ICE2PCS05G [INFINEON]

Standalone Power Factor Correction (PFC) Controller in Continuous Conduction Mode (CCM); 单机功率因数校正( PFC )控制器在连续导通模式( CCM )
ICE2PCS05G
型号: ICE2PCS05G
厂家: Infineon    Infineon
描述:

Standalone Power Factor Correction (PFC) Controller in Continuous Conduction Mode (CCM)
单机功率因数校正( PFC )控制器在连续导通模式( CCM )

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 功率因数校正 光电二极管
文件: 总22页 (文件大小:536K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Version 1.0, 09 Oct 2008  
CCM-PFC  
ICE2PCS05  
ICE2PCS05G  
Standalone Power Factor  
Correction (PFC) Controller in  
Continuous Conduction Mode  
(CCM)  
Power Management & Supply  
N e v e r s t o p t h i n k i n g .  
CCM-PFC  
Revision History:  
Datasheet  
Previous Version:  
Page  
Subjects (major changes since last revision)  
For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or  
the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://  
www.infineon.com  
CoolMOST™, CoolSET™ are trademarks of Infineon Technologies AG.  
Edition 2008-10-09  
Published by  
Infineon Technologies AG  
81726 München, Germany  
© 2007 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
CCM-PFC  
ICE2PCS05  
ICE2PCS05G  
Standalone Power Factor Correction  
(PFC) Controller in Continuous  
ICE2PCS05  
PG-DIP-8  
Conduction Mode (CCM)  
Product Highlights  
• Leadfree DIP and DSO Package  
• Wide Input Range  
• Optimized for applications which require fast Startup  
• Output Power Controllable by External Sense Resistor  
• Programmable Operating Frequency  
• Output Over-Voltage Protection  
ICE2PCS05G  
PG-DSO-8  
• Fast Output Dynamic Response during Load Jumps  
Features  
Description  
Ease of Use with Few External Components  
The ICE2PCS05/G is a 8-pin wide input range controller  
IC for active power factor correction converters. It is de-  
signed for converters in boost topology, and requires few  
Supports Wide Range  
Average Current Control  
External Current and Voltage Loop Compensation external components. Its power supply is recommended  
for Greater User Flexibility  
to be provided by an external auxiliary supply which will  
switch on and off the IC.  
Programmable Operating/Switching Frequency  
(20kHz - 250kHz)  
The IC operates in the CCM with average current control,  
and in DCM only under light load condition. The switching  
frequency is programmable by the resistor at pin 4. Both  
compensations for the current and voltage loop are exter-  
nal to allow full user control.  
Max Duty Cycle of 95% (at 25°C) at 125kHz  
Trimmed Internal Reference Voltage (3V+2% at  
25°C)  
VCC Under-Voltage Lockout  
Cycle by Cycle Peak Current Limiting  
Output Over-Voltage Protection  
Open Loop Detection  
There are various protection features incorporated to en-  
sure safe system operation conditions. The internal refer-  
ence is trimmed (3V+2%) to ensure precise protection and  
control level. The device has a fast startup time with con-  
trolled peak start up current.  
Enhanced Dynamic Response  
Short Startup(SoftStart) duration  
Fulfills Class D Requirements of IEC 1000-3-2  
Soft Overcurrent Protection  
Typical Application  
VOUT  
Auxiliary Supply  
VCC  
EMI-Filter  
85 ... 265 VAC  
SWITCH  
ICE2PCS05/  
PFC-Controller  
ICE2PCS05G  
Protection Unit  
VSENSE  
VCOMP  
PWM Logic  
Driver  
Voltage Loop  
Compensation  
GATE  
FREQ  
Variable  
Ramp  
Oscillator  
Generator  
ICOMP  
Current Loop  
Compensation  
Nonlinear  
Gain  
ISENSE  
GND  
Type  
Package  
ICE2PCS05  
ICE2PCS05G  
Version 1.0  
PG-DIP-8  
PG-DSO-8  
3
09 Oct 2008  
CCM-PFC  
ICE2PCS05/G  
1
Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1.1  
1.2  
2
Representative Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
System Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Soft Over Current Control (SOC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Peak Current Limit (PCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Open Loop Protection / Input Under Voltage Protect (OLP) . . . . . . . . . . . 9  
Over-Voltage Protection (OVP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Frequency Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Average Current Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Complete Current Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Current Loop Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Nonlinear Gain Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
PWM Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Voltage Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Voltage Loop Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Enhanced Dynamic Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.1  
3.2  
3.3  
3.4  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
3.5  
3.6  
3.6.1  
3.6.2  
3.6.3  
3.6.4  
3.7  
3.8  
3.8.1  
3.8.2  
3.9  
4
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Supply Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Variable Frequency Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
PWM Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
System Protection Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Current Loop Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Voltage Loop Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Driver Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
4.3.7  
5
Outline Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Version 1.0  
4
09 Oct 2008  
CCM-PFC  
ICE2PCS05/G  
Pin Configuration and Functionality  
1
Pin Configuration and Functionality  
1.1  
Pin Configuration  
ICOMP (Current Loop Compensation)  
Low pass filter and compensation of the current control  
loop. The capacitor which is connected at this pin  
integrates the output current of OTA2 and averages the  
current sense signal.  
Pin  
Symbol Function  
1
2
3
4
5
6
7
8
GND  
IC Ground  
ICOMP Current Loop Compensation  
ISENSE Current Sense Input  
ISENSE (Current Sense Input)  
The ISENSE Pin senses the voltage drop at the  
external sense resistor (R1). This is the input signal for  
the average current regulation in the current loop. It is  
also fed to the peak current limitation block.  
FREQ  
Switching Frequency Setting  
VCOMP Voltage Loop Compensation  
VSENSE VOUT Sense (Feedback) Input  
During power up time, high inrush currents cause high  
negative voltage drop at R1, driving currents out of pin  
3 which could be beyond the absolute maximum  
ratings. Therefore a series resistor (R2) of around  
220is recommended in order to limit this current into  
the IC.  
VCC  
IC Supply Voltage  
Gate Drive Output  
GATE  
FREQ (Frequency Setting)  
This pin allows the setting of the operating switching  
frequency by connecting a resistor to ground. The  
frequency range is from 20kHz to 250kHz.  
Package PG-DIP-8 / PG-DSO-8  
VSENSE (Voltage Sense/Feedback)  
The output bus voltage is sensed at this pin via a  
resistive divider. The reference voltage for this pin is  
3V.  
GND  
ICOMP  
ISENSE  
FREQ  
1
8
7
6
5
GATE  
VCC  
2
VCOMP (Voltage Loop Compensation)  
3
4
VSENSE  
This pin provides the compensation of the output  
voltage loop with a compensation network to ground  
(see Figure 2). This also gives the soft start function  
which controls an increasing AC input current during  
start-up.  
VCOMP  
VCC (Power Supply)  
The VCC pin is the positive supply of the IC and should  
be connected to an external auxiliary supply. The  
operating range is between 11V and 26V. The turn-on  
threshold is at 11.8V and under voltage occurs at 11V.  
There is no internal clamp for a limitation of the power  
supply.  
Figure 1  
Pin Configuration (top view)  
GATE  
1.2  
Pin Functionality  
The GATE pin is the output of the internal driver stage,  
which has a capability of 1.5A instantaneous source  
and 2.0A instantaneous sink current.  
GND (Ground)  
The ground potential of the IC.  
Its gate drive voltage is clamped at 15V (typically).  
Version 1.0  
5 09 Oct 2008  
CCM-PFC  
ICE2PCS05/G  
Representative Block diagram  
2
Representative Block diagram  
Figure 2  
Representative Block diagram  
Version 1.0  
6
09 Oct 2008  
CCM-PFC  
ICE2PCS05/G  
Functional Description  
3
Functional Description  
If VCC drops below 11V, the IC is off. The IC will then  
be consuming typically 300µA, whereas consuming  
13mA during normal operation.  
3.1  
General  
The ICE2PCS05/G is a 8 pin control IC for power factor  
correction converters. It comes in both DIP and DSO  
packages and is suitable for wide range line input  
applications from 85 to 265 VAC. The IC supports  
converters in boost topology and it operates in  
continuous conduction mode (CCM) with average  
current control.  
The IC operates with a cascaded control; the inner  
current loop and the outer voltage loop. The inner  
current loop of the IC controls the sinusoidal profile for  
the average input current. It uses the dependency of  
the PWM duty cycle on the line input voltage to  
determine the corresponding input current. This means  
the average input current follows the input voltage as  
long as the device operates in CCM. Under light load  
condition, depending on the choke inductance, the  
system may enter into discontinuous conduction mode  
(DCM). In DCM, the average current waveform will be  
distorted but the resultant harmonics are still low  
enough to meet the Class D requirement of IEC 1000-  
3-2.  
The IC can be turned off and forced into standby mode  
by pulling down the voltage at pin 6 (VSENSE) to lower  
than 0.6V. The current consumption is reduced to  
300µA in this mode.  
3.3  
Start-up  
Figure 4 shows the operation of voltage loop’s OTA1  
during startup. The VCOMP pin is pull internally to  
ground via switch S1 during UVLO and other fault  
conditions (see later section on “System Protection”).  
During power up when VOUT is less than 83% of the  
rated level, OTA1 sources an output current, maximum  
30µA, into the compensation network at pin 5  
(VCOMP) causing the voltage at this pin to rise linearly.  
This results in a controlled linear increase of the input  
current from 0A thus reducing the stress on the  
external component.  
The outer voltage loop controls the output bus voltage.  
Depending on the load condition, OTA1 establishes an  
appropriate voltage at VCOMP pin which controls the  
amplitude of the average input current.  
VSENSE  
R4  
x VOUT  
)
(
R3 + R4  
The IC is equipped with various protection features to  
ensure safe operating condition for both the system  
and device. Important protection features are namely  
Open-Loop protection, Current Limitation and Output  
Over-voltage Protection.  
OTA1  
3V  
VCOM P  
protect  
S1  
R6  
C4  
3.2  
Power Supply  
C5  
ICE2PCS05/G  
An internal under voltage lockout (UVLO) block  
monitors the VCC power supply. As soon as it exceeds  
11.8V and the voltage at pin 6 (VSENSE) is >0.6V, the  
IC begins operating its gate drive and performs its  
Startup as shown in Figure 3.  
Figure 4  
Startup Circuit  
As VOUT has not reached within 5% from the rated  
value, VCOMP voltage is level-shifted by the window  
detect block as shown in Figure 5, to ensure there is  
fast boost up of the output voltage.  
.
(VVSENSE > 0.6 V) (VVSENSE < 0.6 V)  
(VVSENSE > 0.6 V)  
When VOUT approaches its rated value, OTA1’s  
sourcing current drops and the level shift of the window  
detect block is removed. The normal voltage loop then  
takes control.  
VCC  
11.8 V  
OFF  
11.0 V  
OFF  
t
IC's  
State  
Start  
Normal  
Normal  
Open loop/  
Standby  
Up  
Operation  
Operation  
Figure 3  
State of Operation respect to VCC  
Version 1.0  
7
09 Oct 2008  
CCM-PFC  
ICE2PCS05/G  
Functional Description  
3.4  
System Protection  
The IC provides several protection features in order to  
ensure the PFC system in safe operating range.  
Depending on the input line voltage (VIN) and output  
bus voltage (VOUT), Figure 7 and 8 show the conditions  
when these protections are active.  
Normal Control  
VOUT =rated  
Window Detect  
Max Vcomp current  
VOUT  
95%rated  
83%rated  
VCC > VCCUVLO  
VCC<VCCUVLO  
VIN (VAC)  
t
Level-shifted VCOMP  
av(IIN)  
t
Normal  
Operation  
IC’s  
IC OFF  
State  
VCOMP  
t
Figure 6  
VIN Related Protection Features  
VOUT  
VOUT,Rated  
Figure 5  
Startup with controlled maximum current  
108%  
100%  
20%  
t
PCL / SOC  
OVP  
OLP  
OLP  
Figure 7  
VOUT Related Protection Features  
The following sections describe the functionality of  
these protection features.  
3.4.1  
Soft Over Current Control (SOC)  
The IC is designed not to support any output power  
that corresponds to a voltage lower than -0.75V at the  
ISENSE pin. A further increase in the inductor current,  
which results in a lower ISENSE voltage, will activate  
the Soft Over Current Control (SOC). This is a soft  
control as it does not directly switch off the gate drive.  
It acts on the nonlinear gain block to result in a reduced  
PWM duty cycle.  
Version 1.0  
8
09 Oct 2008  
CCM-PFC  
ICE2PCS05/G  
Functional Description  
connected) or an insufficient input voltage VIN for  
normal operation. In this case, most of the blocks within  
the IC will be shutdown. It is implemented using  
comparator C3 with a threshold of 0.6V as shown in the  
IC block diagram in Figure 2.  
POUT(rated)  
POUT(max)  
IC’s  
Normal  
State Operation  
3.4.4  
Over-Voltage Protection (OVP)  
Whenever VOUT exceeds the rated value by 5%, the  
over-voltage protection OVP is active as shown in  
Figure 6. This is implemented by sensing the voltage at  
pin VSENSE with respect to a reference voltage of  
3.15V. A VSENSE voltage higher than 3.15V will  
immediately reduce the output duty cycle, bypassing  
the normal voltage loop control. This results in a lower  
input power to reduce the output voltage VOUT. A  
VSENSE voltage higher than 3.25V will immediately  
turn off the gate, thereby preventing damage to bus  
capacitor.  
SOC  
PCL  
VISENSE  
-0.61V -0.75V  
-1.04V  
0
Figure 8  
SOC and PCL Protection as function of  
VISENSE  
The rated output power with a minimum VIN (VINMIN) is  
0.61  
P
OUT(rated) = VINMIN × ------------------  
R1 ⋅  
2
3.5  
Frequency Setting  
Due to the internal parameter tolerance, the maximum  
power with VINMIN is  
The switching frequency of the PFC converter can be  
set with an external resistor R5 at FREQ pin as shown  
Figure 10. The pin voltage VFREQ is typically 1.7V. The  
corresponding capacitor for the oscillator is integrated  
in the device and the R5/frequency relationship is given  
at the “Electrical Characteristic” section. The  
recommended operating frequency range is from  
20kHz to 250kHz. As an example, a R5 of 33kat pin  
FREQ will set a switching frequency FSW of 134kHz  
typically.  
0.75  
P
OUT(max) = VINMIN × ------------------  
R1 ⋅  
2
3.4.2  
Peak Current Limit (PCL)  
The IC provides a cycle by cycle peak current limitation  
(PCL). It is active when the voltage at pin 3 (ISENSE)  
reaches -1.04V. This voltage is amplified by OP1 by a  
factor of -1.43 and connected to comparator C2 with a  
reference voltage of 1.5V as shown in Figure 9. A  
deglitcher with 300ns after the comparator improves  
noise immunity to the activation of this protection.  
Current Limit  
1.5V  
Full-wave  
Rectifier  
Deglitcher  
300ns  
Turn Off  
Driver  
C2  
ISENSE  
R2  
1.43x  
I
INDUCTOR  
OP1  
R1  
I
C
E2PCS01
/
G  
Peak Current Limit (PCL)  
Figure 9  
3.4.3  
Open Loop Protection / Input Under  
Voltage Protect (OLP)  
Whenever VSENSE voltage falls below 0.6V, or  
equivalently VOUT falls below 20% of its rated value, it  
indicates an open loop condition (i.e. VSENSE pin not  
F r e q u e n c y / k H z  
Figure 10  
Frequency Versus RFREQ  
Version 1.0  
9
09 Oct 2008  
CCM-PFC  
ICE2PCS05/G  
Functional Description  
From the above equation, DOFF is proportional to VIN.  
The objective of the current loop is to regulate the  
average inductor current such that it is proportional to  
the off duty cycle DOFF, and thus to the input voltage  
VIN. Figure 12 shows the scheme to achieve the  
objective.  
3.6  
Average Current Control  
3.6.1  
Complete Current Loop  
The complete system current loop is shown in Figure  
11.  
Vout  
L1  
D1  
R3  
R4  
ave(IIN) at ICOMP  
ramp profile  
From  
Full-wave  
Retifier  
C2  
R7  
R2  
R1  
GATE  
ISENSE  
ICOMP  
Current Loop  
voltage  
proportional to  
averaged  
Gate  
Inductor current  
Driver  
Current Loop  
Compensation  
PWM  
Comparator  
GATE  
drive  
Q
R
S
C1  
OTA2  
1.0mS  
PWM Logic  
+/-50uA (linear range)  
t
C3  
S2  
Input From  
Nonlinear  
Gain  
4.2V  
Voltage Loop  
Figure 12 Average Current Control in CCM  
Fault  
The PWM is performed by the intersection of a ramp  
signal with the averaged inductor current at pin 5  
(ICOMP). The PWM cycle starts with the Gate turn off  
for a duration of TOFFMIN (250ns typ.) and the ramp is  
kept discharged. The ramp is then allowed to rise after  
TOFFMIN expires. The off time of the boost transistor  
ends at the intersection of the ramp signal and the  
averaged current waveform. This results in the  
proportional relationship between the average current  
ICE2PCS05/G  
Figure 11 Complete System Current Loop  
It consists of the current loop block which averages the  
voltage at pin ISENSE, resulted from the inductor  
current flowing across R1. The averaged waveform is  
compared with an internal ramp in the ramp generator  
and PWM block. Once the ramp crosses the average  
waveform, the comparator C1 turns on the driver stage  
through the PWM logic block. The Nonlinear Gain block  
defines the amplitude of the inductor current. The  
following sections describe the functionality of each  
individual blocks.  
and the off duty cycle DOFF  
.
Figure 13 shows the timing diagrams of TOFFMIN and the  
PWM waveforms.  
TOFFMIN  
2.5% of T  
3.6.2  
Current Loop Compensation  
PWM cycle  
The compensation of the current loop is done at the  
ICOMP pin. This is the OTA2 output and a capacitor C3  
has to be installed at this node to ground (see Figure  
11). Under normal mode of operation, this pin gives a  
voltage which is proportional to the averaged inductor  
current. This pin is internally shorted to 4.2V in the  
event of IC shuts down when OLP and UVLO occur.  
(1)  
VCREF  
VRAMP  
PWM  
ramp  
released  
3.6.3  
Pulse Width Modulation (PWM)  
t
The IC employs an average current control scheme in  
continuous conduction mode (CCM) to achieve the  
power factor correction.  
(1)  
V
is a function of VICOMP  
CREF  
Figure 13 Ramp and PWM waveforms  
3.6.4 Nonlinear Gain Block  
Assuming the voltage loop is working and output  
voltage is kept constant, the off duty cycle DOFF for a  
CCM PFC system is given as  
VIN  
DOFF = -------------  
VOUT  
The nonlinear gain block controls the amplitude of the  
regulated inductor current. The input of this block is the  
Version 1.0  
10  
09 Oct 2008  
CCM-PFC  
ICE2PCS05/G  
Functional Description  
voltage at pin VCOMP. This block has been designed  
to support the wide input voltage range (85-265VAC).  
Vout  
D1  
L1  
R7  
From  
Full-wave  
Retifier  
R3  
3.7  
PWM Logic  
C2  
R4  
The PWM logic block prioritizes the control input  
signals and generates the final logic signal to turn on  
the driver stage. The speed of the logic gates in this  
block, together with the width of the reset pulse TOFFMIN  
,
Gate Driver  
are designed to meet a maximum duty cycle DMAX of  
95% at the GATE output under 136kHz of operation.  
Current Loop  
+
PWM Generation  
In case of high input currents which result in Peak  
Current Limitation, the GATE will be turned off  
immediately and maintained in off state for the current  
PWM cycle. The signal Toffmin resets (highest priority,  
overriding other input signals) both the current limit  
latch and the PWM on latch as illustrated in Figure 14.  
VIN  
GATE  
Nonlinear  
Gain  
OTA1  
Av(IIN)  
3V  
VSENSE  
t
Current  
VCOMP  
Limit Latch  
Q
Peak Current  
Limit  
G1  
S
R
HIGH =  
turn GATE on  
L1  
R6  
C4  
PWM on  
Latch  
C5  
Current Loop  
PWM on signal  
S
L2  
R
Q
Figure 15 Voltage Loop  
3.8.2 Enhanced Dynamic Response  
Toffmin  
2.5% of T  
Due to the low frequency bandwidth of the voltage loop,  
the dynamic response is slow and in the range of about  
several 10ms. This may cause additional stress to the  
bus capacitor and the switching transistor of the PFC in  
the event of heavy load changes.  
Figure 14 PWM Logic  
3.8  
Voltage Loop  
The IC provides therefore a “window detector” for the  
feedback voltage VVSENSE at pin 6 (VSENSE).  
Whenever VVSENSE exceeds the reference value (3V)  
by +5%, it will act on the nonlinear gain block which in  
turn affect the gate drive duty cycle directly. This  
change in duty cycle is bypassing the slow changing  
VCOMP voltage, thus results in a fast dynamic  
The voltage loop is the outer loop of the cascaded  
control scheme which controls the PFC output bus  
voltage VOUT. This loop is closed by the feedback  
sensing voltage at VSENSE which is a resistive divider  
tapping from VOUT. The pin VSENSE is the input of  
OTA1 which has an internal reference of 3V. Figure 15  
shows the important blocks of this voltage loop.  
response of VOUT  
.
3.8.1  
Voltage Loop Compensation  
3.9  
Output Gate Driver  
The compensation of the voltage loop is installed at the  
VCOMP pin (see Figure 15). This is the output of OTA1  
and the compensation must be connected at this pin to  
ground. The compensation is also responsible for the  
soft start function which controls an increasing AC input  
current during start-up.  
The output gate driver is a fast totem pole gate drive. It  
has an in-built cross conduction currents protection and  
a Zener diode Z1 (see Figure 16) to protect the external  
transistor switch against undesirable over voltages.  
The maximum voltage at pin 8 (GATE) is typically  
clamped at 15V.  
The output is active HIGH and at VCC voltages below  
the under voltage lockout threshold VCCUVLO, the gate  
drive is internally pull low to maintain the off state.  
Version 1.0  
11  
09 Oct 2008  
CCM-PFC  
ICE2PCS05/G  
Functional Description  
VCC  
Gate Driver  
PWM Logic  
HIGH to  
turn on  
LV  
Z1  
External  
MOS  
GATE  
* LV: Level Shift  
ICE2PCS05/G  
Figure 16 Gate Driver  
Version 1.0  
12  
09 Oct 2008  
CCM-PFC  
ICE2PCS05/G  
Electrical Characteristics  
4
Electrical Characteristics  
4.1  
Absolute Maximum Ratings  
Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction  
of the integrated circuit.  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
max.  
25  
5
VCC Supply Voltage  
FREQ Voltage  
VCC  
-0.3  
-0.3  
-0.3  
-20  
-1  
V
VFREQ  
VICOMP  
VISENSE  
IISENSE  
VVSENSE  
IVSENSE  
VVCOMP  
VGATE  
V
ICOMP Voltage  
ISENSE Voltage  
ISENSE Current  
VSENSE Voltage  
VSENSE Current  
VCOMP Voltage  
GATE Voltage  
5
V
2)  
5
V
1
mA  
V
Recommended R2=220Ω  
-0.3  
-1  
5
1
mA  
V
R3>400kΩ  
-0.3  
-0.3  
5
17  
V
Clamped at 15V if driven  
internally.  
Junction Temperature  
Storage Temperature  
Tj  
-40  
-55  
-
150  
150  
185  
°C  
TS  
°C  
Thermal Resistance  
R
thJA (DSO)  
K/W  
PG-DSO-8-13  
Junction-Ambient for DSO-8-13  
Thermal Resistance  
R
thJA(DIP)  
-
-
90  
2
K/W  
kV  
PG-DIP-8-4  
Junction-Ambient for DIP-8-4  
ESD Protection  
VESD  
Human Body Model1)  
1)  
According to EIA/JESD22-A114-B (discharging a 100pF capacitor through a 1.5kseries resistor)  
2)  
Absolute ISENSE current should not be exceeded  
4.2  
Operating Range  
Note: Within the operating range the IC operates as described in the functional description.  
Parameter  
Symbol  
Limit Values  
min. max.  
VCCUVLO 25  
-40 125  
Unit  
Remarks  
VCC Supply Voltage  
VCC  
V
Junction Temperature  
TJCon  
°C  
Version 1.0  
13  
09 Oct 2008  
CCM-PFC  
ICE2PCS05/G  
Electrical Characteristics  
4.3  
Characteristics  
Note: The electrical characteristics involve the spread of values within the specified supply voltage and junction  
temperature range TJ from – 40 °C to 125°C.Typical values represent the median values, which are  
related to 25°C. If not otherwise stated, a supply voltage of VCC =18V is assumed for test condition.  
4.3.1  
Supply Section  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
typ.  
max.  
VCC Turn-On Threshold  
VCCon  
11.4  
11.8  
12.7  
11.7  
1.4  
V
V
V
VCC Turn-Off Threshold/  
Under Voltage Lock Out  
VCCUVLO  
VCChy  
ICCstart  
ICCHG  
10.4  
11.0  
0.8  
VCC Turn-On/Off Hysteresis  
0.65  
Start Up Current  
Before VCCon  
-
-
450  
15  
1100 µA  
20  
VVCC=VVCCon -0.1V  
Operating Current with active GATE  
mA R5 = 33kΩ  
CL= 4.7nF  
Operating Current during Standby  
ICCStdby  
-
700 1300 µA  
VVSENSE= 0.5V  
V
ICOMP= 4V  
4.3.2  
Variable Frequency Section  
Parameter  
Symbol  
Limit Values  
typ. max.  
136 147 kHz R5 = 33kΩ  
Unit Test Condition  
min.  
Switching Frequency (Typical)  
Switching Frequency (Min.)  
Switching Frequency (Max.)  
Voltage at FREQ pin  
FSWnom  
FSWmin  
FSWmax  
VFREQ  
124  
17  
21  
25  
kHz IFREQ=VFREQ / 234kΩ  
250  
1.65  
285  
1.70  
315 kHz R5 = 15kΩ  
1.76  
V
Version 1.0  
14  
09 Oct 2008  
CCM-PFC  
ICE2PCS05/G  
Electrical Characteristics  
4.3.3  
PWM Section  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
typ.  
max.  
Max. Duty Cycle  
Min. Duty Cycle  
Min. Off Time  
DMAX  
DMIN  
92  
95  
98.5  
%
%
ns  
FSW = FSWnom  
(R5 = 33k)  
0
VVCOMP= 0V, VVSENSE= 3V  
V
ICOMP= 4.3V  
TOFFMIN  
100  
250  
580  
VVSENSE= 3V  
VISENSE= 0.1V (R5 = 33k)  
The parameter is not subject to production test - verified by design/characterization  
4.3.4 System Protection Section  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
typ.  
max.  
0.65  
Open Loop Protection (OLP)  
VSENSE Threshold  
VOLP  
VPCL  
VSOC  
VOVP  
0.55  
0.6  
V
V
V
V
Peak Current Limitation (PCL)  
ISENSE Threshold  
-1.16 -1.04 -0.95  
-0.75 -0.68 -0.61  
Soft Over Current Control (SOC)  
ISENSE Threshold  
Output Over-Voltage Protection (OVP)  
3.1  
3.25  
3.4  
Version 1.0  
15  
09 Oct 2008  
CCM-PFC  
ICE2PCS05/G  
Electrical Characteristics  
4.3.5  
Current Loop Section  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
typ.  
max.  
OTA2 Transconductance Gain  
OTA2 Output Linear Range1)  
ICOMP Voltage during OLP  
GmOTA2  
IOTA2  
0.8  
1.0  
1.3  
mS At Temp = 25°C  
-
± 50  
4.2  
-
-
µA  
VICOMPF  
3.9  
V
VVSENSE= 0.5V  
4.3.6  
Voltage Loop Section  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
typ.  
max.  
OTA1 Reference Voltage  
VOTA1  
GmOTA1  
IOTA1SO  
IOTA1SK  
2.92  
3.00  
3.08  
V
measured at VSENSE  
OTA1 Transconductance Gain  
26  
18  
21  
39  
30  
30  
51  
38  
41  
µS  
OTA1 Max. Source Current  
Under Normal Operation  
µA VVSENSE= 2V  
V
VCOMP= 3V  
OTA1 Max. Sink Current  
Under Normal Operation  
µA VVSENSE= 4V  
VCOMP= 3V  
V
Enhanced Dynamic Response  
VSENSE High Threshold  
VSENSE Low Threshold  
VHi  
VLo  
3.09  
2.76  
3.18  
2.85  
3.26  
2.94  
V
V
VSENSE Input Bias Current at 3V  
VSENSE Input Bias Current at 1V  
VCOMP Voltage during OLP  
IVSEN3V  
0
0
0
-
1.5  
µA VVSENSE= 3V  
IVSEN1V  
-
1
µA VVSENSE= 1V  
VVCOMPF  
0.2  
0.4  
V
VVSENSE= 0.5V  
VCOMP= 0.5mA  
I
Version 1.0  
16  
09 Oct 2008  
CCM-PFC  
ICE2PCS05/G  
Electrical Characteristics  
4.3.7  
Driver Section  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
typ.  
max.  
GATE Low Voltage  
VGATEL  
-
-
1.2  
V
V
VCC =10V  
GATE = 5 mA  
I
-
1.5  
VCC =10V  
I
GATE =20 mA  
GATE = 0 A  
-
0.4  
-
-
1.0  
-
V
V
V
V
I
-
-0.2  
-
IGATE = 20 mA  
IGATE = -20 mA  
0
GATE High Voltage  
VGATEH  
14.8  
-
VCC = 25V  
CL = 4.7nF  
-
7.8  
-
14.8  
9.2  
60  
50  
-
-
V
V
VCC = 19V  
CL = 4.7nF  
-
VCC = VVCCoff + 0.2V  
CL = 4.7nF  
GATE Rise Time  
GATE Fall Time  
tr  
-
ns  
VGate = 2V ...12V  
CL = 4.7nF  
tf  
-
-
ns  
A
VGate = 12V ...2V  
CL = 4.7nF  
CL = 4.7nF1)  
GATE Current, Peak,  
Rising Edge  
IGATE  
IGATE  
-1.5  
-
GATE Current, Peak,  
Falling Edge  
-
-
2.0  
A
CL = 4.7nF1)  
1)  
Design characteristics (not meant for production testing)  
Version 1.0  
17  
09 Oct 2008  
CCM-PFC  
ICE2PCS05/G  
Outline Dimension  
5
Outline Dimension  
Figure 17  
PG-DSO-8 and PG-DIP-8 Outline Dimension  
Version 1.0  
18  
09 Oct 2008  
CCM-PFC  
ICE2PCS05/G  
Outline Dimension  
Version 1.0  
19  
09 Oct 2008  
CCM-PFC  
ICE2PCS05/G  
Outline Dimension  
Version 1.0  
20  
09 Oct 2008  
CCM-PFC  
ICE2PCS05/G  
Outline Dimension  
Version 1.0  
21  
09 Oct 2008  
Total Quality Management  
Qualität hat für uns eine umfassende  
Bedeutung. Wir wollen allen Ihren  
Ansprüchen in der bestmöglichen  
Weise gerecht werden. Es geht uns also  
nicht nur um die Produktqualität –  
unsere Anstrengungen gelten  
gleichermaßen der Lieferqualität und  
Logistik, dem Service und Support  
sowie allen sonstigen Beratungs- und  
Betreuungsleistungen.  
Quality takes on an allencompassing  
significance at Semiconductor Group.  
For us it means living up to each and  
every one of your demands in the best  
possible way. So we are not only  
concerned with product quality. We  
direct our efforts equally at quality of  
supply and logistics, service and  
support, as well as all the other ways in  
which we advise and attend to you.  
Dazu gehört eine bestimmte  
Part of this is the very special attitude of  
our staff. Total Quality in thought and  
deed, towards co-workers, suppliers  
and you, our customer. Our guideline is  
“do everything with zero defects”, in an  
open manner that is demonstrated  
beyond your immediate workplace, and  
to constantly improve.  
Throughout the corporation we also  
think in terms of Time Optimized  
Processes (top), greater speed on our  
part to give you that decisive  
competitive edge.  
Geisteshaltung unserer Mitarbeiter.  
Total Quality im Denken und Handeln  
gegenüber Kollegen, Lieferanten und  
Ihnen, unserem Kunden. Unsere  
Leitlinie ist jede Aufgabe mit „Null  
Fehlern“ zu lösen – in offener  
Sichtweise auch über den eigenen  
Arbeitsplatz hinaus – und uns ständig  
zu verbessern.  
Unternehmensweit orientieren wir uns  
dabei auch an „top“ (Time Optimized  
Processes), um Ihnen durch größere  
Schnelligkeit den entscheidenden  
Wettbewerbsvorsprung zu verschaffen.  
Geben Sie uns die Chance, hohe  
Leistung durch umfassende Qualität zu  
beweisen.  
Give us the chance to prove the best of  
performance through the best of quality  
– you will be convinced.  
Wir werden Sie überzeugen.  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

ICE2PCS05GXUMA1

Switching Controller, Current-mode, 315kHz Switching Freq-Max, BICMOS, PDSO8, LEAD FREE, PLASTIC, SOP-8
INFINEON

ICE2PCS06

Standalone Power Factor Correction (PFC) Controller in Continuous Conduction Mode (CCM) with Input Brown-Out Protection
INFINEON

ICE2PCS06G

Standalone Power Factor Correction (PFC) Controller in Continuous Conduction Mode (CCM) with Input Brown-Out Protection
INFINEON

ICE2PCS06GXUMA1

Power Factor Controller, Current-mode, 70kHz Switching Freq-Max, PDSO8, LEAD FREE, PLASTIC, DSO-8
INFINEON

ICE2QR0665

Off-Line SMPS Quasi-Resonant PWM Controller
INFINEON

ICE2QR0665G

Off-Line SMPS Quasi-Resonant PWM Controller with integrated 650V CoolMOS? and startup cell in DSO-16/12
INFINEON

ICE2QR0665GXUMA1

Switching Controller, Current-mode, 65kHz Switching Freq-Max, BICMOS, PDSO12, ROHS COMPLIANT, PLASTIC, SOP-12
INFINEON

ICE2QR0665XKLA1

Switching Controller, Current-mode, 65kHz Switching Freq-Max, BICMOS, PDIP8, GREEN, PLASTIC, DIP-8
INFINEON

ICE2QR0665Z

Off-Line SMPS Quasi-Resonant PWM Controller with integrated 650V CoolMOS? and startup cell in DIP-7
INFINEON

ICE2QR0665ZXKLA1

Switching Controller, Current-mode, 65kHz Switching Freq-Max, BICMOS, PDIP7, GREEN, PLASTIC, DIP-7
INFINEON

ICE2QR0665_10

Off-Line SMPS Quasi-Resonant PWM Controller
INFINEON

ICE2QR0680Z

Off-Line SMPS Quasi-Resonant PWM controller with integrated 800V CoolMOS? and startup cell in DIP7
INFINEON