HYB39S256800DT-7 [INFINEON]

256 MBit Synchronous DRAM; 256兆比特的同步DRAM
HYB39S256800DT-7
型号: HYB39S256800DT-7
厂家: Infineon    Infineon
描述:

256 MBit Synchronous DRAM
256兆比特的同步DRAM

存储 内存集成电路 光电二极管 动态存储器 时钟
文件: 总22页 (文件大小:545K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
256 MBit Synchronous DRAM  
High Performance:  
Data Mask for Read / Write control (x4, x8)  
Data Mask for byte control (x16)  
-6  
-7  
-7.5  
-8  
Units  
Auto Refresh (CBR) and Self Refresh  
Power Down and Clock Suspend Mode  
8192 refresh cycles / 64 ms (7,8 µs)  
Random Column Address every CLK  
( 1-N Rule)  
fCK  
166  
6
143  
7
133  
7.5  
5.4  
10  
6
125  
8
MHz  
ns  
tCK3  
tAC3  
tCK2  
tAC2  
5
5.4  
7.5  
5.4  
6
ns  
7.5  
5.4  
10  
6
ns  
Single 3.3V +/- 0.3V Power Supply  
LVTTL Interface versions  
ns  
Plastic Packages:  
P-TSOPII-54 400mil width (x4, x8, x16)  
Fully Synchronous to Positive Clock Edge  
0 to 70 °C operating temperature  
Four Banks controlled by BA0 & BA1  
Programmable CAS Latency: 2 & 3  
Chipsize Packages:  
54 ball TFBGA (12 mm x 8 mm)  
-6 parts for PC166 3-3-3 operation  
-7 parts for PC133 2-2-2 operation  
-7.5 parts for PC133 3-3-3 operation  
-8 parts for PC100 2-2-2 operation  
Programmable Wrap Sequence: Sequential  
or Interleave  
Programmable Burst Length:  
1, 2, 4, 8 and full page  
Multiple Burst Read with Single Write  
Operation  
Automatic and Controlled Precharge  
Command  
The HYB39S256400/800/160DT(L) are four bank Synchronous DRAM’s organized as 4 banks x  
16MBit x4, 4 banks x 8MBit x8 and 4 banks x 4Mbit x16 respectively. These synchronous devices  
achieve high speed data transfer rates for CAS-latencies by employing a chip architecture that  
prefetches multiple bits and then synchronizes the output data to a system clock. The chip is  
fabricated with INFINEON’s advanced 0.14 µm 256MBit DRAM process technology.  
The device is designed to comply with all industry standards set for synchronous DRAM products,  
both electrically and mechanically. All of the control, address, data input and output circuits are  
synchronized with the positive edge of an externally supplied clock.  
Operating the four memory banks in an interleave fashion allows random access operation to occur  
at a higher rate than is possible with standard DRAMs. A sequential and gapless data rate is  
possible depending on burst length, CAS latency and speed grade of the device.  
Auto Refresh (CBR) and Self Refresh operation are supported. These devices operate with a single  
3.3V +/- 0.3V power supply. All 256Mbit components are available in TSOPII-54 and TFBGA-54  
packages.  
INFINEON Technologies  
1
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
Ordering Information  
Type  
Speed Grade  
Package  
Description  
HYB 39S256400DT-6  
HYB 39S256400DT-7  
HYB 39S256400DT-7.5  
HYB 39S256400DT-8  
HYB 39S256800DT-6  
HYB 39S256800DT-7  
HYB 39S256800DT-7.5  
HYB 39S256800DT-8  
HYB 39S256160DT-6  
HYB 39S256160DT-7  
HYB 39S256160DT-7.5  
HYB 39S256160DT-8  
HYB39S256800DTL-x  
PC166-333-520  
PC133-222-520  
PC133-333-520  
PC100-222-620  
PC166-333-520  
PC133-222-520  
PC133-333-520  
PC100-222-620  
PC166-333-520  
PC133-222-520  
PC133-333-520  
PC100-222-620  
P-TSOP-54-2 (400mil)  
P-TSOP-54-2 (400mil)  
P-TSOP-54-2 (400mil)  
P-TSOP-54-2 (400mil)  
P-TSOP-54-2 (400mil)  
P-TSOP-54-2 (400mil)  
P-TSOP-54-2 (400mil)  
P-TSOP-54-2 (400mil)  
P-TSOP-54-2 (400mil)  
P-TSOP-54-2 (400mil)  
P-TSOP-54-2 (400mil)  
P-TSOP-54-2 (400mil)  
P-TSOP-54-2 (400mil)  
166MHz 4B x 16M x 4 SDRAM  
143MHz 4B x 16M x 4 SDRAM  
133MHz 4B x 16M x 4 SDRAM  
125MHz 4B x 16M x 4 SDRAM  
166MHz 4B x 8M x 8 SDRAM  
143MHz 4B x 8M x 8 SDRAM  
133MHz 4B x 8M x 8 SDRAM  
125MHz 4B x 8M x 8 SDRAM  
166MHz 4B x 4M x 16 SDRAM  
143MHz 4B x 4M x 16 SDRAM  
133MHz 4B x 4M x 16 SDRAM  
125MHz 4B x 4M x 16 SDRAM  
4B x 8M x 8 SDRAM Low Power  
Versions (on request)  
HYB39S256160DTL-x  
HYB39S256xx0DC(L)-x  
P-TSOP-54-2 (400mil)  
P-TFBGA-54  
4B x 4M x 16 SDRAM Low Power  
Versions (on request)  
(on request)  
Pin Description:  
CLK  
CKE  
Clock Input  
DQx  
Data Input /Output  
Data Mask  
Clock Enable  
DQM, LDQM, UDQM  
CS  
RAS  
Chip Select  
Row Address Strobe  
Column Address Strobe  
Write Enable  
VDD  
VSS  
Power (+3.3V)  
Ground  
CAS  
VDDQ  
VSSQ  
NC  
Power for DQ’s (+ 3.3V)  
Ground for DQ’s  
not connected  
WE  
A0-A12  
BA0, BA1  
Address Inputs  
Bank Select  
INFINEON Technologies  
2
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
Pinouts (TSOP-54)  
16 M x 16  
32 M x 8  
64 M x 4  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
1
2
3
4
5
6
7
8
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
DQ0  
VDDQ  
DQ0  
VDDQ  
N.C.  
VDDQ  
N.C.  
VSSQ  
DQ7  
VSSQ  
DQ15  
VSSQ  
DQ1  
DQ2  
VSSQ  
N.C.  
DQ1  
VSSQ  
N.C.  
DQ0  
VSSQ  
N.C.  
DQ3  
VDDQ  
N.C.  
DQ6  
VDDQ  
DQ14  
DQ13  
VDDQ  
DQ3  
DQ4  
VDDQ  
N.C.  
DQ2  
VDDQ  
N.C.  
N.C.  
VDDQ  
N.C.  
N.C.  
VSSQ  
N.C.  
DQ5  
VSSQ  
DQ12  
DQ11  
VSSQ  
9
DQ5  
DQ6  
VSSQ  
N.C.  
DQ3  
VSSQ  
N.C.  
DQ1  
VSSQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
N.C.  
DQ2  
VDDQ  
N.C.  
DQ4  
VDDQ  
DQ10  
DQ9  
VDDQ  
DQ8  
VSS  
DQ7  
VDD  
N.C.  
VDD  
N.C.  
VDD  
N.C.  
VSS  
N.C.  
VSS  
LDQM N.C.  
WE  
N.C.  
WE  
CAS  
RAS  
CS  
N.C.  
DQM  
CLK  
CKE  
A12  
A11  
A9  
A8  
A7  
A6  
A5  
N.C.  
DQM  
CLK  
CKE  
A12  
A11  
A9  
A8  
A7  
A6  
A5  
N.C.  
UDQM  
CLK  
CKE  
A12  
A11  
A9  
A8  
A7  
A6  
A5  
WE  
CAS  
RAS  
CS  
BA0  
BA1  
CAS  
RAS  
CS  
BA0  
BA1  
BA0  
BA1  
A10/AP A10/AP A10/AP  
A0  
A1  
A2  
A3  
VDD  
A0  
A1  
A2  
A3  
VDD  
A0  
A1  
A2  
A3  
VDD  
A4  
VSS  
A4  
VSS  
A4  
VSS  
TSOPII-54 (400 mil x 875 mil, 0.8 mm pitch)  
SPP04126  
INFINEON Technologies  
3
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
Pinouts (TFBGA-54)  
Pin Configuration for x16 devices:  
1
2
3
7
8
9
VSS DQ15 VSSQ  
DQ14 DQ13 VDDQ  
DQ12 DQ11 VSSQ  
DQ10 DQ9 VDDQ  
A
B
C
D
E
F
VDDQ DQ0  
VSSQ DQ2  
VDDQ DQ4  
VSSQ DQ6  
VDD  
DQ1  
DQ3  
DQ5  
DQ8  
NC  
VSS  
CKE  
A9  
VDD LDQM DQ7  
UDQM CLK  
CAS  
BA0  
A0  
RAS  
BA1  
A1  
WE  
CS  
A12  
A8  
A11  
A7  
G
H
J
A6  
A10  
VDD  
VSS  
A5  
A4  
A3  
A2  
Pin Configuration for x8 devices:  
1
2
3
7
8
9
VSS  
NC  
NC  
NC  
NC  
DQ7 VSSQ  
DQ6 VDDQ  
DQ5 VSSQ  
DQ4 VDDQ  
A
B
C
D
E
F
VDDQ DQ0  
VSSQ DQ1  
VDDQ DQ2  
VSSQ DQ3  
VDD  
NC  
NC  
NC  
NC  
VSS  
CKE  
A9  
VDD  
CAS  
BA0  
A0  
NC  
RAS  
BA1  
A1  
NC  
DQM CLK  
WE  
CS  
A12  
A8  
A11  
A7  
G
H
J
A6  
A10  
VDD  
VSS  
A5  
A4  
A3  
A2  
Pin Configuration for x4 devices:  
1
2
3
7
8
9
VSS  
NC  
NC  
NC  
NC  
NC  
VSSQ  
A
B
C
D
E
F
VDDQ  
NC  
VDD  
NC  
DQ3 VDDQ  
NC VSSQ  
DQ2 VDDQ  
VSSQ DQ0  
VDDQ NC  
VSSQ DQ1  
NC  
NC  
NC  
VSS  
CKE  
A9  
VDD  
CAS  
BA0  
A0  
NC  
RAS  
BA1  
A1  
NC  
DQM CLK  
WE  
CS  
G
H
J
A12  
A8  
A11  
A7  
A6  
A10  
VDD  
VSS  
A5  
A4  
A3  
A2  
INFINEON Technologies  
4
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
Pinout for x4, x8 & x16 organised 256M-DRAMs  
C o lum n A d d res ses  
R ow A d d re sse s  
A 0 - A 9 , A 11 , A P,  
B A 0 , B A 1  
A 0 - A 1 2 ,  
B A 0 , B A 1  
C olu m n A d d re ss  
C o un ter  
C olu m n A d d re ss  
B u ffe r  
R ow A d d re ss  
R e fre sh C o u nte r  
B u ffe r  
R o w  
D e co de r  
R ow  
D e co d e r  
R o w  
D e co de r  
R ow  
D eco d e r  
M em ory  
A rray  
M e m o ry  
A rray  
M e m o ry  
A rray  
M e m o ry  
A rray  
B a n k 0  
8 1 96  
B a nk  
81 9 2  
x 2 0 48  
x 4 B it  
1
B a n k 2  
8 1 9 2  
B a nk  
3
8 19 2  
x 2 0 4 8  
x 4 B it  
x
20 4 8  
x
20 4 8  
B it  
x
4
B it  
x
4
In p ut B u ffe r  
O u tp u t B uffe r  
C o ntro l L og ic &  
T im in g G en e rato r  
D Q 0 - D Q 3  
S P B 0 4 1 2 7 _2  
Block Diagram for 64M x 4 SDRAM ( 13 / 11 / 2 addressing)  
INFINEON Technologies  
5
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
Column Addresses  
Row Addresses  
A0 - A9, AP,  
BA0, BA1  
A0 - A12,  
BA0, BA1  
Column Address  
Counter  
Column Address  
Buffer  
Row Address  
Refresh Counter  
Buffer  
Row  
Decoder  
Row  
Decoder  
Row  
Decoder  
Row  
Decoder  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
8192  
x 1024  
x 8 Bit  
8192  
x 1024  
x 8 Bit  
8192  
x 1024  
x 8 Bit  
8192  
x 1024  
x 8 Bit  
Input Buffer Output Buffer  
DQ0 - DQ7  
Control Logic &  
Timing Generator  
SPB04128  
Block Diagram for 32M x 8 SDRAM ( 13 / 10 / 2 addressing)  
INFINEON Technologies  
6
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
Column Addresses  
Row Addresses  
A0 - A8, AP,  
BA0, BA1  
A0 - A12,  
BA0, BA1  
Column Address  
Counter  
Column Address  
Buffer  
Row Address  
Refresh Counter  
Buffer  
Row  
Decoder  
Row  
Decoder  
Row  
Decoder  
Row  
Decoder  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
8192 x 512  
x 16 Bit  
8192 x 512  
x 16 Bit  
8192 x 512  
x 16 Bit  
8192 x 512  
x 16 Bit  
Input Buffer Output Buffer  
DQ0 - DQ15  
Control Logic &  
Timing Generator  
SPB04129  
Block Diagram for 16M x16 SDRAM ( 13 / 9 / 2 addressing)  
INFINEON Technologies  
7
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
Signal Pin Description  
Pin  
Type Signal Polarity Function  
CLK  
Input Pulse Positive The system clock input. All of the SDRAM inputs are  
Edge  
sampled on the rising edge of the clock.  
CKE  
CS  
Input Level Active  
High  
Activates the CLK signal when high and deactivates the  
CLK signal when low, thereby initiating either the Power  
Down mode, Suspend mode, or the Self Refresh mode.  
Input Pulse Active  
Low  
CS enables the command decoder when low and disables  
the command decoder when high. When the command  
decoder is disabled, new commands are ignored but  
previous operations continue.  
RAS  
CAS  
WE  
Input Pulse Active  
Low  
When sampled at the positive rising edge of the clock,  
CAS, RAS, and WE define the command to be executed by  
the SDRAM.  
A0 - A12 Input Level  
During a Bank Activate command cycle, A0-A12 define the  
row address (RA0-RA12) when sampled at the rising clock  
edge.  
During a Read or Write command cycle, A0-An define the  
column address (CA0-CAn) when sampled at the rising  
clock edge.CAn depends upon the SDRAM organization:  
64M x4 SDRAM CAn = CA9, CA11 (Page Length = 2048 bits)  
32M x8 SDRAM  
CAn = CA9  
(Page Length = 1024 bits)  
16M x16 SDRAM  
CAn = CA8  
(Page Length = 512 bits)  
In addition to the column address, A10(= AP) is used to  
invoke the autoprecharge operation at the end of the burst  
read or write cycle. If A10 is high, autoprecharge is  
selected and BA0, BA1 defines the bank to be precharged.  
If A10 is low, autoprecharge is disabled.  
During a Precharge command cycle, A10 (= AP) is used in  
conjunction with BA0 and BA1 to control which bank(s) to  
precharge. If A10 is high, all four banks will be precharged  
regardless of the state of BA0 and BA1. If A10 is low, then  
BA0 and BA1 are used to define which bank to precharge.  
BA0, BA1 Input Level  
Bank Select Inputs. Bank address inputs selects which of  
the four banks a command applies to.  
DQx  
Input Level  
Output  
Data Input/Output pins operate in the same manner as on  
conventional DRAMs.  
INFINEON Technologies  
8
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
Pin  
Type Signal Polarity Function  
DQM  
LDQM  
UDQM  
Input Pulse Active  
High  
The Data Input/Output mask places the DQ buffers in a  
high impedance state when sampled high. In Read mode,  
DQM has a latency of two clock cycles and controls the  
output buffers like an output enable. In Write mode, DQM  
has a latency of zero and operates as a word mask by  
allowing input data to be written if it is low but blocks the  
write operation if DQM is high.  
One DQM input is present in x4 and x8 SDRAMs, LDQM  
and UDQM controls the lower and upper bytes in x16  
SDRAMs.  
VDD  
VSS  
Supply –  
Supply –  
Power and ground for the input buffers and the core logic.  
VDDQ  
VSSQ  
Isolated power supply and ground for the output buffers to  
provide improved noise immunity.  
INFINEON Technologies  
9
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
Operation Definition  
All of SDRAM operations are defined by states of control signals CS, RAS, CAS, WE, and DQM at  
the positive edge of the clock. The following list shows the truth table for the operation commands.  
Operation  
Device  
State  
Idle3  
CKE CKE DQM BA0 AP= Addr CS  
RAS CAS WE  
n-1  
H
H
H
H
H
H
H
H
H
H
H
H
H
n
X
X
X
X
X
X
X
X
X
X
X
H
L
BA1 A10  
.
Bank Active  
Bank Precharge  
Precharge All  
Write  
X
X
X
X
X
X
X
X
X
X
X
X
X
V
V
X
V
V
V
V
V
X
X
X
X
X
V
L
V
X
X
V
V
V
V
V
X
X
X
X
X
L
L
L
L
L
L
L
L
L
L
H
L
L
H
L
L
L
H
H
H
L
H
L
Any  
Any  
H
L
L
L
Active3  
H
H
H
H
L
L
Write with Autoprecharge Active3  
Read  
Active3  
Read with Autoprecharge Active3  
H
L
L
L
L
H
H
L
H
V
X
X
X
X
X
L
Mode Register Set  
No Operation  
Idle  
L
Any  
Active  
Any  
Idle  
H
H
X
L
H
H
X
L
H
L
Burst Stop  
Device Deselect  
Auto Refresh  
X
H
H
X
X
Self Refresh Entry  
Self Refresh Exit  
Idle  
L
L
Idle  
(Self  
Refr.)  
X
H
X
H
L
H
H
H
L
L
X
X
X
X
X
X
X
X
X
X
X
X
Clock Suspend Entry  
Active  
Idle  
X
H
X
X
X
X
X
X
Power Down Entry  
(Precharge or active  
standby)  
Active4  
Active  
L
X
H
L
H
X
X
H
H
X
X
H
H
X
X
L
Clock Suspend Exit  
Power Down Exit  
L
L
H
H
X
X
X
X
X
X
X
X
Any  
(Power  
Down)  
Data Write/Output Enable Active  
Data Write/Output Disable Active  
Notes  
H
H
X
X
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
1. V = Valid, x = Don’t Care, L = Low Level, H = High Level  
2. CKEn signal is input level when commands are provided, CKEn-1 signal is input level one clock before the  
commands are provided.  
3. This is the state of the banks designated by BA0, BA1 signals.  
4. Power Down Mode can not be entered in a burst cycle. When this command asserted in the burst mode cycle  
device is in clock suspend mode.  
INFINEON Technologies  
10  
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
Mode Register Set Table  
BA0 A12A11 A10 A9  
Operation Mode  
BA1  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
Address Bus (Ax)  
CAS Latency BT Burst Length  
Mode Register (Mx)  
Operation Mode  
Burst Type  
M9  
0
Mode  
M3  
0
Type  
burst read / burst write  
burst read / single write  
Sequential  
Interleave  
1
1
Burst Length  
CAS Latency  
Length  
M2  
M1  
M0  
M6  
0
M5  
0
M4  
0
Latency  
Sequential Interleave  
Reserved  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
4
8
1
2
4
8
0
0
1
Reserved  
0
1
0
2
3
0
1
1
1
0
0
1
0
1
Reserved  
Full Page  
Reserved  
Reserved  
1
1
0
1
1
1
INFINEON Technologies  
11  
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
Power On and Initialization  
The default power on state of the mode register is supplier specific and may be undefined.  
The following power on and initialization sequence guarantees the device is preconditioned to each  
users specific needs. Like a conventional DRAM, the Synchronous DRAM must be powered up and  
initialized in a predefined manner. During power on, all VDD and VDDQ pins must be built up  
simultaneously to the specified voltage when the input signals are held in the “NOP” state. The  
power on voltage must not exceed VDD+0.3V on any of the input pins or VDD supplies. The CLK  
signal must be started at the same time. After power on, an initial pause of 200 µs is required  
followed by a precharge of all banks using the precharge command. To prevent data contention on  
the DQ bus during power on, it is required that the DQM and CKE pins be held high during the initial  
pause period. Once all banks have been precharged, the Mode Register Set Command must be  
issued to initialize the Mode Register. A minimum of eight Auto Refresh cycles (CBR) are also  
required.These may be done before or after programming the Mode Register. Failure to follow these  
steps may lead to unpredictable start-up modes.  
Programming the Mode Register  
The Mode register designates the operation mode at the read or write cycle. This register is  
divided into four fields. First, a Burst Length Field which sets the length of the burst, Second, an  
Addressing Selection bit which programs the column access sequence in a burst cycle (interleaved  
or sequential). Third, a CAS Latency Field to set the access time at clock cycle. Fourth, an  
Operation mode field to differentiate between normal operation (Burst read and burst Write) and a  
special Burst Read and Single Write mode. After the initial power up, the mode set operation must  
be done before any activate command. Any content of the mode register can be altered by re-  
executing the mode set command. All banks must be in precharged state and CKE must be high at  
least one clock before the mode set operation. After the mode register is set, a Standby or NOP  
command is required. Low signals of RAS, CAS, and WE at the positive edge of the clock activate  
the mode set operation. Address input data at this timing defines parameters to be set as shown in  
the previous table.  
Read and Write Operation  
When RAS is low and both CAS and WE are high at the positive edge of the clock, a RAS cycle  
starts. According to address data, a word line of the selected bank is activated and all of sense  
amplifiers associated to the wordline are set. A CAS cycle is triggered by setting RAS high and CAS  
low at a clock timing after a necessary delay, tRCD, from the RAS timing. WE is used to define either  
a read (WE = H) or a write (WE = L) at this stage.  
SDRAM provides a wide variety of fast access modes. In a single CAS cycle, serial data read  
or write operations are allowed at up to a 166 MHz data rate. The numbers of serial data bits are the  
burst length programmed at the mode set operation, i.e., one of 1, 2, 4 and 8 and full page. Column  
addresses are segmented by the burst length and serial data accesses are done within this  
boundary. The first column address to be accessed is supplied at the CAS timing and the  
subsequent addresses are generated automatically by the programmed burst length and its  
sequence. For example, in a burst length of 8 with interleave sequence, if the first address is ‘2’,  
then the rest of the burst sequence is 3, 0, 1, 6, 7, 4, and 5.  
Full page burst operation is only possible using the sequential burst type and page length is  
a function of the I/O organization and column addressing. Full page burst operation does not self  
INFINEON Technologies  
12  
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
terminate once the burst length has been reached. In other words, unlike burst lengths of 2, 4 and  
8, full page burst continues until it is terminated using another command.  
Similar to the page mode of conventional DRAMs, burst read or write accesses on any column  
address are possible once the RAS cycle latches the sense amplifiers. The maximum tRAS or the  
refresh interval time limits the number of random column accesses. A new burst access can be  
done even before the previous burst ends. The interrupt operation at every clock cycle is supported.  
When the previous burst is interrupted, the remaining addresses are overridden by the new address  
with the full burst length. An interrupt which accompanies an operation change from a read to a write  
is possible by exploiting DQM to avoid bus contention.  
When two or more banks are activated sequentially, interleaved bank read or write operations  
are possible. With the programmed burst length, alternate access and precharge operations on two  
or more banks can realize fast serial data access modes among many different pages. Once two or  
more banks are activated, column to column interleave operation can be performed between  
different pages.  
Burst Length and Sequence:  
Burst Starting Address Sequential Burst Addressing  
Interleave Burst Addressing  
(decimal)  
Length  
(A2 A1 A0)  
(decimal)  
2
xx0  
xx1  
0, 1  
1, 0  
0, 1  
1, 0  
4
8
x00  
x01  
x10  
x11  
0, 1, 2, 3  
1, 2, 3, 0  
2, 3, 0, 1  
3, 0, 1, 2  
0, 1, 2, 3  
1, 0, 3, 2  
2, 3, 0, 1  
3, 2, 1, 0  
000  
001  
010  
011  
100  
101  
110  
111  
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
6
7
0
1
2
3
4
5
7
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
1
0
3
2
5
4
7
6
2
3
0
1
6
7
4
5
3
2
1
0
7
6
5
4
4
5
6
7
0
1
2
3
5
4
7
6
1
0
3
2
6
7
4
5
2
3
0
1
7
6
5
4
3
2
1
0
Full  
nnn  
Cn, Cn+1, Cn+2 ....  
not supported  
Page  
Refresh Mode  
SDRAM has two refresh modes, Auto Refresh and Self Refresh. Auto Refresh is similar to the  
CAS -before-RAS refresh of conventional DRAMs. All banks must be precharged before applying  
any refresh mode. An on-chip address counter increments the word and the bank addresses and no  
bank information is required for both refresh modes.  
The chip enters the Auto Refresh mode, when RAS and CAS are held low and CKE and WE  
are held high at a clock timing. The mode restores word line after the refresh and no external  
precharge command is necessary. A minimum tRC time is required between two automatic  
refreshes in a burst refresh mode. The same rule applies to any access command after the  
automatic refresh operation.  
INFINEON Technologies  
13  
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
The chip has an on-chip timer and the Self Refresh mode is available. The mode restores the  
word lines after RAS, CAS, and CKE are low and WE is high at a clock timing. All of external control  
signals including the clock are disabled. Returning CKE to high enables the clock and initiates the  
refresh exit operation. After the exit command, at least one tRC delay is required prior to any access  
command.  
DQM Function  
DQM has two functions for data I/O read and write operations. During reads, when it turns to  
“high“ at a clock timing, data outputs are disabled and become high impedance after two clock delay  
(DQM Data Disable Latency tDQZ). It also provides a data mask function for writes. When DQM is  
activated, the write operation at the next clock is prohibited (DQM Write Mask Latency tDQW = zero  
clocks).  
Suspend Mode  
During normal access mode, CKE is held high enabling the clock. When CKE is low, it freezes the  
internal clock and extends data read and write operations. One clock delay is required for mode  
entry and exit (Clock Suspend Latency tCSL).  
Power Down  
In order to reduce standby power consumption, a power down mode is available. All banks  
must be precharged and the necessary Precharge delay (trp) must occur before the SDRAM can  
enter the Power Down mode. Once the Power Down mode is initiated by holding CKE low, all of the  
receiver circuits except CLK and CKE are gated off. The Power Down mode does not perform any  
refresh operations, therefore the device can’t remain in Power Down mode longer than the Refresh  
period (tref) of the device. Exit from this mode is performed by taking CKE “high“. One clock delay  
is required for Power Down mode entry and exit.  
Auto Precharge  
Two methods are available to precharge SDRAMs. In an automatic precharge mode, the CAS  
timing accepts one extra address, CA10, to determine whether the chip restores or not after the  
operation. If CA10 is high when a Read Command is issued, the Read with Auto-Precharge  
function is initiated. If CA10 is high when a Write Command is issued, the Write with Auto-  
Precharge function is initiated. The SDRAM automatically enters the precharge operation a time  
delay equal to tWR (“write recovery time”) after the last data in.  
A burst operation with Auto-Precharge may only be interrupted by a burst start to another bank. It  
must not be interrupted by a precharge or a burst stop command.  
Precharge Command  
There is also a separate precharge command available. When RAS and WE are low and CAS is  
high at a clock timing, it triggers the precharge operation. Three address bits, BA0, BA1 and A10 are  
used to define banks as shown in the following list. The precharge command can be imposed one  
clock before the last data out for CAS latency = 2 and two clocks before the last data out for CAS  
latency = 3. Writes require a time delay twr (“write recovery time”) of 2 clocks minimum from the last  
data out to apply the precharge command.  
INFINEON Technologies  
14  
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
Bank Selection by Address Bits  
A10 BA0 BA1  
0
0
0
0
1
0
0
1
1
x
0
1
0
1
x
Bank 0  
Bank 1  
Bank 2  
Bank 3  
all Banks  
Burst Termination  
Once a burst read or write operation has been initiated, there are several methods in which to  
terminate the burst operation prematurely. These methods include using another Read or Write  
Command to interrupt an existing burst operation, use a Precharge Command to interrupt a burst  
cycle and close the active bank, or using the Burst Stop Command to terminate the existing burst  
operation but leave the bank open for future Read or Write Commands to the same page of the  
active bank. When interrupting a burst with another Read or Write Command care must be taken to  
avoid DQ contention. The Burst Stop Command, however, has the fewest restrictions making it the  
easiest method to use when terminating a burst operation before it has been completed. If a Burst  
Stop command is issued during a burst write operation, then any residual data from the burst write  
cycle will be ignored. Data that is presented on the DQ pins before the Burst Stop Command is  
registered will be written to the memory.  
Capacitance  
TA = 0 to 70 °C; VDD,  
V
DDQ = 3.3 V 0.3 V, f = 1 MHz  
Symbol  
Parameter  
Values  
Unit  
min.  
max.  
3.5  
Input capacitance (CLK)  
CI1  
2.5  
2.5  
pF  
Input capacitance  
CI2  
3.8  
pF  
(A0-A12, BA0,BA1,RAS, CAS, WE, CS, CKE, DQM)  
Input / Output capacitance (DQ)  
CIO  
4.0  
6.0  
pF  
Note: Capacitance values are shown for TSOP-54 packages. Capacitance values for TFBGA packages  
are lower by 0.5 pF.  
INFINEON Technologies  
15  
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
Absolute Maximum Ratings  
Parameter  
Symbol  
Limit Values  
max.  
Unit  
min.  
Input / Output voltage relative to VSS  
Power supply voltage  
VIN, VOUT  
VDD,VDDQ  
TA  
– 1.0  
4.6  
4.6  
+70  
+150  
1
V
– 1.0  
0
V
Operating Temperature  
oC  
oC  
W
mA  
Storage temperature range  
TSTG  
PD  
-55  
Power dissipation per SDRAM component  
Data out current (short circuit)  
IOS  
50  
Permanent device damage may occur if “Absolute Maximum Ratings” are exceeded.  
Functional operation should be restricted to recommended operation conditions.  
Exposure to higher than recommended voltage for extended periods of time affect device reliability  
Recommended Operation Conditions and DC Eletrical Characteristics  
T
A = 0 to 70 oC;  
Parameter  
Symbol  
Limit Values  
Unit Notes  
min.  
3.0  
2.0  
– 0.3  
2.4  
typ.  
max.  
Supply Voltage  
Input high voltage  
Input low voltage  
VDD,VDDQ  
VIH  
3.3  
3.6  
V
V
1
3.0  
0
VDDQ+0.3  
1, 2  
1, 2  
1
VIL  
0.8  
V
Output high voltage (IOUT = – 4.0 mA) VOH  
V
Output low voltage (IOUT = 4.0 mA)  
VOL  
IIL  
0.4  
5
V
1
Input leakage current, any input  
– 5  
mA  
(0 V < VIN < VDD, all other inputs = 0 V)  
Output leakage current  
IOL  
– 5  
5
mA  
(DQs are disabled, 0 V < VOUT < VDDQ  
)
Notes:  
1. All voltages are referenced to VSS  
.
2. Vih may overshoot to VDDQ + 2.0 V for pulse width of < 4ns with 3.3V. Vil may undershoot to -2.0 V for pulse  
width < 4.0 ns with 3.3V. Pulse width measured at 50% points with amplitude measured peak to DC  
reference.  
INFINEON Technologies  
16  
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
Operating Currents  
TA = 0 to 70 oC; VSS = 0 V; VDD, VDDQ = 3.3 V 0.3 V  
Symb.  
Note  
Parameter & Test Condition  
-6  
-7  
-7.5  
max.  
-8  
Operating Current  
One bank active, Burst length = 1  
tRC = tRC(min)  
Io = 0 mA  
,
IDD1  
IDD2P  
IDD2N  
IDD3N  
IDD3P  
IDD4  
100  
2
80  
80  
80  
2
mA 3, 4  
Precharge Standby Current  
in Power Down Mode  
CS =VIH (min.),  
CKE<=Vil(max)  
2
2
mA  
mA  
mA  
mA  
3
3
3
3
Precharge Standby Current  
in Non-Power Down Mode  
CS = VIH (min.),  
CKE>=Vih(min)  
35  
40  
5
30  
35  
5
30  
35  
5
25  
30  
5
No Operating Current  
CS = VIH(min),  
CKE>=VIH(min.)  
CS = VIH(min),  
CKE<=VIL(max.)  
active state ( max. 4 banks)  
Burst Operating Current  
110  
90  
90  
70  
mA 3, 4  
Read command cycling  
Auto Refresh Current  
t
RFC= tRFC(min)  
220  
3
190  
3
190  
3
160  
3
mA  
IDD5  
IDD6  
5
tRFC= 7.8 µs  
mA  
Auto Refresh command cycling  
Self Refresh Current  
(standard components)  
Self Refresh Mode, CKE=0.2V,  
tck=infinity  
x4, x8  
x16  
3
1.5  
3
1.5  
3
1.5  
3
1.5  
mA  
mA  
Self Refresh Current  
(low power components)  
Self Refresh Mode, CKE=0.2V,  
tck=infinity  
x8, x16  
IDD6  
0.85  
0.85  
0.85  
0.85 mA  
Notes:  
3. These parameters depend on the cycle rate. All values are measured at 166 MHz for “-6”, at 133 MHz for  
“-7” and “-7.5” and at 100 MHz for “-8” components with the outputs open. Input signals are changed once  
during tck.  
4. These parameters are measured with continuous data stream during read access and all DQ toggling. CL=3  
and BL=4 is assumed and the VDDQ current is excluded.  
5. tRFC= tRFC(min) “burst refresh”, tRFC= 7.8 µs “distributed refresh”.  
INFINEON Technologies  
17  
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
AC Characteristics 1)2)  
TA = 0 to 70 oC; VSS = 0 V; VDD, VDDQ = 3.3 V 0.3 V, tT = 1 ns  
Symbol  
Unit  
Parameter  
Limit Values  
-6  
PC166-  
333  
-7  
PC133-  
222  
-7.5  
PC133-  
333  
-8  
PC100-  
222  
min. max. min. max. min. max. min. max.  
Clock and Clock Enable  
Clock Cycle Time  
CAS Latency = 3  
CAS Latency = 2  
Clock Frequency  
6
7.5  
7
7.5  
7.5  
10  
8
10  
ns  
ns  
tCK  
tCK  
tAC  
CAS Latency = 3  
CAS Latency = 2  
166  
133  
143  
133  
133  
100  
125 MHz  
100 MHz  
Access Time from Clock  
2,  
3,  
6
CAS Latency = 3  
CAS Latency = 2  
5
5.4  
5.4  
5.4  
5.4  
6
6
6
ns  
ns  
Clock High Pulse Width  
tCH  
tCL  
tT  
2
2
2.5  
2.5  
2.5  
2.5  
3
3
ns  
ns  
Clock Low Pulse Width  
Transition time  
0.3  
1.2 0.3  
1.2 0.3  
1.2 0.5  
10 ns  
Setup and Hold Times  
Input Setup Time  
Input Hold Time  
4
4
4
4
tIS  
tIH  
1.5  
0.8  
1.5  
0.8  
2
1.5  
0.8  
1.5  
0.8  
2
1.5  
0.8  
1.5  
0.8  
2
2
1
2
1
2
ns  
ns  
CKE Setup Time  
CKE Hold Time  
tCKS  
tCKH  
tRSC  
ns  
ns  
Mode Register Set-up to Active  
delay  
CLK  
Power Down Mode Entry Time  
tSB  
0
6
0
7
0
7.5  
0
8
ns  
Common Parameters  
Row to Column Delay Time  
Row Precharge Time  
Row Active Time  
5
5
5
5
tRCD  
tRP  
tRAS  
tRC  
15  
15  
15  
15  
20  
20  
20  
20  
48  
70  
ns  
ns  
ns  
ns  
100k  
100k  
36 100k 37 100k 45  
Row Cycle Time  
60  
60  
67  
INFINEON Technologies  
18  
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
Symbol  
Unit  
Parameter  
Limit Values  
-6  
PC166-  
333  
-7  
PC133-  
222  
-7.5  
PC133-  
333  
-8  
PC100-  
222  
min. max. min. max. min. max. min. max.  
Row Cycle Time during Auto  
Refresh  
tRFC  
tRRD  
tCCD  
60  
12  
1
63  
14  
1
67  
15  
1
70  
16  
1
ns  
5
Activate(a) to Activate(b)  
Command period  
ns  
CAS(a) to CAS(b) Command  
period  
CLK  
Refresh Cycle  
Refresh Period (8192 cycles)  
Self Refresh Exit Time  
tREF  
1
64  
1
64  
1
64  
1
64 ms  
CLK  
tSREX  
Read Cycle  
Data Out Hold Time  
tOH  
2.5  
3
3
3
ns  
2,  
6
Data Out to Low Impedance Time  
Data Out to High Impedance Time  
DQM Data Out Disable Latency  
tLZ  
tHZ  
0
3
6
2
0
3
7
2
0
3
7
2
0
3
8
2
ns  
ns  
tDQZ  
CLK  
Write Cycle  
7
8
Last Data Input to Precharge  
(Write without AutoPrecharge)  
tWR  
tDAL,min  
tDQW  
12  
0
14  
15  
15  
0
ns  
Last Data Input to Activate  
(Write with AutoPrecharge)  
(twr/tck) + (trp/tck)  
CLK  
CLK  
DQM Write Mask Latency  
0
0
INFINEON Technologies  
19  
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
Notes  
1. For proper power-up see the operation section of this data sheet.  
2. AC timing tests for LV-TTL versions have VIL = 0.4 V and VIH = 2.4 V with the timing referenced to  
the 1.4 V crossover point. The transition time is measured between VIH and VIL. All AC  
measurements assume tT = 1 ns with the AC output load circuit shown in figure below. Specified  
tAC and tOH parameters are measured with a 50 pF only, without any resistive termination and  
with an input signal of 1V / ns edge rate between 0.8 V and 2.0 V.  
t CH  
2.4  
0.4  
V
V
1 .4 V  
C L O C K  
tT  
tC L  
tIH  
tIS  
IN PU T  
1 .4 V  
tAC  
tA C  
tL Z  
t OH  
O U TPU T  
1.4 V  
I/O  
50 pF  
tH Z  
Measurement conditions for  
IO.vsd  
tAC and tOH  
3. If clock rising time is longer than 1 ns, a time (tT/2 0.5) ns has to be added to this parameter.  
4. If tT is longer than 1 ns, a time (tT 1) ns has to be added to this parameter.  
5. These parameter account for the number of clock cycles and depend on the operating frequency  
of the clock, as follows:  
the number of clock cycles = specified value of timing period (counted in fractions as a whole  
number)  
6. Access time from clock tAC is 4.6 ns for PC133 components with no termination and 0 pF load,  
Data out hold time tOH is 1.8 ns for PC133 components with no termination and 0 pF load.  
7. It is recommended to use two clock cycles between the last data-in and the precharge command  
in case of a write command without Auto-Precharge. One clock cycle between the last data-in  
and the precharge command is also supported, but restricted to cycle times tck greater or equal  
the specified twr value, where tck is equal to the actual system clock time  
8. When a Write command with AutoPrecharge has been issued, a time of tdal(min) has be fullfilled  
before the next Activate Command can be applied. For each of the terms, if not already an  
integer, round up to the next highest integer. tck is equal to the actual system clock time.  
INFINEON Technologies  
20  
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
Package Outlines - TSOP  
Plastic Package P-TSOPII-54  
(400 mil, 0.8 mm lead pitch)  
Thin Small Outline Package, SMD  
ꢀ5˚ 5˚  
2)  
ꢀ0.ꢀ6 0.ꢀ3  
0.8  
0.5 0.ꢀ  
ꢀꢀ.76 0.2  
ꢀ5˚ 5˚  
0.ꢀ 54x  
26x 0.8 = 20.8  
3)  
+0.ꢀ  
-0.05  
M
0.2  
54x  
0.35  
54  
28  
27  
2.5 max  
ꢀ)  
22.22 0.ꢀ3  
GPX09039  
Index Marking  
ꢀ) Does not include plastic or metal protrusion of 0.ꢀ5 max per side  
2) Does not include plastic protrusion of 0.25 max per side  
3) Does not include dambar protrusion of 0.ꢀ3 max per side  
INFINEON Technologies  
21  
2002-04-23  
HYB39S256400/800/160DT(L)/DC(L)  
256MBit Synchronous DRAM  
Package Outlines- TFBGA  
TFBGA-54 package  
(12 mm x 8 mm, 54 balls)  
INFINEON Technologies  
22  
2002-04-23  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY