = 9V  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2  
0,0 0,4 0,8 1,2 1,6 2,0 2,4 2,8 3,2 3,6 4,0  
VCE [V]  
VCE [V]  
transfer characteristic IGBT,Inverter (typical)  
switching losses IGBT,Inverter (typical)  
Eon = f (IC), Eoff = f (IC),  
IC = f (VGE  
)
VCE = 20 V  
VGE = +15 V / -8 V, RGon = 2.4 , RGoff = 5.1 , VCE = 400 V  
1300  
70  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
Eon, Tvj = 150°C  
Eoff, Tvj = 150°C  
Eon, Tvj = 175°C  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
60  
50  
40  
30  
20  
10  
0
Eoff, Tvj = 175°C  
0
5
6
7
8
9
10  
11  
12  
0
100 200 300 400 500 600 700 800 900  
VGE [V]  
IC [A]  
Final Data Sheet  
6
V3.0, 2019-05-20  
FS660R08A6P2FLB  
HybridPACK™ Drive Module  
switching losses IGBT,Inverter (typical)  
Eon = f (RG), Eoff = f (RG),  
transient thermal impedance IGBT,Inverter  
ZthJC = f (t)  
VGE = +15V / -8V, IC = 450 A, VCE = 400 V  
thermal grease 1W/(m*K), cooler alpha = 1500 W/(m²*K)  
140  
1
Eon, Tvj = 150°C  
Eoff, Tvj = 150°C  
Eon, Tvj = 175°C  
ZthJC : IGBT  
120  
100  
80  
60  
40  
20  
0
Eoff, Tvj = 175°C  
0,1  
0,01  
i:  
1
2
3
4
ri[K/W]: 0,005 0,055 0,022 0,013  
τi[s]:  
0,001 0,03 0,25 1,5  
0,001  
0,001  
0
2
4
6
8
10 12 14 16 18 20 22 24  
0,01  
0,1  
t [s]  
1
10  
RG []  
reverse bias safe operating area IGBT,Inverter (RBSOA)  
IC = f (VCE  
capacity characteristic IGBT,Inverter (typical)  
C = f(VCE  
)
)
VGE = +15V / -8V, RGoff = 5,1 , Tvj = 175°C  
VGE = 0 V, Tvj = 25°C, f = 1MHz  
1400  
100  
1300  
1200  
1100  
1000  
900  
Cies  
Coes  
Cres  
10  
800  
700  
600  
500  
1
400  
300  
IC, Modul  
IC, Chip  
200  
100  
0
0,1  
0
100  
200  
300  
400  
VCE [V]  
500  
600  
700  
800  
0
100  
200  
300  
400  
500  
VCE [V]  
Final Data Sheet  
7
V3.0, 2019-05-20  
FS660R08A6P2FLB  
HybridPACK™ Drive Module  
gate charge characteristic IGBT,Inverter (typical)  
VGE = f(QG)  
maximum allowed collector-emitter voltage  
VCES = f(Tvj), verified by characterization / design not by test  
VCE = 400 V, IC = 450 A, Tvj = 25°C  
ICES = 1 mA for Tvj 25°C; ICES = 30 mA for Tvj > 25°C  
15  
800  
QG  
VCES  
12  
9
775  
750  
725  
700  
675  
650  
6
3
0
-3  
-6  
-9  
0
1
2
3
4
5
-50 -25  
0
25  
50  
75 100 125 150 175 200  
Tvj [°C]  
QG [µC]  
forward characteristic of Diode, Inverter (typical)  
IF = f (VF)  
switching losses Diode, Inverter (typical)  
Erec = f (IF),  
RGon = 2.4 , VCE = 400 V  
1300  
22  
Tvj = 25°C  
Tvj = 150°C  
Tvj = 175°C  
Erec, Tvj = 150°C  
Erec, Tvj = 175°C  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
20  
18  
16  
14  
12  
10  
8
6
4
2
0
0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2  
0
100 200 300 400 500 600 700 800 900  
IF [A]  
VF [V]  
Final Data Sheet  
8
V3.0, 2019-05-20  
FS660R08A6P2FLB  
HybridPACK™ Drive Module  
switching losses Diode, Inverter (typical)  
Erec = f (RG),  
transient thermal impedance Diode, Inverter  
ZthJC = f (t)  
IF = 450 A, VCE = 400 V  
thermal grease 1W/(m*K), cooler alpha = 1500 W/(m²*K)  
20  
18  
16  
14  
12  
10  
8
1
Erec, Tvj = 150°C  
Erec, Tvj = 175°C  
ZthJC : Diode  
0,1  
0,01  
6
4
i:  
1
2
3
4
ri[K/W]: 0,015 0,1 0,025 0,01  
2
τi[s]:  
0,001 0,03 0,25 1,5  
0
0,001  
0,001  
0
2
4
6
8
10 12 14 16 18 20 22 24  
0,01  
0,1  
t [s]  
1
10  
RG []  
NTC-Thermistor-temperature characteristic (typical)  
R = f (T)  
100000  
Rtyp  
10000  
1000  
100  
0
20  
40  
60  
80  
TC [°C]  
100  
120  
140  
160  
Final Data Sheet  
9
V3.0, 2019-05-20  
FS660R08A6P2FLB  
HybridPACK™ Drive Module  
7
Circuit diagram  
P1  
P2  
P3  
T1  
T
C1  
C3  
C5  
T2  
G1  
E1  
G3  
E3  
G5  
E5  
T3  
U
V
W
T
C2  
C4  
C6  
T4  
T5  
G2  
E2  
G4  
E4  
G6  
E6  
T
T6  
N1  
N2  
N3  
Final Data Sheet  
10  
V3.0, 2019-05-20  
FS660R08A6P2FLB  
HybridPACK™ Drive Module  
8
Package outlines  
Final Data Sheet  
11  
V3.0, 2019-05-20  
FS660R08A6P2FLB  
HybridPACK™ Drive Module  
9
Label Codes  
9.1 Module Code  
Code Format  
Data Matrix  
Encoding  
ASCII Text  
Symbol Size  
Standard  
16x16  
IEC24720 and IEC16022  
Code Content  
Content  
Digit  
1 - 5  
6 - 11  
12 - 19  
20 - 21  
22 - 23  
Example (below)  
71549  
142846  
55054991  
15  
Module Serial Number  
Module Material Number  
Production Order Number  
Datecode (Production Year)  
Datecode (Production Week)  
30  
Example  
71549142846550549911530  
9.2 Packing Code  
Code Format  
Code128  
Code Set A  
34 digits  
Encoding  
Symbol Size  
Standard  
IEC8859-1  
Code Content  
Content  
Identifier  
X
1T  
S
9D  
Q
Digit  
2 - 9  
12 - 19  
21 - 25  
28 - 31  
33 - 34  
Example (below)  
95056609  
2X0003E0  
754389  
1139  
15  
Backend Construction Number  
Production Lot Number  
Serial Number  
Date Code  
Box Quantity  
Example  
X950566091T2X0003E0S754389D1139Q15  
Final Data Sheet  
12  
V3.0, 2019-05-20  
FS660R08A6P2FLB  
HybridPACK™ Drive Module  
Revision History  
Major changes since previous revision  
Revision History  
Reference  
V2.0  
Date  
Description  
2018-03-07  
2018-11-28  
2019-05-20  
-
V2.1  
Correction of pin designation in package outlines  
-
V3.0  
Final Data Sheet  
13  
V3.0, 2019-05-20  
FS660R08A6P2FLB  
HybridPACK™ Drive Module  
Terms & Conditions of usage  
Edition 2018-08-01  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2018 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any  
examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon  
Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of  
intellectual property rights of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office  
(http://www.infineon.com)  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the  
nearest Infineon Technologies Office.  
These components are not designed for “special applications” that demand extremely high reliability or safety such as aerospace, defense or life  
support devices or systems (Class III medical devices). If you intend to use the components in any of these special applications, please contact  
your local representative at International Rectifier HiRel Products, Inc. or the Infineon support (https://www.infineon.com/support) to review  
product requirements and reliability testing.  
Infineon Technologies components may be used in special applications only with the express written approval of Infineon Technologies. Class  
III medical devices are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they  
fail, it is reasonable to assume that the health of the user or other persons may be endangered.  
Trademarks  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™,  
DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™,  
HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™,  
PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™,  
SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™,  
µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of  
DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.  
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of  
Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION  
FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor  
Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO.,  
MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave  
Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun  
Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co.  
TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited.  
VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of  
WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.  
Last update  
2011-11-11  
Final Data Sheet  
14  
V3.0, 2019-05-20  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY