ICE2A265 [INFINEON]

Off-Line SMPS Current Mode Controller with integrated 650V/800V CoolMOS⑩; 离线式开关电源电流模式控制器,集成650V / 800V的CoolMOS ?
ICE2A265
型号: ICE2A265
厂家: Infineon    Infineon
描述:

Off-Line SMPS Current Mode Controller with integrated 650V/800V CoolMOS⑩
离线式开关电源电流模式控制器,集成650V / 800V的CoolMOS ?

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总23页 (文件大小:1498K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet, Version 3.0, September 2001  
CoolSET™-F2  
ICE2A165/265/365  
ICE2A180/280  
Off-Line SMPS Current Mode  
Controller with integrated 650V/  
800V CoolMOS™  
Power Management & Supply  
N e v e r s t o p t h i n k i n g .  
CoolSET™-F2  
Revision History:  
2001-09-19  
Datasheet  
Previous Version:  
First One  
Page  
Subjects (major changes since last revision)  
For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or  
the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://  
www.infineon.com  
CoolMOS™, CoolSET™ are trademarks of Infineon Technologies AG.  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
Edition 2001-09-19  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
D-81541 München  
© Infineon Technologies AG 1999.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted char-  
acteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest Infin-  
eon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
CoolSET™-F2  
ICE2A165/265/365  
ICE2A180/280  
Off-Line SMPS Current Mode Controller  
with integrated 650V/800V CoolMOS™  
Product Highlights  
• Best of Class in DIP8 Package  
• No Heatsink required  
• Lowest Standby Power Dissipation  
• Enhanced Protection Functions all  
with Auto Restart Mode  
P-DIP-8-6  
Description  
Features  
The second generation COOLSET™-F2 provides several  
special enhancements to satisfy the needs for low power  
standby and protection features. In standby mode  
frequency reduction is used to lower the power  
consumption and support a stable output voltage in this  
mode. The frequency reduction is limited to 21.5 kHz to  
avoid audible noise. In case of failure modes like open loop,  
overvoltage or overload due to short circuit the device  
switches in Auto Restart Mode which is controlled by the  
internal protection unit. By means of the internal precise  
peak current limitation the dimension of the transformer and  
the secondary diode can be lower which leads to more cost  
efficiency.  
650V/800V Avalanche Rugged CoolMOS™  
Only few external Components required  
Input Undervoltage Lockout  
100kHz Switching Frequency  
Max Duty Cycle 72%  
Low Power Standby Mode to meet European  
Commission Requirements  
Thermal Shut Down with Auto Restart  
Overload and Open Loop Protection  
Overvoltage Protection during Auto Restart  
Adjustable Peak Current Limitation via  
External Resistor  
Overall Tolerance of Current Limiting < ±5%  
Internal Leading Edge Blanking  
User defined Soft Start  
Soft Switching for Low EMI  
Typical Application  
+
Converter  
Snubber  
RStart-up  
DC Output  
85 ... 270 VAC  
-
CVCC  
VCC  
Drain  
Feedback  
Low Power  
StandBy  
Power  
Management  
CoolMOS™  
SoftS  
CSoft Start  
PWM Controller  
Current Mode  
Soft-Start Control  
Isense  
GND  
Precise Low Tolerance  
Peak Current Limitation  
RSense  
FB  
Protection Unit  
PWM-Controller  
CoolSET™-F2  
Feedback  
230VAC ±15%2) 85-265 VAC2)  
1)  
Type  
Ordering Code  
Package  
UDS  
FOSC  
RDSon  
ICE2A165 Q67040-S4426  
ICE2A265 Q67040-S4414  
ICE2A365 Q67040-S4415  
P-DIP-8-6 650V 100kHz  
P-DIP-8-6 650V 100kHz  
P-DIP-8-6 650V 100kHz  
3.0Ω  
0.9Ω  
0.45Ω  
3.0Ω  
0.8Ω  
31W  
52W  
67W  
31W  
54W  
18W  
32W  
45W  
18W  
34W  
ICE2A180 ES Samples available P-DIP-8-6 800V 100kHz  
ICE2A280 Q67040-S4416  
P-DIP-8-6 800V 100kHz  
1)  
typ @ T=25°C  
2)  
Maximum power rating at Ta=75°C, Tj=125°C and with copper area on PCB = 6cm²,  
Datasheet  
3
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Table of Contents  
Page  
1
1.1  
1.2  
Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
2
Representative Blockdiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
3
3.1  
3.2  
3.2.1  
3.2.2  
3.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Improved Current Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
PWM-OP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
PWM-Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Oscillator and Frequency Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Frequency Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Leading Edge Blanking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Propagation Delay Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
PWM-Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Protection Unit (Auto Restart Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Overload & Open loop with normal load . . . . . . . . . . . . . . . . . . . . . . . . .12  
Overvoltage due to open loop with no load . . . . . . . . . . . . . . . . . . . . . . .13  
Thermal Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.4  
3.4.1  
3.4.2  
3.5  
3.5.1  
3.5.2  
3.6  
3.7  
3.8  
3.8.1  
3.8.2  
3.8.3  
4
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Supply Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Internal Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Control Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Protection Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
CoolMOSSection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
5
6
Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Outline Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Datasheet  
4
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Pin Configuration and Functionality  
1
Pin Configuration and Functionality  
1.1  
Pin Configuration  
1.2  
Pin Functionality  
SoftS (Soft Start & Auto Restart Control)  
Pin  
Symbol Function  
This pin combines the function of Soft Start in case of  
Start Up and Auto Restart Mode and the controlling of  
the Auto Restart Mode in case of an error detection.  
1
2
3
SoftS  
FB  
Soft-Start  
Feedback  
FB (Feedback)  
Isense Controller Current Sense Input,  
CoolMOS™ Source Output  
The information about the regulation is provided by the  
FB Pin to the internal Protection Unit and to the internal  
PWM-Comparator to control the duty cycle.  
650V1)/800V CoolMOS™ Drain  
Drain  
4
5
650V2)/800V CoolMOS™ Drain  
Drain  
Isense (Current Sense)  
6
7
8
N.C  
VCC  
GND  
Not connected  
The Current Sense pin senses the voltage developed  
on the series resistor inserted in the source of the  
integrated CoolMOS. When Isense reaches the  
internal threshold of the Current Limit Comparator, the  
Driver output is disabled. By this means the Over  
Current Detection is realized.  
Controller Supply Voltage  
Controller Ground  
1)  
2)  
at Tj = 110°C  
at Tj = 110°C  
Furthermore the current information is provided for the  
PWM-Comparator to realize the Current Mode.  
Drain (Drain of integrated CoolMOS)  
Package P-DIP-8-6  
Pin Drain is the connection to the Drain of the internal  
CoolMOSTM  
.
SoftS  
FB  
GND  
VCC  
N.C  
1
2
3
4
8
7
6
5
VCC (Power supply)  
This pin is the positiv supply of the IC. The operating  
range is between 8.5V and 21V.  
To provide overvoltage protection the driver gets  
disabled when the voltage becomes higher than 16.5V  
during Start Up Phase.  
Isense  
Drain  
GND (Ground)  
This pin is the ground of the primary side of the SMPS.  
Drain  
Figure 1  
Pin Configuration (top view)  
Datasheet  
5
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Representative Blockdiagram  
2
Representative Blockdiagram  
Figure 2  
Representative Blockdiagram  
Datasheet  
6
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Functional Description  
3
Functional Description  
3.1  
Power Management  
3.2  
Improved Current Mode  
M ain Line (100V-380V)  
RStart-Up  
Soft-Start Com parator  
Prim ary W inding  
PW M -Latch  
FB  
C VCC  
R
Q
VCC  
Driver  
PW M Com parator  
Power Management  
S
Q
Undervoltage  
Internal  
Lockout  
Bias  
13.5V  
0.8V  
8.5V  
PW M O P  
6.5V  
Power-Down  
Reset  
5.3V  
4.8V  
4.0V  
Voltage  
x3.65  
Reference  
Isense  
Power-Up  
Reset  
Improved  
Current Mode  
R
S
Q
Q
PW M-Latch  
Figure 4  
Current Mode  
6.5V  
R Soft-Start  
Current Mode means that the duty cycle is controlled  
by the slope of the primary current. This is done by  
comparison the FB signal with the amplified current  
sense signal.  
Error-Latch  
SoftS  
Soft-Start C om parator  
Error-Detection  
T1  
CSoft-Start  
Am plified Current Signal  
FB  
Figure 3  
Power Management  
The Undervoltage Lockout monitors the external  
supply voltage VVCC. In case the IC is inactive the  
current consumption is max. 55µA. When the SMPS is  
plugged to the main line the current through RStart-up  
charges the external Capacitor CVCC. When VVCC  
exceeds the on-threshold VCCon=13.5V the internal bias  
circuit and the voltage reference are switched on. After  
it the internal bandgap generates a reference voltage  
0.8V  
Driver  
t
t
V
REF=6.5V to supply the internal circuits. To avoid  
uncontrolled ringing at switch-on a hysteresis is  
implemented which means that switch-off is only after  
active mode when Vcc falls below 8.5V.  
Ton  
In case of switch-on a Power Up Reset is done by  
reseting the internal error-latch in the protection unit.  
When VVCC falls below the off-threshold VCCoff=8.5V the  
internal reference is switched off and the Power Down  
reset let T1 discharging the soft-start capacitor CSoft-Start  
at pin SoftS. Thus it is ensured that at every switch-on  
the voltage ramp at pin SoftS starts at zero.  
Figure 5  
Pulse Width Modulation  
In case the amplified current sense signal exceeds the  
FB signal the on-time Ton of the driver is finished by  
reseting the PWM-Latch (see Figure 5).  
Datasheet  
7
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Functional Description  
The primary current is sensed by the external series  
resistor RSense inserted in the source of the integrated  
CoolMOS. By means of Current Mode the regulation  
of the secondary voltage is insensitive on line  
variations. Line variation causes varition of the  
increasing current slope which controls the duty cycle.  
The external RSense allows an individual adjustment of  
the maximum source current of the integrated  
CoolMOS.  
VO SC  
m ax.  
Duty Cycle  
Voltage Ram p  
t
Soft-Start Com parator  
PW M Com parator  
FB  
0.8V  
FB  
0.3V  
PW M -Latch  
Gate Driver  
t
0.3V  
Oscillator  
C5  
Gate Driver  
VO SC  
0.8V  
10k  
x3.65  
t
R1  
T2  
V1  
PW M OP  
Figure 7  
Light Load Conditions  
C1  
20pF  
3.2.1  
PWM-OP  
Voltage Ramp  
Figure 6 Improved Current Mode  
The input of the PWM-OP is applied over the internal  
leading edge blanking to the external sense resistor  
RSense connected to pin ISense. RSense converts the  
source current into a sense voltage. The sense voltage  
is amplified with a gain of 3.65 by PWM OP. The output  
of the PWM-OP is connected to the voltage source V1.  
The voltage ramp with the superimposed amplified  
current singal is fed into the positive inputs of the PWM-  
Comparator, C5 and the Soft-Start-Comparator.  
To improve the Current Mode during light load  
conditions the amplified current ramp of the PWM-OP  
is superimposed on a voltage ramp, which is built by  
the switch T2, the voltage source V1 and the 1st order  
low pass filter composed of R1 and C1(see Figure 6,  
Figure 7). Every time the oscillator shuts down for max.  
duty cycle limitation the switch T2 is closed by VOSC  
When the oscillator triggers the Gate Driver T2 is  
opened so that the voltage ramp can start.  
.
3.2.2  
PWM-Comparator  
The PWM-Comparator compares the sensed current  
signal of the integrated CoolMOSTM with the feedback  
signal VFB (see Figure 8). VFB is created by an external  
optocoupler or external transistor in combination with  
the internal pullup resistor RFB and provides the load  
information of the feedback circuitry. When the  
amplified current signal of the integrated CoolMOS™  
exceeds the signal VFB the PWM-Comparator switches  
off the Gate Driver.  
In case of light load the amplified current ramp is to  
small to ensure a stable regulation. In that case the  
Voltage Ramp is a well defined signal for the  
comparison with the FB-signal. The duty cycle is then  
controlled by the slope of the Voltage Ramp.  
By means of the C5 Comparator the Gate Driver is  
switched-off until the voltage ramp exceeds 0.3V. It  
allows the duty cycle to be reduced continously till 0%  
by decreasing VFB below that threshold.  
Datasheet  
8
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Functional Description  
pullup resistor RSoft-Start. The Soft-Start-Comparator  
compares the voltage at pin SoftS at the negative input  
with the ramp signal of the PWM-OP at the positive  
input. When Soft-Start voltage VSoftS is less than  
Feedback voltage VFB the Soft-Start-Comparator limits  
the pulse width by reseting the PWM-Latch (see Figure  
9). In addition to Start-Up, Soft-Start is also activated at  
each restart attempt during Auto Restart. By means of  
the above mentioned CSoft-Start the Soft-Start can be  
defined by the user. The Soft-Start is finished when  
6.5V  
Soft-Start Com parator  
RFB  
FB  
PW M -Latch  
VSoftS exceeds 5.3V. At that time the Protection Unit is  
activated by Comparator C4 and senses the FB by  
Comparator C3 wether the voltage is below 4.8V which  
means that the voltage on the secondary side of the  
SMPS is settled. The internal Zener Diode at SoftS with  
breaktrough voltage of 5.6V is to prevent the internal  
circuit from saturation (see Figure 10).  
PW M Com parator  
0.8V  
Optocoupler  
PW M O P  
Isense  
x3.65  
6.5V  
Power-Up Reset  
5.6V  
RSoft-Start  
Error-Latch  
Improved  
R
S
R
S
Q
Q
Q
Q
SoftS  
6.5V  
Current Mode  
C4  
G 2  
5.3V  
Figure 8  
PWM Controlling  
4.8V  
RFB  
C3  
3.3  
Soft-Start  
Gate  
Driver  
FB  
Clock  
VSoftS  
PW M -Latch  
Figure 10 Activation of Protection Unit  
5.6V  
5.3V  
The Start-Up time TStart-Up within the converter output  
voltage VOUT is settled must be shorter than the Soft-  
Start Phase TSoft-Start (see Figure 11).  
TSoft-Start  
TSoft Start  
CSoft Start  
=
G ate Driver  
t
t
RSoft Start ×1,69  
By means of Soft-Start there is an effective  
minimization of current and voltage stresses on the  
integrated CoolMOS, the clamp circuit and the output  
overshoot and prevents saturation of the transformer  
during Start-Up.  
Figure 9  
Soft-Start Phase  
The Soft-Start is realized by the internal pullup resistor  
RSoft-Start and the external Capacitor CSoft-Start (see  
Figure 2). The Soft-Start voltage VSoftS is generated by  
charging the external capacitor CSoft-Start by the internal  
Datasheet  
9
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Functional Description  
kHz  
100  
VSoftS  
5.3V  
65  
TSoft-Start  
21,5  
0,9  
VFB  
t
t
1,0  
1,1  
1,2  
1,3  
1,4  
1,5  
1,6  
1,7  
1,8  
1,9  
2
V
VFB  
4.8V  
Figure 12 Frequency Dependence  
3.5  
Current Limiting  
VO UT  
There is a cycle by cycle current limiting realised by the  
Current-Limit Comparator to provide an overcurrent  
detection. The source current of the integrated  
CoolMOSTM is sensed via an external sense resistor  
RSense . By means of RSense the source current is  
transformed to a sense voltage VSense. When the  
voltage VSense exceeds the internal threshold voltage  
Vcsth the Current-Limit-Comparator immediately turns  
off the gate drive. To prevent the Current Limiting from  
distortions caused by leading edge spikes a Leading  
Edge Blanking is integrated at the Current Sense.  
Furthermore a Propagation Delay Compensation is  
added to support the immedeate shut down of the  
CoolMOSin case of overcurrent.  
VO UT  
TStart-Up  
t
Figure 11 Start Up Phase  
3.4  
Oscillator and Frequency  
Reduction  
3.5.1  
Leading Edge Blanking  
3.4.1  
Oscillator  
The oscillator generates a frequency fswitch = 100kHz. A  
resistor, a capacitor and a current source and current  
sink which determine the frequency are integrated. The  
charging and discharging current of the implemented  
oscillator capacitor are internally trimmed, in order to  
achieve a very accurate switching frequency. The ratio  
of controlled charge to discharge current is adjusted to  
reach a max. duty cycle limitation of Dmax=0.72.  
VSense  
Vcsth  
tLEB = 220ns  
3.4.2  
Frequency Reduction  
The frequency of the oscillator is depending on the  
voltage at pin FB. The dependence is shown in Figure  
12. This feature allows a power supply to operate at  
lower frequency at light loads thus lowering the  
switching losses while maintaining good cross  
regulation performance and low output ripple. In case  
of low power the power consumption of the whole  
SMPS can now be reduced very effective. The minimal  
reachable frequency is limited to 21.5 kHz to avoid  
audible noise in any case.  
t
Figure 13 Leading Edge Blanking  
Each time when CoolMOSis switched on a leading  
spike is generated due to the primary-side  
capacitances and secondary-side rectifier reverse  
recovery time. To avoid a premature termination of the  
switching pulse this spike is blanked out with a time  
constant of tLEB = 220ns. During that time the output of  
the Current-Limit Comparator cannot switch off the  
gate drive.  
Datasheet  
10  
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Functional Description  
The propagation delay compensation is done by  
means of a dynamic threshold voltage Vcsth (see Figure  
15). In case of a steeper slope the switch off of the  
driver is earlier to compensate the delay.  
3.5.2  
Propagation Delay Compensation  
In case of overcurrent detection by ILimit the shut down  
of CoolMOSis delayed due to the propagation delay  
of the circuit. This delay causes an overshoot of the  
peak current Ipeak which depends on the ratio of dI/dt of  
the peak current (see Figure 14).  
E.g. Ipeak = 0.5A with RSense = 2 . Without propagation  
delay compensation the current sense threshold is set  
to a static voltage level Vcsth=1V. A current ramp of  
dI/dt = 0.4A/µs, that means dVSense/dt = 0.8V/µs, and a  
propagation delay time of i.e. tPropagation Delay =180ns  
leads then to a Ipeak overshoot of 12%. By means of  
propagation delay compensation the overshoot is only  
about 2% (see Figure 16).  
.
Signal2  
IO vershoot2  
Signal1  
tPropagation Delay  
ISense  
Ipeak2  
Ipeak1  
ILim it  
with compensation  
without compensation  
V
1,3  
IO vershoot1  
1,25  
1,2  
1,15  
1,1  
t
1,05  
1
Figure 14 Current Limiting  
The overshoot of Signal2 is bigger than of Signal1 due  
to the steeper rising waveform.  
0,95  
0,9  
0
0,2 0,4 0,6 0,8  
1
1,2 1,4 1,6 1,8  
2
V
A propagation delay compensation is integrated to  
bound the overshoot dependent on dI/dt of the rising  
primary current. That means the propagation delay  
time between exceeding the current sense threshold  
dVSense  
dt  
µs  
Figure 16 Overcurrent Shutdown  
Vcsth and the switch off of CoolMOSis compensated  
over temperature within a range of at least.  
3.6  
PWM-Latch  
dI  
dV Sense  
dt  
peak  
0 RSense  
×
1  
The oscillator clock output applies a set pulse to the  
PWM-Latch when initiating CoolMOSconduction.  
After setting the PWM-Latch can be reset by the PWM-  
OP, the Soft-Start-Comparator, the Current-Limit-  
Comparator, Comparator C3 or the Error-Latch of the  
Protection Unit. In case of reseting the driver is shut  
down immediately.  
dt  
So current limiting is now capable in a very accurate  
way (see Figure 16).  
VOSC  
max. Duty Cycle  
3.7  
Driver  
off time  
The driver-stage drives the gate of the CoolMOS™  
and is optimized to minimize EMI and to provide high  
circuit efficiency. This is done by reducing the switch on  
slope when reaching the CoolMOSthreshold. This is  
achieved by a slope control of the rising edge at the  
drivers output (see Figure 17).  
VSense  
t
Propagation Delay  
Vcsth  
Thus the leading switch on spike is minimized. When  
CoolMOSis switched off, the falling shape of the  
driver is slowed down when reaching 2V to prevent an  
overshoot below ground. Furthermore the driver circuit  
is designed to eliminate cross conduction of the output  
stage. At voltages below the undervoltage lockout  
threshold VVCCoff the gate drive is active low.  
Signal1  
Signal2  
t
Figure 15 Dynamic Voltage Threshold Vcsth  
Datasheet  
11  
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Functional Description  
ca. t = 130ns  
VG ate  
Overload & Open loop/normal load  
5µs Blanking  
FB  
4.8V  
Failure  
Detection  
5V  
t
SoftS  
5.3V  
t
Figure 17 Gate Rising Slope  
Soft-Start Phase  
3.8  
Protection Unit (Auto Restart Mode)  
An overload, open loop and overvoltage detection is  
integrated within the Protection Unit. These three  
failure modes are latched by an Error-Latch. Additional  
thermal shutdown is latched by the Error-Latch. In case  
of those failure modes the Error-Latch is set after a  
blanking time of 5µs and the CoolMOSis shut down.  
That blanking prevents the Error-Latch from distortions  
caused by spikes during operation mode.  
t
TBurst1  
Driver  
TRestart  
t
3.8.1  
Overload & Open loop with normal  
load  
VCC  
13.5V  
Figure 18 shows the Auto Restart Mode in case of  
overload or open loop with normal load. The detection  
of open loop or overload is provided by the Comparator  
C3, C4 and the AND-gate G2 (see Figure19). The  
detection is activated by C4 when the voltage at pin  
SoftS exceeds 5.3V. Till this time the IC operates in the  
Soft-Start Phase. After this phase the comparator C3  
can set the Error-Latch in case of open loop or overload  
which leads the feedback voltage VFB to exceed the  
threshold of 4.8V. After latching VCC decreases till  
8.5V and inactivates the IC. At this time the external  
Soft-Start capacitor is discharged by the internal  
transistor T1 due to Power Down Reset. When the IC  
is inactive VVCC increases till VCCon = 13.5V by charging  
the Capacitor CVCC by means of the Start-Up Resistor  
8.5V  
t
Figure 18 Auto Restart Mode  
6.5V  
Power Up Reset  
RSoft-Start  
SoftS  
RStart-Up. Then the Error-Latch is reset by Power Up  
Reset and the external Soft-Start capacitor CSoft-Start is  
charged by the internal pullup resistor RSoft-Start . During  
the Soft-Start Phase which ends when the voltage at  
pin SoftS exceeds 5.3V the detection of overload and  
open loop by C3 and G2 is inactive. In this way the Start  
Up Phase is not detected as an overload.  
CSoft-Start  
C4  
Error-Latch  
5.3V  
G 2  
T1  
4.8V  
C3  
FB  
R FB  
6.5V  
Figure 19 FB-Detection  
Datasheet  
12  
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Functional Description  
But the Soft-Start Phase must be finished within the detection due to varying of VCC concerning the  
Start Up Phase to force the voltage at pin FB below the regulation of the converter output. When the voltage  
failure detection threshold of 4.8V.  
VSoftS is above 4.0V the overvoltage detection by C1 is  
deactivated.  
3.8.2  
Overvoltage due to open loop with  
no load  
VCC  
Open loop & no load condition  
5µs Blanking  
6.5V  
FB  
Error Latch  
C1  
C2  
G 1  
16.5V  
4.8V  
RSoft-Start  
Failure  
Detection  
4.0V  
SoftS  
t
Soft-Start Phase  
CSoft-Start  
SoftS  
T1  
Power Up Reset  
5.3V  
4.0V  
Overvoltage  
Detection Phase  
Figure 21 Overvoltage Detection  
t
TBurst2  
Driver  
TRestart  
3.8.3  
Thermal Shut Down  
Thermal Shut Down is latched by the Error-Latch when  
junction temperature Tj of the pwm controller is  
exceeding an internal threshold of 140°C. In that case  
the IC switches in Auto Restart Mode.  
t
O vervoltage Detection  
VCC  
16.5V  
13.5V  
8.5V  
t
Figure 20 Auto Restart Mode  
Figure 20 shows the Auto Restart Mode for open loop  
and no load condition. In case of this failure mode the  
converter output voltage increases and also VCC. An  
additional protection by the comparators C1, C2 and  
the AND-gate G1 is implemented to consider this  
failure mode (see Figure 21).The overvoltage detection  
is provided by Comparator C1 only in the first time  
during the Soft-Start Phase till the Soft-Start voltage  
exceeds the threshold of the Comparator C2 at 4.0V  
and the voltage at pin FB is above 4.8V. When VCC  
exceeds 16.5V during the overvoltage detection phase  
C1 can set the Error-Latch and the Burst Phase during  
Auto Restart Mode is finished earlier. In that case  
TBurst2 is shorter than TSoft-Start . By means of C2 the  
normal operation mode is prevented from overvoltage  
Note: All the values which are mentioned in the  
functional description are typical. Please refer  
to Electrical Characteristics for min/max limit  
values.  
Datasheet  
13  
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Electrical Characteristics  
4
Electrical Characteristics  
4.1  
Absolute Maximum Ratings  
Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction  
of the integrated circuit. For the same reason make sure, that any capacitor that will be connected to pin 6  
(VCC) is discharged before assembling the application circuit.  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
max.  
Drain Source Voltage  
ICE2A165/265/365  
VDS  
VDS  
-
650  
V
V
Tj=110°C  
Drain Source Voltage  
ICE2A180/280  
-
800  
Avalanche energy,  
repetitive tAR limited by  
max. Tj=150°C1)  
ICE2A165  
ICE2A265  
ICE2A365  
ICE2A180  
ICE2A280  
ICE2A165  
ICE2A265  
ICE2A365  
ICE2A180  
ICE2A280  
EAR1  
EAR2  
EAR3  
EAR4  
EAR5  
IAR1  
IAR2  
IAR3  
IAR4  
IAR5  
VCC  
VFB  
-
0.2  
0.4  
0.5  
0.2  
0.4  
1
mJ  
mJ  
mJ  
mJ  
mJ  
A
-
-
-
-
Avalanche current,  
repetitive tAR limited by  
max. Tj=150°C1)  
-
-
2
A
-
3
A
-
1
A
-
2
A
VCC Supply Voltage  
FB Voltage  
-0.3  
-0.3  
-0.3  
-0.3  
-40  
-50  
-
22  
6.5  
6.5  
3
V
V
SoftS Voltage  
VSoftS  
ISense  
Tj  
V
ISense  
V
Junction Temperature  
Storage Temperature  
150  
150  
90  
°C  
°C  
K/W  
Controller & CoolMOS™  
TS  
Thermal Resistance  
Junction-Ambient  
RthJA  
P-DIP-8-6  
ESD Capability2)  
VESD  
-
2
kV  
Human Body Model  
1)  
Repetetive avalanche causes additional power losses that can be calculated as PAV=EAR*f  
2)  
Equivalent to discharging a 100pF capacitor through a 1.5 kseries resistor  
Datasheet  
14  
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Electrical Characteristics  
4.2  
Operating Range  
Note: Within the operating range the IC operates as described in the functional description.  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
max.  
21  
VCC Supply Voltage  
VCC  
VCCoff  
-25  
V
Junction Temperature of  
Controller  
TJCon  
130  
°C  
limited due to thermal shut down of  
controller  
Junction Temperature of  
TJCoolMOS  
-25  
150  
°C  
CoolMOS™  
4.3  
Characteristics  
Note: The electrical characteristics involve the spread of values guaranteed within the specified supply voltage  
and junction temperature range TJ from – 25 °C to 125 °C.Typical values represent the median values,  
which are related to 25°C. If not otherwise stated, a supply voltage of VCC = 15 V is assumed.  
4.3.1  
Supply Section  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
27  
max.  
Start Up Current  
IVCC1  
IVCC2  
-
-
55  
µA  
VCC=VCCon -0.1V  
VSoftS = 0  
Supply Current with Inactiv  
Gate  
5.0  
6.6  
mA  
I
FB = 0  
Supply Current  
with Activ Gate  
ICE2A165  
ICE2A265  
ICE2A365  
ICE2A180  
ICE2A280  
IVCC3  
IVCC3  
IVCC3  
IVCC3  
IVCC3  
-
-
-
-
-
6.5  
6.7  
8.5  
6.5  
7.7  
7.8  
8
mA  
mA  
mA  
mA  
mA  
VSoftS = 5V  
I
FB = 0  
VSoftS = 5V  
I
FB = 0  
9.8  
7.8  
9
VSoftS = 5V  
I
FB = 0  
VSoftS = 5V  
I
FB = 0  
VSoftS = 5V  
I
FB = 0  
VCC Turn-On Threshold  
VCC Turn-Off Threshold  
VCC Turn-On/Off Hysteresis  
VCCon  
VCCoff  
VCCHY  
13  
-
4.5  
13.5  
8.5  
5
14  
-
5.5  
V
V
V
4.3.2  
Internal Voltage Reference  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
6.63  
Trimmed Reference Voltage  
VREF  
6.37  
6.50  
V
measured at pin FB  
Datasheet  
15  
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Electrical Characteristics  
4.3.3  
Control Section  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
93  
-
typ.  
100  
21.5  
4.65  
0.72  
-
max.  
Oscillator Frequency  
Reduced Osc. Frequency  
Frequency Ratio fosc1/fosc2  
Max Duty Cycle  
fOSC1  
fOSC2  
107  
-
kHz  
kHz  
VFB = 4V  
VFB = 1V  
4.5  
0.67  
0
4.9  
0.77  
-
Dmax  
Dmin  
Min Duty Cycle  
VFB < 0.3V  
PWM-OP Gain  
AV  
3.45  
-
3.65  
0.80  
-
3.85  
-
Max. Level of Voltage Ramp  
VMax-Ramp  
V
VFB Operating Range Min Level VFBmin  
VFB Operating Range Max level VFBmax  
0.3  
-
-
V
-
4.6  
4.9  
62  
V
Feedback Resistance  
Soft-Start Resistance  
RFB  
3.0  
42  
3.7  
50  
kΩ  
kΩ  
RSoft-Start  
4.3.4  
Protection Unit  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
Over Load & Open Loop  
Detection Limit  
VFB2  
4.65  
4.8  
4.95  
5.46  
4.12  
17.2  
V
V
V
V
VSoftS > 5.5V  
VFB > 5V  
Activation Limit of Overload &  
Open Loop Detection  
VSoftS1  
VSoftS2  
VVCC1  
5.15  
3.88  
16  
5.3  
Deactivation Limit of  
Overvoltage Detection  
4.0  
VFB > 5V  
VCC > 17.5V  
Overvoltage Detection Limit  
16.5  
VSoftS < 3.8V  
VFB > 5V  
Latched Thermal Shutdown  
Spike Blanking  
TjSD  
130  
-
140  
5
150  
-
°C  
guaranteed by design  
tSpike  
µs  
4.3.5  
Current Limiting  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
Peak Current Limitation (incl.  
Propagation Delay Time)  
(see Figure 7)  
Vcsth  
0.95  
1.00  
1.05  
-
V
dVsense / dt = 0.6V/µs  
Leading Edge Blanking  
tLEB  
-
220  
ns  
Datasheet  
16  
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Electrical Characteristics  
4.3.6  
CoolMOSSection  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
Drain Source Breakdown Voltage V(BR)DSS  
ICE2A165/265/365  
600  
650  
-
-
-
-
V
V
Tj=25°C  
Tj=110°C  
Drain Source Breakdown Voltage V(BR)DSS  
ICE2A180/280  
800  
870  
-
-
V
V
Tj=25°C  
Tj=110°C  
-
Drain Source  
On-Resistance  
ICE2A165 RDSon1  
ICE2A265 RDSon2  
ICE2A365 RDSon3  
ICE2A180 RDSon4  
ICE2A280 RDSon5  
-
-
3
6.6  
3.3  
7.3  
Tj=25°C  
Tj=125°C  
-
-
0.9  
1.9  
1.08  
2.28  
Tj=25°C  
Tj=125°C  
-
-
0.45  
0.95  
0.54  
1.14  
Tj=25°C  
Tj=125°C  
-
-
3
6.6  
3.3  
7.3  
Tj=25°C  
Tj=125°C  
-
-
0.8  
1.7  
1.06  
2.04  
Tj=25°C  
Tj=125°C  
Effective output  
capacitance, energy  
related  
ICE2A165 Co(er)1  
ICE2A265 Co(er)2  
ICE2A365 Co(er)3  
ICE2A180 Co(er)4  
ICE2A280 Co(er)5  
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
-
-
pF  
pF  
pF  
pF  
pF  
µA  
ns  
ns  
VDS =0V to 480V  
VDS =0V to 480V  
VDS =0V to 480V  
VDS =0V to 640V  
VDS =0V to 640V  
VVCC=0V  
21  
30  
7
22  
0.5  
301)  
301)  
Zero Gate Voltage Drain Current IDSS  
Rise Time  
Fall Time  
1)  
trise  
tfall  
Measured in a Typical Flyback Converter Application  
Datasheet  
17  
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Typical Performance Characteristics  
5
Typical Performance Characteristics  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
13,58  
13,56  
13,54  
13,52  
13,50  
13,48  
13,46  
13,44  
13,42  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 22 Start Up Current IVCC1 vs. Tj  
Figure 25 VCC Turn-On Threshold VVCCon vs. Tj  
6,0  
5,7  
5,4  
5,1  
4,8  
4,5  
8,67  
8,64  
8,61  
8,58  
8,55  
8,52  
8,49  
8,46  
8,43  
8,40  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 23 Static Supply Current IVCC2 vs. Tj  
Figure 26 VCC Turn-Off Threshold VVCCoff vs. Tj  
9,0  
8,6  
5,10  
5,07  
5,04  
5,01  
4,98  
4,95  
4,92  
4,89  
4,86  
4,83  
ICE2A365  
8,2  
7,8  
ICE2A280  
7,4  
7,0  
6,6  
ICE2A265  
ICE2A165  
ICE2A180  
6,2  
5,8  
5,4  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 24 Supply Current IVCC3 vs. Tj  
Figure 27 VCC Turn-On/Off HysteresisVVCCHY vs. Tj  
Datasheet  
18  
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Typical Performance Characteristics  
6,55  
6,54  
6,53  
6,52  
6,51  
6,50  
6,49  
6,48  
6,47  
6,46  
6,45  
4,70  
4,68  
4,66  
4,64  
4,62  
4,60  
4,58  
4,56  
4,54  
4,52  
4,50  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 28 Trimmed Reference VREF vs. Tj  
Figure 31 Frequency Ratio fOSC1 / fOSC2 vs. Tj  
102,0  
101,5  
101,0  
100,5  
100,0  
99,5  
0,730  
0,728  
0,726  
0,724  
0,722  
0,720  
0,718  
0,716  
0,714  
0,712  
0,710  
99,0  
98,5  
98,0  
97,5  
97,0  
-25 -15 -5  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 29 Oscillator Frequency fOSC1 vs. Tj  
Figure 32 Max. Duty Cycle vs. Tj  
21,8  
21,7  
21,6  
21,5  
21,4  
21,3  
21,2  
21,1  
21,0  
20,9  
20,8  
3,70  
3,69  
3,68  
3,67  
3,66  
3,65  
3,64  
3,63  
3,62  
3,61  
3,60  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 30 Reduced Osc. Frequency fOSC2 vs. Tj  
Figure 33 PWM-OP Gain AV vs. Tj  
Datasheet  
19  
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Typical Performance Characteristics  
4,00  
3,95  
3,90  
3,85  
3,80  
3,75  
3,70  
3,65  
3,60  
3,55  
3,50  
5,35  
5,34  
5,33  
5,32  
5,31  
5,30  
5,29  
5,28  
5,27  
5,26  
5,25  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 34 Feedback Resistance RFB vs. Tj  
Figure 37 Detection Limit VSoft-Start1 vs. Tj  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
4,05  
4,04  
4,03  
4,02  
4,01  
4,00  
3,99  
3,98  
3,97  
3,96  
3,95  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 35 Soft-Start Resistance RSoft-Start vs. Tj  
Figure 38 Detection Limit VSoft-Start2 vs. Tj  
4,85  
4,84  
4,83  
4,82  
4,81  
4,80  
4,79  
4,78  
4,77  
4,76  
4,75  
16,80  
16,75  
16,70  
16,65  
16,60  
16,55  
16,50  
16,45  
16,40  
16,35  
16,30  
16,25  
16,20  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 36 Detection Limit VFB2 vs. Tj  
Figure 39 Overvoltage Detection Limit VVCC1 vs. Tj  
Datasheet  
20  
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Typical Performance Characteristics  
1,010  
1,008  
1,006  
1,004  
1,002  
1,000  
0,998  
0,996  
0,994  
0,992  
0,990  
2,0  
1,8  
1,6  
1,4  
ICE2A265  
1,2  
ICE2A280  
1,0  
0,8  
0,6  
0,4  
0,2  
0,0  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 40 Peak Current Limitation Vcsth vs. Tj  
Figure 43 Drain Source On-Resistance RDSon vs. Tj  
280  
270  
260  
250  
240  
230  
220  
210  
200  
190  
180  
1,0  
0,9  
0,8  
0,7  
ICE2A365  
0,6  
0,5  
0,4  
0,3  
0,2  
0,1  
0,0  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 41 Leading Edge Blanking VVCC1 vs. Tj  
Figure 44 Drain Source On-Resistance RDSon vs. Tj  
900  
7,6  
7,0  
6,4  
5,8  
5,2  
ICE2A180  
ICE2A280  
850  
800  
750  
700  
650  
4,6  
ICE2A165  
ICE2A180  
4,0  
3,4  
2,8  
2,2  
1,6  
1,0  
ICE2A165  
ICE2A265  
ICE2A365  
600  
550  
500  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 42 Drain Source On-Resistance RDSon vs. Tj  
Figure 45 Breakdown Voltage VBR(DSS) vs. Tj  
Datasheet  
21  
September 2001  
CoolSET-F2  
ICE2A165/265/365  
ICE2A180/280  
Outline Dimension  
6
Outline Dimension  
P-DIP-8-6  
(Plastic Dual In-line  
Package)  
Figure 46  
Dimensions in mm  
Datasheet  
22  
September 2001  
Total Quality Management  
Qualität hat für uns eine umfassende  
Bedeutung. Wir wollen allen Ihren  
Ansprüchen in der bestmöglichen  
Weise gerecht werden. Es geht uns also  
nicht nur um die Produktqualität –  
Quality takes on an allencompassing  
significance at Semiconductor Group.  
For us it means living up to each and  
every one of your demands in the best  
possible way. So we are not only  
concerned with product quality. We  
direct our efforts equally at quality of  
supply and logistics, service and  
support, as well as all the other ways in  
which we advise and attend to you.  
unsere  
Anstrengungen  
gelten  
gleichermaßen der Lieferqualität und  
Logistik, dem Service und Support  
sowie allen sonstigen Beratungs- und  
Betreuungsleistungen.  
Dazu  
gehört  
eine  
bestimmte  
Part of this is the very special attitude of  
our staff. Total Quality in thought and  
deed, towards co-workers, suppliers  
and you, our customer. Our guideline is  
do everything with zero defects, in an  
open manner that is demonstrated  
beyond your immediate workplace, and  
to constantly improve.  
Geisteshaltung unserer Mitarbeiter.  
Total Quality im Denken und Handeln  
gegenüber Kollegen, Lieferanten und  
Ihnen, unserem Kunden. Unsere  
Leitlinie ist jede Aufgabe mit Null  
Fehlernzu lösen  
in offener  
Sichtweise auch über den eigenen  
Arbeitsplatz hinaus und uns ständig  
zu verbessern.  
Throughout the corporation we also  
think in terms of Time Optimized  
Processes (top), greater speed on our  
part to give you that decisive  
competitive edge.  
Unternehmensweit orientieren wir uns  
dabei auch an top(Time Optimized  
Processes), um Ihnen durch größere  
Schnelligkeit  
Wettbewerbsvorsprung zu verschaffen.  
den  
entscheidenden  
Give us the chance to prove the best of  
performance through the best of quality  
you will be convinced.  
Geben Sie uns die Chance, hohe  
Leistung durch umfassende Qualität zu  
beweisen.  
Wir werden Sie überzeugen.  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY