GA600GD25S [INFINEON]

SINGLE SWITCH IGBT DUAL INT-A-PAK; 单开关IGBT双INT -A-朴
GA600GD25S
型号: GA600GD25S
厂家: Infineon    Infineon
描述:

SINGLE SWITCH IGBT DUAL INT-A-PAK
单开关IGBT双INT -A-朴

开关 双极性晶体管
文件: 总10页 (文件大小:629K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 50071C  
GA600GD25S  
TM  
Standard Speed IGBT  
SINGLE SWITCH IGBT DUAL INT-A-PAK  
Features  
VCES = 250V  
• Standard speed, optimized for battery powered  
application  
• Very low conduction losses  
• HEXFREDTM antiparallel diodes with ultra-soft  
recovery  
VCE(on) typ. = 1.25V  
• Industry standard package  
• UL recognition pending  
• Internal thermistor  
@V = 15V, IC = 600A  
GE  
Benefits  
• Increased operating efficiency  
• Direct mounting to heatsink  
• Performance optimized for power conversion: UPS,  
SMPS, Welding  
• Lower EMI, requires less snubbing  
Absolute Maximum Ratings  
Parameter  
Collector-to-Emitter Voltage  
Max.  
250  
Units  
V
VCES  
IC @ TC = 25°C  
Continuous Collector Current  
Pulsed Collector Current  
600  
ICM  
1200  
1200  
1200  
17  
A
ILM  
Peak Switching Current‚  
IFM  
Peak Diode Forward Current  
Gate-to-Emitter Voltage  
VGE  
V
VISOL  
RMS Isolation Voltage, Any Terminal To Case, t = 1 min  
Maximum Power Dissipation  
Maximum Power Dissipation  
Operating Junction Temperature Range  
Storage Temperature Range  
2500  
1920  
1000  
PD @ TC = 25°C  
W
PD @ TC = 85°C  
TJ  
-40 to +150  
-40 to +125  
°C  
TSTG  
Thermal / Mechanical Characteristics  
Parameter  
Thermal Resistance, Junction-to-Case - IGBT  
Typ.  
Max.  
0.065  
0.20  
Units  
RθJC  
RθJC  
RθCS  
Thermal Resistance, Junction-to-Case - Diode  
Thermal Resistance, Case-to-Sink - Module  
Mounting Torque, Case-to-Heatsink ƒ  
Mounting Torque, Case-to-Terminal 1, 2 ƒ  
Mounting Torque, Case-to-Terminal 3,4,5,6  
Weight of Module  
°C/W  
0.04  
.
6.0  
N m  
5.0  
1.5  
365  
g
www.irf.com  
1
08/27/02  
GA600GD25S  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGE = 0V, IC = 1mA  
V(BR)CES  
VCE(on)  
Collector-to-Emitter Breakdown Voltage 250  
Collector-to-Emitter Voltage  
Gate Threshold Voltage  
3.0  
1.25 1.4  
VGE = 15V, IC = 600A  
1.25  
6.0  
V
VGE = 15V, IC = 600A, TJ = 125°C  
IC = 5.0mA, VCE = 6.0V  
VGE(th)  
VGE(th)/TJ Temperature Coeff. of Threshold Voltage  
gfe  
-11  
720  
mV/°C VCE = 6.0V, IC = 5.0mA,TC= 25/125°C  
Forward Transconductance ƒ  
S
VCE = 25V, IC = 600A  
ICES  
Collector-to-Emitter Leaking Current  
2.0  
20  
mA  
VGE = 0V, VCE = 250V  
VGE = 0V, VCE = 250V, TJ = 125°C  
IF = 300A, VGE = 0V  
VFM  
Diode Forward Voltage - Maximum  
1.5 1.8  
V
1.5  
1.0  
80  
IF = 300A, VGE = 0V, TJ = 125°C  
IGES  
Gate-to-Emitter Leakage Current  
Pulse Diode Temp Rise  
µA  
°C  
VGE = 14V (18V zeners gate-emitter)  
TDP  
R-T25  
IC = 300A, t = 150msec, Tc =70°C  
I = 100mA,P = 2.5mW/°C (see note 1)  
Thermistor, Positive Temp Coefficient  
738 820 902  
Dynamic Characteristics - TJ = 125°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
Qg  
Total Gate Charge (turn-on)  
Gate - Emitter Charge (turn-on)  
Gate - Collector Charge (turn-on)  
Turn-On Delay Time  
3825 5738  
555 832  
1262 1893  
VCC = 200V, VGE = 15V  
Qge  
Qgc  
td(on)  
tr  
nC IC = 600A  
TJ = 25°C  
1060  
950  
846  
934  
17  
RG1 = 15, RG2 = 0,  
IC = 600A  
Rise Time  
ns  
td(off)  
tf  
Turn-Off Delay Time  
VCC = 150V,  
VGE 15V  
Inductor load  
Fall Time  
=
Eon  
Turn-On Switching Energy  
Turn-Off Switching Energy  
Total Switching Energy  
Input Capacitance  
mJ See Fig. 17, 19  
Eoff (1)  
Ets (1)  
Cies  
Coes  
Cres  
trr  
105  
122 250  
86063  
9754  
1913  
314  
VGE = 0V  
Output Capacitance  
pF  
VCC = 30V  
ƒ = 1 MHz  
IC = 600A  
RG1 = 15Ω  
Reverse Transfer Capacitance  
Diode Reverse Recovery Time  
Diode Peak ReverseCurrent  
Diode Recovery Charge  
Diode Peak Rate of Fall of Recovery  
During tb  
ns  
A
Irr  
80  
Qrr  
12513  
632  
µC RG2 = 0Ω  
A/µs VCC = 150V  
di(rec)M/dt  
di/dt = 500A/µs  
Notes:  
1. The thermistor has an average rate of change of 7/°C between 20°C and 125°C.  
Consult U.S. Sensor data sheet for P821GS1K for details  
2
www.irf.com  
GA600GD25S  
500  
400  
300  
200  
100  
0
For both:  
Duty cycle: 50%  
T
T
= 125°C  
= 90°C  
J
sink  
Gate drive as specified  
333  
Power Dissipation =  
W
Square wave:  
60% of rated  
voltage  
I
Ideal diodes  
0.1  
1
10  
100  
f, Frequency (KHz)  
Fig. 1 - Typical Load Current vs. Frequency  
(Load Current = IRMS of fundamental)  
10000  
1000  
10000  
1000  
100  
°
T = 125 C  
J
°
T = 125 C  
J
100  
10  
1
°
T = 25 C  
J
°
T = 25 C  
J
V
= 15V  
V
= 25V  
GE  
80µs PULSE WIDTH  
CE  
80µs PULSE WIDTH  
10  
0.6  
0.8  
1.0  
1.2  
1.4 1.6 1.8  
4.0  
5.0  
6.0  
7.0 8.0  
V
, Collector-to-Emitter Voltage (V)  
V
, Gate-to-Emitter Voltage (V)  
CE  
GE  
Fig. 2 - Typical Output Characteristics  
Fig. 3 - Typical Transfer Characteristics  
www.irf.com  
3
GA600GD25S  
2.0  
1.5  
1.0  
0.5  
800  
V
= 15V  
GE  
80 us PULSE WIDTH  
= 1000A  
I
C
600  
400  
200  
0
I
I
=600A  
=300A  
C
C
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
25  
50  
75  
100  
125  
°
150  
°
T , Junction Temperature ( C)  
J
T , Case Temperature ( C)  
C
Fig. 4 - Maximum Collector Current vs. Case  
Fig. 5 - Typical Collector-to-Emitter Voltage  
Temperature  
vs. Junction Temperature  
0.1  
D = 0.50  
0.20  
P
DM  
t
1
t
0.10  
0.05  
2
Notes:  
1. Duty factor D= t / t  
SINGLE PULSE  
0.02  
1
2
(THERMAL RESPONSE)  
0.01  
2. Peak T =P x Z  
DM  
+ T  
C
J
thJC  
A
1000  
0.01  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t1 , Rectangular Pulse Duration (sec)  
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case  
4
www.irf.com  
GA600GD25S  
20  
16  
12  
8
160000  
120000  
80000  
40000  
0
200V  
V
= 0V,  
f = 1MHz  
C SHORTED  
ce  
V
=
CC  
GE  
C
= C + C  
I
= 600A  
ies  
ge  
gc ,  
C
C
= C  
res  
gc  
C
= C + C  
oes  
ce  
gc  
C
ies  
C
C
oes  
4
res  
0
1
10  
100  
0
1000  
2000  
3000  
4000  
V
, Collector-to-Emitter Voltage (V)  
Q , Total Gate Charge (nC)  
CE  
G
Fig. 7 - Typical Capacitance vs.  
Fig. 8 - Typical Gate Charge vs.  
Collector-to-Emitter Voltage  
Gate-to-Emitter Voltage  
1000  
150  
Ω;  
RG = 15 RG2 = 0  
V
= 150V  
CC  
GE  
V
T
= 15V  
= 25  
VGE = 15V  
VCC = 150V  
°
C
J
C
I
= 600A  
IC = 1000A  
140  
130  
120  
110  
IC = 600A  
IC = 300A  
100  
A
10  
0
10  
20  
30  
40  
50  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
( Ω )  
R
, Gate Resistance  
T , Junction Temperature (°C)  
G
J
Fig. 9 - Typical Switching Losses vs. Gate  
Fig. 10 - Typical Switching Losses vs.  
Resistance  
Junction Temperature  
www.irf.com  
5
GA600GD25S  
1500  
1200  
900  
600  
300  
0
320  
VGE =
17V  
TJ = 125°C  
VCE measured at terminal ( Peak Voltage )  
R
T
=15;RG2 = 0 Ω  
G1  
J
°
= 125 C  
V
= 150V  
= 15V  
CC  
V
GE  
240  
160  
80  
SAFE OPERATING AREA  
A
0
0
200  
400  
600  
800  
1000  
1200  
0
100  
200  
300  
I
, Collector Current (A)  
C
V
, Collector-to-Emitter Voltage (V)  
CE  
Fig. 11 - Typical Switching Losses vs.  
Fig. 12 - Reverse Bias SOA  
Collector-to-Emitter Current  
1000  
20000  
16000  
12000  
8000  
I
= 1000A  
F
I
I
= 600A  
= 300A  
F
F
T = 125°C  
J
T = 25°C  
J
100  
VR = 150V  
TJ = 125°C  
TJ = 25°C  
10  
4000  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
300  
400  
500  
600  
Forward Voltage Drop - V  
(V)  
FM  
di /dt - (A/µs)  
f
Fig. 14 - Typical Stored Charge vs. dif/dt  
Fig. 13 - Typical Forward Voltage Drop vs.  
Instantaneous Forward Current  
6
www.irf.com  
GA600GD25S  
120  
100  
80  
360  
340  
320  
300  
280  
I
= 1000A  
= 600A  
F
I
I
= 1000A  
= 600A  
F
I
F
F
I
F
= 300A  
I
= 300A  
F
60  
VR = 150V  
TJ = 125°C  
TJ = 25°C  
VR = 150V  
TJ = 125°C  
TJ = 25°C  
40  
300  
300  
400  
500  
600  
400  
500  
600  
di /dt - (A/µs)  
di /dt - (A/µs)  
f
f
Fig. 15 - Typical Reverse Recovery vs. dif/dt  
Fig. 16 - Typical Recovery Current vs. dif/dt  
www.irf.com  
7
GA600GD25S  
90%  
10%  
V
ge  
V
C
90%  
t
d(off)  
10%  
5%  
I
C
t
f
t
r
t
d(on)  
t=5µs  
E
on  
E
off  
Fig. 17a - Test Circuit for Measurement of  
LM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf  
E = (E +E  
ts on off  
)
I
Fig. 17b - Test Waveforms for Circuit of Fig. 18a, Defining  
Eoff, td(off), tf  
trr  
trr  
GATE VOLTAGE D.U.T.  
Qrr =  
Ic dt  
Ic  
tx  
10% +Vg  
+Vg  
tx  
10% Irr  
10% Vcc  
Vcc  
DUT VOLTAGE  
AND CURRENT  
Vce  
Vpk  
Irr  
10% Ic  
Vcc  
Ipk  
90% Ic  
Ic  
DIODE RECOVERY  
WAVEFORMS  
5% Vce  
tr  
td(on)  
t2  
Eon = Vce Ic dt  
t4  
Erec = 
Vd Ic dt  
t1  
t3  
DIODE REVERSE  
RECOVERY ENERGY  
t1  
t2  
t3  
t4  
Fig. 17d - Test Waveforms for Circuit of Fig. 18a,  
Fig. 17c - Test Waveforms for Circuit of Fig. 18a,  
Defining Erec, trr, Qrr, Irr  
Defining Eon, td(on), tr  
8
www.irf.com  
GA600GD25S  
Vg  
GATE SIGNAL  
DEVICE UNDER TEST  
CURRENT D.U.T.  
VOLTAGE IN D.U.T.  
CURRENT IN D1  
t0  
t1  
t2  
Figure 17e. Macro Waveforms for Figure 18a's Test Circuit  
150V  
2 X IC @25°C  
D.U.T.  
L
RL=  
1000V  
V *  
c
0 - 150V  
50V  
6000µF  
100V  
Figure 19. Pulsed Collector Current  
Test Circuit  
Figure 18. Clamped Inductive Load Test Circuit  
www.irf.com  
9
GA600GD25S  
Notes:  

Repetitive rating; VGE = 17V, pulse width limited by  
max. junction temperature.  
‚
ƒ
„
See fig. 17  
For screws M6.  
Pulse width 50µs; single shot.  
Case Outline — DUAL INT-A-PAK  
x
x
6 [ . 2 3 6 ] MAX.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.08/02  
10  
www.irf.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY