ICE5AR3995BZ [INFINEON]

100 kHz offline flyback regulator with integrated 950 V CoolMOS™ superjunction MOSFET;
ICE5AR3995BZ
型号: ICE5AR3995BZ
厂家: Infineon    Infineon
描述:

100 kHz offline flyback regulator with integrated 950 V CoolMOS™ superjunction MOSFET

文件: 总40页 (文件大小:2350K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICE5xRxxxxxZ  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Features  
Integrated 800 V / 950 V avalanche rugged CoolMOS™  
Enhanced Active Burst mode with selectable entry and  
exit standby power  
Digital frequency reduction for better overall system efficiency  
Fast startup achieved with cascode configuration  
DCM and CCM operation with slope compensation  
Frequency jitter and soft gate driving for low EMI  
Built-in digital soft start  
PG-DIP-7  
Integrated error amplifier to support direct feedback  
in non-isolated flyback and buck topologies  
Comprehensive protection with input line overvoltage, VCC  
overvoltage, VCC undervoltage, overload, open loop and  
overtemperature  
All protections are in auto restart mode  
Limited charging current for VCC short to GND  
Pb-free lead plating, halogen-free mold compound, RoHS-compliant  
Potential applications  
Auxiliary power supply for home appliances, white goods, TV, PC and server, smart metering  
Blu-ray players, set-top boxes, and LCD/LED monitors  
Product validation  
Fully qualified according to JEDEC for Industrial Applications.  
Description  
The ICE5xRxxxxxZ is the fifth-generation of fixed-frequency integrated power IC (CoolSET™) optimized for off-  
line switch-mode power supplies in cascode configuration. The CoolSET™ package contains two separate  
chips. One is the controller chip and the other is the 800 V / 950 V CoolMOS™ chip. The cascode configuration  
helps achieve fast startup. The frequency reduction with soft gate driving and frequency jitter operation offers  
lower EMI and better efficiency between a light load and 50% load. The selectable entry and exit standby power  
ABM enables flexibility and ultra-low power consumption in standby mode with small and controllable output  
voltage ripple. The product has a wide operating range (10.0 V to 25.5 V) of IC power supply and lower power  
consumption. The numerous protection functions support the power supply system in failure situations. All  
these make the fifth-generation CoolSET™ series an outstanding integrated power stage fixed frequency  
flyback and buck converter in the market.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Wp  
Wa  
Lf1  
Lf2  
DO1  
Ws1  
Cbus  
Snubber  
DVCC  
RSTARTUP  
RVCC  
VO1  
Cf1  
Cf2  
CO1  
85 ~ 300 VAC  
CVCC  
DO2  
Ws2  
CO2  
VO2  
Dr1~Dr4  
DRAIN  
VCC  
GATE  
RI1  
VIN  
RI2  
CPS  
CoolMOSTM  
Power Management  
D
PWM controller  
Current Mode Control  
Cycle-by-Cycle  
current limitation  
Gate  
Driver  
Rb1  
Rb2  
Rc1  
# Rovs3  
Rovs1  
GND  
RCS  
CS  
Digital Control  
FB  
C2  
Active Burst Mode  
Protections  
Control Unit  
ICE5xRxxxxCZ CoolSETTM  
# Optional  
RSel (Burst mode detect)  
Cc1 Cc2  
Rovs2  
TL431  
Rovs3 (V02 feedback)  
Optocoupler  
Figure 1  
Typical application in isolated flyback using TL431 and optocoupler  
Wp  
Lf1  
DO1  
Ws1  
Cbus  
Snubber  
DVCC  
RSTARTUP  
RVCC  
VO1  
Cf1  
CO1  
85 ~ 300 VAC  
CVCC  
Wa  
DP1  
Dr1~Dr4  
DRAIN  
VCC  
D
GATE  
LfP1  
CoolMOSTM  
VP1  
WP1  
CP1  
CfP1  
Power Management  
CPS  
PWM controller  
Current Mode Control  
Cycle-by-Cycle  
current limitation  
Gate  
Driver  
GND  
RCS  
CS  
RF2  
Digital Control  
Error Amplifier  
VERR  
FB  
RF1  
Active Burst Mode  
R1  
C1  
Control Unit  
ICE5xRxxxxBZ CoolSETTM  
# Optional  
RSel (Burst mode detect)  
C2  
Protections  
Figure 2  
Typical application in non-isolated flyback utilizing integrated error amplifier  
ICE5BRxxxxBZ CoolSETTM  
DRAIN  
GATE  
FB  
VCC  
VERR  
CS  
Cvcc  
Rcs  
Daux  
D2  
Rh  
Rstartup  
AC line  
Cin  
Cfb  
Rl  
C1  
R1  
GND  
L1  
Cout  
*Rs  
C2  
D1  
*Rs is recommended to avoid saturation of inductor (L1) during output short circuit  
Figure 3  
Typical application in non-isolated buck  
Datasheet  
2 of 40  
Rev 1.1  
2022-07-19  
 
 
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Output power of fifth-generation fixed-frequency CoolSET™ in flyback design  
Table 1  
Output power of fifth-generation fixed-frequency CoolSET™ in flyback design  
220 V AC  
85-300 V AC2 85-300 V AC2  
1
Type  
Package  
Marking  
VDS  
Fsw  
RDSon  
±20%2 at DCM at DCM  
at CCM  
16.5 W  
18 W  
ICE5BR4780BZ  
ICE5BR3995BZ  
ICE5BR3995CZ  
ICE5AR3995BZ  
ICE5BR2280BZ  
ICE5AR2280CZ  
PG-DIP-7  
PG-DIP-7  
PG-DIP-7  
PG-DIP-7  
PG-DIP-7  
PG-DIP-7  
5BR4780BZ  
5BR3995BZ  
5BR3995CZ  
5AR3995BZ  
5BR2280BZ  
5AR2280CZ  
800 V  
950 V  
950 V  
950 V  
800 V  
800 V  
65 kHz  
65 kHz  
65 kHz  
100 kHz  
65 kHz  
100 kHz  
4.13 Ω  
3.46 Ω  
3.46 Ω  
3.46 Ω  
2.13 Ω  
2.13 Ω  
27.5 W  
30 W  
30 W  
30 W  
40 W  
40 W  
15 W  
16.5 W  
16.5 W  
16.5 W  
22 W  
18 W  
18 W  
24 W  
22 W  
24 W  
Output current of fifth-generation fixed-frequency CoolSET™ in non-isolated buck design  
Infineon® recommends the 65 kHz variant for a non-isolated Buck converter.  
Table 2  
Output current of fifth-generation generation fixed-frequency CoolSET™ in non-isolated  
buck design  
85-265 V AC3  
at DCM  
Typical output  
voltage  
1
Type  
Package  
Marking  
VDS  
Fsw  
RDSon  
ICE5BR4780BZ  
ICE5BR3995BZ  
ICE5BR2280BZ  
PG-DIP-7  
PG-DIP-7  
PG-DIP-7  
5BR4780BZ  
5BR3995BZ  
5BR2280BZ  
800 V  
950 V  
800 V  
65 kHz  
65 kHz  
65 kHz  
4.13 Ω  
3.46 Ω  
2.13 Ω  
450 mA  
550 mA  
700 mA  
15 V  
1 Typically at Ti = 25°C (inclusive of low side MOSFET).  
2 Calculated maximum output power rating in an open frame design at Ta = 50°C, Tj = 125°C (integrated high voltage MOSFET) and using  
minimum drain pin copper area in a 2 oz copper single-sided PCB. The output power figure is for selection purpose only. The actual  
power can vary depending on the designs. Contact a technical expert from Infineon® for more information.  
3 Calculated maximum output currrent rating in an open frame design at Ta = 50°C, Tj = 125°C (integrated high voltage MOSFET) and using  
minimum 100mm2 drain pin copper area in a 2 oz copper single-sided PCB. The output current figure is for selection purpose only.  
The actual current can vary depending on the designs. Contact a technical expert from Infineon® for more information.  
Datasheet  
3 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Table of contents  
Table of contents  
Table of contents............................................................................................................................ 4  
1
2
Block diagram........................................................................................................................ 6  
Pin configuration ................................................................................................................... 7  
3
Functional description............................................................................................................ 8  
VCC precharging and typical VCC voltage during startup .........................................................................8  
Soft start ..................................................................................................................................................9  
Normal operation....................................................................................................................................9  
PWM operation and peak current mode control ..............................................................................9  
3.1  
3.2  
3.3  
3.3.1  
3.3.1.1  
3.3.1.2  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
3.3.6  
3.4  
Switch-on determination..............................................................................................................9  
Switch-off determination .............................................................................................................9  
Current sense ...................................................................................................................................10  
Frequency reduction........................................................................................................................11  
Slope compensation ........................................................................................................................11  
Oscillator and frequency jittering....................................................................................................12  
Modulated gate drive .......................................................................................................................12  
Peak current limitation .........................................................................................................................12  
Propagation delay compensation ...................................................................................................13  
Active burst mode with selectable power level ...................................................................................14  
Entering ABM operation...................................................................................................................14  
During ABM operation......................................................................................................................14  
Leaving ABM operation ....................................................................................................................14  
ABM configuration............................................................................................................................16  
Non-isolated/isolated configuration....................................................................................................16  
Protection functions .............................................................................................................................17  
Line overvoltage (CZ version) ..........................................................................................................17  
VCC overvoltage and undervoltage...................................................................................................17  
Overload or open loop .....................................................................................................................17  
Overtemperature .............................................................................................................................17  
VCC short to GND................................................................................................................................18  
Protection modes.............................................................................................................................18  
3.4.1  
3.5  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
3.6  
3.7  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
3.7.5  
3.7.6  
4
Electrical characteristics........................................................................................................20  
Absolute maximum ratings...................................................................................................................20  
Operating range ....................................................................................................................................21  
Operating conditions ............................................................................................................................21  
Internal voltage reference.....................................................................................................................22  
PWM section ..........................................................................................................................................22  
Error amplifier .......................................................................................................................................23  
Current sense.........................................................................................................................................23  
Soft start ................................................................................................................................................24  
Active burst mode .................................................................................................................................24  
Line overvoltage protection (CZ version).............................................................................................25  
VCC overvoltage protection....................................................................................................................25  
Overload protection..............................................................................................................................25  
Thermal protection ...............................................................................................................................25  
CoolMOS™ section.................................................................................................................................26  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
4.10  
4.11  
4.12  
4.13  
4.14  
5
CoolMOS™ performance characteristics...................................................................................27  
6
Output power curve ..............................................................................................................33  
Datasheet  
4 of 40  
Rev 1.1  
2022-07-19  
 
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Table of contents  
7
Output current curve.............................................................................................................36  
8
8.1  
Package information .............................................................................................................37  
Marking ..................................................................................................................................................38  
9
Revision history ....................................................................................................................39  
Datasheet  
5 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Block diagram  
1
Block diagram  
VCC  
GATE DRAIN  
Power Management  
Line Overvoltage Protection  
Thermal Protection  
50 µs  
CZ Version  
250 µs  
Blanking  
time  
Undervoltage Lockout  
16.0V  
Internal  
Bias  
Tj > Tjcon_OTP  
Blanking  
time  
S
R
VVIN_LOVP  
Voltage  
Reference  
Q
C7a  
Input  
OVP  
OTP  
Mode  
S
R
Q
10.0V  
VIN  
Mode  
100 ns  
Blanking  
time  
Tj < Tjcon_OTP-TjHYS_OTP  
Autorestart  
Protect  
C20  
tVCC_OVP_B  
Autorestart  
Protect  
VVCC_OVP  
fOSC_2  
Error Amplifier  
OSC with  
Jitter and  
Frequency  
Reduction  
BZ Version  
Non-  
Isolated  
Detector  
fOSC  
OSC  
D1  
VERR  
ERR  
VERR_REF  
Gate Driver  
Gate  
Drive  
VREF  
Protection and PWM Digital Control  
RFB  
Overload Protection  
Gate  
Drive  
Burst  
Mode  
detect  
GND  
C12  
tFB_OLP_B  
VFB_OLP  
/
VFB_LB  
VCS_BLP  
VCS_BHP  
VREF  
C13  
FB  
Slope  
Comp  
Active Burst Block  
Peak current  
limit  
Burst Mode  
Level Select  
VCS_Nx  
Leading  
Edge  
10kΩ  
C15  
VFB_EBHP  
VFB_EBLP  
CS  
Blanking  
tCS_LEB  
Active  
Burst Mode  
1pF  
D2  
No burst  
C9  
tFB_BEB  
PWM  
Comparator  
C15a  
CPWM  
2pF  
V1  
C10  
C11  
Soft-start  
VFB_BOn  
PWM OP  
GPWM  
Delay  
tCS_STG  
C19  
VPWM  
Current Mode  
VCS_STG  
VFB_BOff  
Slope Compensation/Current Limiting  
Figure 4  
Block diagram  
Note:  
Junction temperature of the controller chip is sensed for overtemperature protection. The  
CoolMOSTM is a separate chip from the controller chip in the same package. Refer to the design  
guide or consult a technical expert for the proper thermal design.  
Datasheet  
6 of 40  
Rev 1.1  
2022-07-19  
 
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Pin configuration  
2
Pin configuration  
The pin configuration is shown in Figure 5 and the functions are described in Table 3.  
Figure 5  
Pin configuration  
Table 3  
Pin definitions and functions  
Function  
Pin Symbol  
Error amplifier  
VERR  
(BZ version)  
VERR pin is internally connected to the transconductance error amplifier for a non-  
isolated converter. Connect this pin to GND for an isolated converter.  
1
Input line overvoltage protection (LOVP)  
VIN  
VIN pin is connected to the bus via a resistor divider (see Figure 1) to sense the line  
(CZ version) voltage. Internally, it is connected to the line overvoltage comparator which stops the  
switching when a LOVP condition occurs. To disable LOVP, connect this pin to GND.  
Feedback and ABM entry and exit control  
2
3
FB  
FB pin combines the functions of feedback control, selectable burst entry/exit control  
and overload/open loop protection.  
Current sense  
The CS pin is connected to the shunt resistor for the primary current sensing externally  
and to the PWM signal generator block for switch-off determination (together with the  
feedback voltage) internally.  
CS  
Gate driver output  
The GATE pin is connected to the Gate of the internal CoolMOS™ and additionally, a pull-  
up resistor is connected from a bus voltage to turn on the internal CoolMOS™ for charging  
up the VCC capacitor during startup.  
4
GATE  
DRAIN (Drain of integrated CoolMOS™)  
The DRAIN pin is connected to the drain of the integrated CoolMOS™.  
VCC (Positive voltage supply)  
5
7
8
DRAIN  
VCC  
The VCC pin is the positive voltage supply to the IC. The operating range is between  
VVCC_OFF and VVCC_OVP  
.
Ground  
GND  
The GND pin is the common ground of the controller.  
Datasheet  
7 of 40  
Rev 1.1  
2022-07-19  
 
 
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Functional description  
3
Functional description  
3.1  
VCC precharging and typical VCC voltage during startup  
As shown in Figure 1, once the line input voltage is applied, a rectified voltage appears across the capacitor  
CBUS. The pull-up resistor RSTARTUP provides a current to charge the Ciss (input capacitance) of CoolMOS™ and  
gradually generate one voltage level. If the voltage over Ciss is high enough, CoolMOSand the VCC capacitor are  
charged through the primary inductance of a transformer LP, CoolMOS™ and the internal diode D1 with the two  
1
steps constant current source IVCC_ Charge11 and IVCC_ Charge3  
.
A very small constant current source (IVCC_Charge1) is charged to the VCC capacitor until VCC reaches VCC_SCP to protect  
the controller from the VCC pin short to ground during the startup. After this, the second step constant current  
source (IVCC_Charge3) is provided to charge the VCC capacitor further, until the VCC voltage exceeds the turned-on  
threshold VVCC_ON. As shown in the time phase I in Figure 6, the VCC voltage increases almost linearly with two  
steps.  
VVCC  
I
II  
III  
VVCC_ON  
VVCC_OFF  
VVCC_SCP  
tA  
tB  
t
IVCC  
IVCC_Normal2  
t
0
IVCC_Charge1  
IVCC_Charge2/3  
-IVCC  
t1 t2  
Figure 6  
The time for the VCC precharging can then be calculated as:  
ꢀ퐶퐶_푆퐶푃 × ꢁꢀ퐶퐶 (ꢀ퐶퐶_푂푁 ꢀ퐶퐶_푆퐶푃) × ꢁꢀ퐶퐶  
VCC voltage and current at startup  
(1)  
1 = 푡A + 푡B =  
+
ꢀ퐶퐶_퐶ℎ푎푟ꢂ푒1  
ꢀ퐶퐶_퐶ℎ푎푟ꢂ푒3  
When the VCC voltage exceeds the VCC turn on threshold VVCC_ON at time t1, the IC starts to operate with soft start.  
Due to the power consumption of the IC and the fact that there is still no energy from the auxiliary winding to  
charge the VCC capacitor before the output voltage is built up, the VCC voltage drops (phase II). Once the output  
voltage rises close to regulation, the auxiliary winding starts to charge the VCC capacitor from the time t2 onward  
and delivering the IVCC_ Normal22to the CoolSET™. VCC then reaches a constant value depending on the output load.  
1 IVCC_ Charge1/2/3 is charging current from the controller to VCC capacitor during startup.  
2 IVCC_ Normal2 is supply current from VCC capacitor or auxiliary winding to the CoolSET™ during normal operation.  
Datasheet  
8 of 40  
Rev 1.1  
2022-07-19  
 
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Functional description  
3.2  
Soft start  
As shown in Figure 7, the IC starts to operate with a soft start at time ton. The switching stresses on the power  
MOSFET, diode, and transformer are minimized during soft start. The soft start implemented in ICE5xRxxxxxZ is  
a digital time-based function. The preset soft start time is tSS (12 ms) with four steps. If not limited by other  
functions, the peak voltage on CS pin increases step by step from 0.3 V to finally VCS_N (0.8 V). The normal  
feedback loop takes over the control when the output voltage reaches its regulated value.  
Figure 7  
Maximum current sense voltage during soft start  
3.3  
Normal operation  
The PWM controller during normal operation consists of a digital signal processing circuit including regulation  
control and an analog circuit including a current measurement unit and a comparator. Details about the full  
operation of the CoolSET™ in normal operation are illustrated in the following paragraphs.  
3.3.1  
PWM operation and peak current mode control  
3.3.1.1  
Switch-on determination  
The power MOSFET turn-on is synchronized with the internal oscillator with a switching frequency FSW that  
corresponds to the voltage level VFB (see Figure 9).  
3.3.1.2  
Switch-off determination  
In peak current mode control, the PWM comparator monitors voltage V1 (see Figure 4), which represents the  
instantaneous current of the power MOSFET. When V1 exceeds VFB, the PWM comparator sends a signal to  
switch off the GATE of the power MOSFET. Therefore, the peak current of the power MOSFET is controlled by  
the feedback voltage VFB (see Figure 8).  
At switch-on transient of the power MOSFET, a voltage spike across RCS can cause V1 to increase and exceed VFB.  
To avoid a false switch off, the IC has a blanking time tCS_LEB before detecting the voltage across RCS to mask the  
voltage spike. Therefore, the minimum turn on time of the power MOSFET is tCS_LEB  
.
If the voltage level at V1 takes a long time to exceed VFB, the IC has implemented a maximum duty cycle control  
to force the power MOSFET to switch off when DMAX = 0.75 is reached.  
Datasheet  
9 of 40  
Rev 1.1  
2022-07-19  
 
 
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Functional description  
Figure 8  
Pulse width modulation  
3.3.2  
Current sense  
The power MOSFET current generates a voltage VCS across the current sense resistor RCS connected between the  
CS pin and the GND pin. VCS is amplified with gain GPWM, then, added with an offset VPWM to become V1 as  
described below in equation 3.  
CS = 퐼D × 푅CS  
(2)  
(3)  
푉 = CS × 퐺PWM + PWM  
1
where:  
VCS  
ID  
: CS pin voltage  
: Power MOSFET current  
RCS  
V1  
: Resistance of the current sense resistor  
: Voltage level compared to VFB as described in chapter 3.3.1.2  
GPWM : PWM-OP gain  
VPWM : Offset for voltage ramp  
Datasheet  
10 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Functional description  
If the voltage at the current sense pin is lower than the preset threshold VCS_STG after the time tCS_STG_SAM for three  
consecutive pulses during on-time of the power switch, this abnormal VCS triggers the IC into auto restart mode.  
3.3.3  
Frequency reduction  
Frequency reduction is implemented in ICE5xRxxxxxZ to achieve a better efficiency during the light load.  
At light load, the reduced switching frequency FSW improves efficiency by reducing the switching loses.  
When the load decreases, VFB decreases as well. FSW is dependent on the VFB as shown in Figure 9. Therefore, FSW  
decreases as the load decreases.  
For example, FSW at high load is 65 kHz and starts to decrease at VFB = 1.7 V. There is no further frequency  
reduction once it reached the fOSC2_MIN even the load is further reduced.  
fSW(VFB)  
VCS (VFB)  
Vcs  
VCS_N  
0.80 V  
fOSC2 /fOSC4  
Fsw  
65 kHz / 100 kHz  
fOSC2_ABM / fOSC4_ABM  
BM  
54 kHz / 83 kHz  
No BM  
BM  
fOSC2_MIN / fOSC4_MIN  
28 kHz / 43 kHz  
VCS_BHP / VCS_BLP  
0.27 V /0.22 V  
No BM  
VFB  
VFB_EBxP  
0.5 V 0.93 / 1.03 V 1.35 V  
VFB_OLP  
2.73 V  
1.7 V  
Figure 9  
Frequency reduction curve  
3.3.4  
Slope compensation  
ICE5xRxxxxxZ can operate at continuous conduction mode (CCM). At CCM operation, a duty cycle greater than  
50% may generate a subharmonic oscillation. To avoid the subharmonic oscillation, slope compensation is  
added to VCS pin when the gate of the power MOSFET is turned on for more than 40% of the switching cycle  
period.  
The relationship between VFB and the VCS for CCM operation is described in equation 4:  
FB = CS × 퐺PWM + PWM + 푀COMP × (ON − 40% × PERIOD  
)
(4)  
where:  
TON  
: Gate turn on time of the power MOSFET  
Datasheet  
11 of 40  
Rev 1.1  
2022-07-19  
 
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Functional description  
MCOMP : Slope compensation rate  
TPERIOD : Switching cycle period  
Slope compensation circuit is disabled and no slope compensation is added into the VCS pin during Active Burst  
mode to save the power consumption.  
3.3.5  
Oscillator and frequency jittering  
The oscillator generates a frequency of 65 kHz / 100 kHz with frequency jittering of ±4% at a jittering period of  
TJITTER (4 ms). The frequency jittering helps to reduce conducted EMI.  
A capacitor, a current source, and a current sink that determine the frequency are integrated. The charging and  
discharging current of the implemented oscillator capacitor are internally trimmed to achieve a highly accurate  
switching frequency.  
Once the soft start period is over and when the IC goes into normal operating mode, the frequency jittering is  
enabled. There is also frequency jittering during frequency reduction.  
3.3.6  
Modulated gate drive  
The drive-stage is optimized for EMI consideration. The switch-on speed is slowed down before it reaches the  
CoolMOS™ turn on threshold. That is a slope control of the rising edge at the output of the driver (see Figure  
10). Thus the leading switch spike during turn on is minimized.  
Figure 10  
Gate rising waveform  
3.4  
Peak current limitation  
There is a cycle-by-cycle peak current limitation realized by the current limit comparator to provide primary  
over-current protection. The primary current generates a voltage VCS across the current sense resistor RCS  
connected between the CS pin and the GND pin. If the voltage VCS exceeds an internal voltage limit VCS_N, the  
comparator immediately turns off the gate drive.  
The primary peak current IPEAK_PRI can be calculated as below:  
PEAK_PRI = CS_N CS  
(5)  
To avoid mistriggering caused by the MOSFET switch on transient voltage spikes, a leading edge-blanking time  
(tCS_LEB) is integrated in the current sensing path.  
Datasheet  
12 of 40  
Rev 1.1  
2022-07-19  
 
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Functional description  
3.4.1  
Propagation delay compensation  
In case of an overcurrent detection, there is always a propagation delay from sensing the VCS to switching the  
power MOSFET off. An overshoot on the peak current Ipeak caused by the delay depends on the ratio of dI/dt of  
the primary current (see Figure 11).  
Figure 11 Current limiting  
The overshoot of Signal2 is larger than Signal1 due to the steeper rising waveform. This change in the slope is  
depending on the AC input voltage. Propagation delay compensation is integrated to reduce the overshoot due  
to dI/dt of the rising primary current. Thus the propagation delay time between exceeding the current sense  
threshold VCS_N and the switching off of the power MOSFET is compensated over wide bus voltage range.  
Current limiting becomes more accurate, which results in a minimum difference of overload protection  
triggering power between low and high AC line input voltage.  
Under CCM operation, the same VCS do not result in the same power. To achieve a close overload triggering level  
for CCM, ICE5xRxxxxxZ has implemented a two compensation curve as shown Figure 12. One of the curve is  
used for TON greater than 0.40 duty cycle and the other is for lower than 0.40 duty cycle.  
Figure 12 Dynamic voltage threshold VCS_N  
Datasheet  
13 of 40  
Rev 1.1  
2022-07-19  
 
 
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Functional description  
Similarly, the same concept of propagation delay compensation is also implemented in ABM with reduced  
level. With this implementation, the entry and exit Burst mode power can be close between low and high AC  
line input voltage.  
3.5  
Active burst mode with selectable power level  
At light load condition, the IC enters Active Burst mode (ABM) operation to minimize the power consumption.  
Details about the ABM operation are explained in the following paragraphs.  
3.5.1  
Entering ABM operation  
The system enters into ABM operation when the two conditions below are met:  
The FB voltage is lower than the threshold of VFB_EBLP/VFB_EBHP, depending on the burst configuration option  
setup.  
A certain blanking time tFB_BEB  
.
Once all of these conditions are fulfilled, the ABM flip-flop is set and the controller enters ABM operation. This  
multicondition determination for entering ABM operation prevents mis-triggering of entering ABM operation,  
so that the controller enters ABM operation only when the output power is really low.  
3.5.2  
During ABM operation  
After entering ABM, the PWM section is inactive, making the VOUT start to decrease. As the VOUT decreases, VFB  
rises. Once VFB exceeded VFB_BOn, the internal circuit is again activated by the internal bias to start with the  
switching.  
If the PWM is still operating and the output load is still low, VOUT increases and VFB signal starts to decrease.  
When VFB reaches the low threshold VFB_BOff, the internal bias is reset again and the PWM section is disabled with  
no switching until VFB increases back to exceed VFB_BOn threshold.  
In ABM, VFB is like a sawtooth waveform swinging between VFB_BOff and VFB_BOn shown in Figure 13.  
During ABM, the peak current IPEAK_ABM of the power MOSFET is defined by:  
PEAK_ABM = CS_BxP CS  
(6)  
where VCS_BxP is the peak current limitation in ABM.  
3.5.3  
Leaving ABM operation  
The FB voltage immediately increases if there is a sudden increase in the output load. When VFB exceeds VFB_LB, it  
leaves ABM and the peak current limitation threshold voltage returns back to VCS_N immediately.  
Datasheet  
14 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Functional description  
VFB  
Entering Active Burst Mode  
VFB_LB  
Leaving Active Burst Mode  
VFB_BOn  
VFB_BOff  
VFB_EBHP/VFB_EBLP  
Blanking Window (tFB_BEB  
)
t
VCS  
VCS_N  
Current limit level during Active Burst Mode  
VCS_BHP/VCS_BLP  
t
VVCC  
VVCC_off  
t
VO  
Max. Ripple < 1%  
t
Burst Mode Operation  
Figure 13  
Signals in ABM  
Datasheet  
15 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Functional description  
3.5.4  
ABM configuration  
The burst mode entry level can be selected by changing the different resistance RSel at FB pin. There are three  
configuration options depending on RSel, which corresponds to the options of no ABM (option 1), low range of  
ABM power (option 2) and high range of ABM power (option 3). The table below shows the control logic for the  
entry and exit level with the FB voltage.  
Table 4  
Option  
ABM configuration option setup  
RSel  
VFB  
VCS_BxP  
Entry level  
VFB_EBxP  
Exit level  
VFB_LB  
1
2
< 470 kΩ  
VFB < VFB_P_BIAS1  
-
No ABM  
0.93 V  
No ABM  
2.73 V  
720 k~ 790 kΩ  
VFB_P_BIAS1 < VFB < VFB_P_BIAS2 0.22 V  
VFB > VFB_P_BIAS2 0.27 V  
3 (default) > 1210 kΩ  
1.03 V  
2.73 V  
During IC first startup, the controller preset the ABM selection to option 3, the FB resistor (RFB) is turned off by  
internal switch S2 (see Figure 14) and a current source Isel is turned on instead. From VCC = 4.44 V to VCC on  
threshold, the FB pin starts to charge resistor RSel with current ISel to a certain voltage level. When VCC reaches VCC  
on threshold, the FB voltage is sensed. The burst mode option is then chosen according to the FB voltage level.  
After finishing the selection, any change on the FB level does not change the burst mode option and the current  
source (Isel) is turned off while the FB resistor (RFB) is connected back to the circuit (Figure 14).  
Figure 14  
ABM detect and adjust  
3.6  
Non-isolated/isolated configuration  
ICE5xRxxxxBZ has a VERR pin, which is connected to the input of an integrated error amplifier to support a non-  
isolated converter (see Figure 2). When VCC is charging and before reaching the VCC on threshold, a current  
source IERR_P_BIAS from the VERR pin together with RF1 and RF2 generates a voltage across it. If the VERR voltage is  
more than VERR_P_BIAS (0.2 V), non-isolated configuration is selected, otherwise, isolated configuration is selected.  
In an isolated configuration, the error amplifier output is disconnected from the FB pin.  
In case of non-isolated configuration, the voltage divider RF1 and RF2 are used to sense the output voltage and  
compared with the internal reference voltage VERR_REF. The difference between the sensed voltage and the  
Datasheet  
16 of 40  
Rev 1.1  
2022-07-19  
 
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Functional description  
reference voltage is converted as an output current by the error amplifier. The output current charges or  
discharges the resistor and capacitor network connected at the FB pin for the loop compensation.  
3.7  
Protection functions  
The ICE5xRxxxxxZ provides numerous protection functions that considerably improve the power supply system  
robustness, safety, and reliability. The following table summarizes these protection functions and the  
corresponding protection mode whether as a non-switch auto restart, auto restart or odd skip auto restart  
mode. Refer to Figure 15, Figure 16 and Figure 17 for the waveform illustration of protection modes.  
Table 5  
Protection functions  
Protection functions  
Normal mode  
Burst mode  
Protection mode  
Burst ON  
Burst OFF  
Line overvoltage (CZ version)  
VCC overvoltage  
n/a1  
Non-switch auto restart  
Odd skip auto restart  
Auto restart  
VCC undervoltage  
n/a1  
Overload or open loop  
Overtemperature  
n/a1  
Odd skip auto restart  
Non-switch auto restart  
No startup  
VCC short to GND  
3.7.1  
Line overvoltage (CZ version)  
The AC line overvoltage protection (LOVP) is detected by the sensing bus capacitor voltage through the VIN pin  
via the voltage divider resistors, Rl1 and Rl2 (Figure 1). Once the VVIN voltage is higher than the line overvoltage  
threshold (VVIN_LOVP), the controller enters into protection mode until VVIN is lower than VVIN_LOVP. This protection  
can be disabled by connecting the VIN pin to GND.  
3.7.2  
VCC overvoltage and undervoltage  
During operation, the VCC voltage is continuously monitored. If VCC is either below VVCC_OFF for 50 µs (tVCC_OFF_B) or  
above VVCC_OVP for 55 µs (tVCC_OVP_B), the power MOSFET is kept switch off. After the VCC voltage falls below the  
threshold VVCCoff, the new startup sequence is activated. The VCC capacitor is then charged up. Once the voltage  
exceeds the threshold VVCC_ON, the IC begins to operate with a new soft start.  
3.7.3  
Overload or open loop  
In case of open control loop or output overload, the FB voltage is pulled up. When VFB exceeds VFB_OLP after a  
blanking time of tFB_OLP_B, the IC enters odd skip auto restart mode. The blanking time enables the converter to  
provide a peak power in case the increase in VFB is due to a sudden load increase.  
3.7.4  
Overtemperature  
If the junction temperature of the controller exceeds Tjcon_OTP, the IC enters into overtemperature protection  
(OTP) auto restart mode. The IC has also implemented with a 40°C hysteresis. That means the IC can only be  
recovered from OTP when the controller junction temperature is dropped 40°C lower than the  
overtemperature trigger point.  
1 Not applicable.  
Datasheet  
17 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Functional description  
3.7.5  
VCC short to GND  
To limit the power dissipation of the startup circuit at VCC short to GND condition, the VCC charging current is  
limited to a minimum level of IVCC_ Charge1. With such low current, the power loss of the IC is limited to prevent  
overheating.  
3.7.6  
Protection modes  
All the protections are in auto restart mode with a new soft start sequence. The three auto restart modes are  
illustrated in the following figures.  
Fault  
Fault released  
detected  
Switching start at the  
following restart cycle  
Start up and detect at  
every charging cycle  
VVCC  
VCC_ON  
VCC_OFF  
t
t
VCS  
No switching  
Figure 15  
Non-switch auto restart mode  
Datasheet  
18 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Functional description  
Fault  
Fault released  
detected  
Start up and detect at every  
charging cycle  
Switching start at the  
following restart cycle  
VVCC  
VCC_ON  
VCC_OFF  
t
t
VCS  
Figure 16  
Auto restart mode  
Fault  
detected  
Fault released  
Start up and detect at  
every even charging  
cycle  
Switching start at the  
following even restart  
VVCC  
No detect  
No detect  
cycle  
VCC_ON  
VCC_OFF  
t
t
VCS  
Figure 17 Odd skip auto restart  
Datasheet  
19 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Electrical characteristics  
4
Electrical characteristics  
Attention: All voltages are measured with respect to ground (pin 8). The voltage levels are valid if other  
ratings are not violated.  
4.1  
Absolute maximum ratings  
Attention: Stresses above the maximum values listed here may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability. Maximum ratings are absolute ratings; exceeding any one of these values may cause  
irreversible damage to the integrated circuit. For the same reason, make sure that any capacitor  
that is connected to pin 7 (VCC) is discharged before assembling the application circuit.  
Ta = 25°C unless otherwise specified.  
Table 6  
Absolute maximum ratings  
Parameter  
Symbol Limit values  
Unit Note or  
test condition  
Min.  
Max.  
Drain voltage  
ICE5xRxx80xZ  
ICE5xR3995xZ  
VDRAIN  
V
Tj = 25°C  
800  
950  
Pulse drain current  
ICE5xR3995xZ  
ICE5BR4780BZ  
ICE5xR2280xZ  
ID,Pulse  
A
5.01  
2.61  
5.82  
Avalanche energy, repetitive, tAR limited  
by maximal Tj = 150°C and Tj,Start = 25°C  
ICE5xR2280xZ  
ICE5BR4780BZ  
ICE5xR3995xZ  
EAR  
mJ  
A
0.05  
0.02  
0.04  
ID = 0.40 A, VDD = 50 V  
ID = 0.20 A, VDD = 50 V  
ID = 0.20 A, VDD = 50 V  
Avalanche current, repetitive, tAR limited  
by maximal Tj = 150°C and Tj,Start = 25°C  
IAR  
ICE5BR4780BZ  
ICE5xR3995xZ  
ICE5xR2280xZ  
0.20  
0.20  
0.40  
27.0  
27.0  
3.6  
VCC supply voltage  
GATE voltage  
VCC  
VGATE  
VFB  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-10.0  
V
V
FB voltage  
V
VERR voltage  
VERR  
VCS  
3.6  
V
CS voltage  
3.6  
V
VIN voltage  
VVIN  
3.6  
V
Maximum DC current on any pin  
10.0  
mA  
Except DRAIN and CS pin.  
1 Pulse width tP limited by Tj,max  
.
2 Pulse width tP = 20 µs and limited by Tj,max  
.
Datasheet  
20 of 40  
Rev 1.1  
2022-07-19  
 
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Electrical characteristics  
Parameter  
Symbol Limit values  
Unit Note or  
test condition  
Min.  
Max.  
2000  
500  
ESD robustness HBM  
ESD robustness CDM  
Junction temperature range  
Storage temperature  
Thermal resistance (junction-ambient)  
ICE5BR4780BZ  
VESD_HBM  
VESD_CDM  
Tj  
V
According to EIA/JESD22.  
V
-40  
-55  
150  
°C  
°C  
Controller and CoolMOS.  
TSTORE  
RthJA  
150  
K/W Setup according to the  
JEDEC standard JESD51  
and using minimum drain  
pin copper area in a 2 oz  
copper single-sided PCB.  
107  
106  
104  
ICE5xR3995xZ  
ICE5xR2280xZ  
4.2  
Operating range  
Note:  
Within the operating range, the IC operates as described in the functional description.  
Table 7  
Operating range  
Parameter  
Symbol  
Limit values  
Unit Note or  
test condition  
Min.  
VVCC_OFF  
-40  
Max.  
VCC supply voltage  
VVCC  
VVCC_OVP  
Junction temperature of controller TjCon_op  
TjCon_OTP °C  
Maximum value limited due to  
OTP of controller chip.  
Junction temperature of  
TjCoolMOS_op  
-40  
150  
°C  
CoolMOS™  
4.3  
Operating conditions  
Note:  
The electrical characteristics involve the spread of values within the specified supply voltage and  
junction temperature range TJ from 40°C to 125°C. Typical values represent the median values,  
which are related to 25°C. If not otherwise stated, a supply voltage of VCC = 18 V is assumed.  
Table 8  
Operating conditions  
Parameter  
Symbol  
Limit values  
Min. Typ.  
Unit  
Note or  
test Condition  
Max.  
VCC charge current  
IVCC_Charge1 -0.35 -0.20 -0.09 mA  
VVCC = 0 V, RStartUp = 50 MΩ  
and VDRAIN = 90 V  
IVCC_Charge2  
-3.2  
-3  
mA  
mA  
VVCC = 3 V, RStartUp = 50 MΩ  
and VDRAIN = 90 V  
IVCC_Charge3 -5  
-1  
VVCC = 15 V, RStartUp = 50 MΩ  
and VDRAIN = 90 V  
Current consumption, startup current  
IVCC_Startup  
IVCC_Normal1  
0.25  
0.9  
mA  
mA  
VVCC = 15 V  
IFB = 0 A  
Current consumption, normal with  
Inactive Gate  
Datasheet  
21 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Electrical characteristics  
Parameter  
Symbol  
Limit values  
Min. Typ.  
Unit  
Note or  
test Condition  
Max.  
Current consumption, normal with  
Active Gate  
IVCC_Normal2  
mA  
ICE5BR2280BZ  
ICE5BR3995xZ  
ICE5AR3995BZ  
ICE5BR4780BZ  
ICE5AR2280CZ  
1.89  
1.82  
2.21  
1.69  
2.31  
Current consumption, auto restart  
IVCC_AR  
410  
µA  
Current consumption, Burst mode –  
IVCC_Burst  
0.54  
mA  
isolated  
Mode_ISO  
Current consumption, Burst mode –  
IVCC_Burst  
0.61  
mA  
non-isolated  
Mode_NISO  
VCC turn-on threshold voltage  
VCC turn-off threshold voltage  
VCC short circuit protection  
VCC turn-off blanking  
VVCC_ON  
15.3  
9.4  
16.0  
10.0  
1.1  
16.5  
10.4  
1.9  
V
VVCC_OFF  
VVCC_SCP  
tVCC_OFF_B  
V
V
50  
µs  
4.4  
Internal voltage reference  
Table 9  
Internal voltage reference  
Parameter  
Symbol Limit values  
Min. Typ.  
Unit Note or  
test condition  
Max.  
Internal reference voltage  
VREF  
3.20 3.30  
3.39  
V
Measured at FB pin  
IFB = 0 A  
4.5  
PWM section  
Table 10  
PWM section  
Parameter  
Symbol  
Limit values  
Unit  
Note or  
test condition  
Min.  
92  
Typ.  
100  
100  
83  
Max.  
108  
106  
94  
Fixed oscillator frequency –  
fOSC3  
kHz  
kHz  
kHz  
100 kHz  
fOSC4  
94  
Tj = 25°C  
Tj = 25°C  
Fixed oscillator frequency –  
fOSC4_ABM  
71  
100 kHz (ABM)  
Fixed oscillator frequency –  
100 kHz (minimum Fsw)  
fOSC4_MIN  
36  
43  
51  
kHz  
Tj = 25°C  
Fixed oscillator frequency –  
65 kHz  
fOSC1  
59.8  
61.1  
46.2  
65  
65  
54  
70.2  
68.9  
61.1  
kHz  
kHz  
kHz  
fOSC2  
Tj = 25°C  
Tj = 25°C  
Fixed oscillator frequency –  
fOSC2_ABM  
65 kHz (ABM)  
Datasheet  
22 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Electrical characteristics  
Parameter  
Symbol  
Limit values  
Unit  
Note or  
test condition  
Min.  
Typ.  
Max.  
Fixed oscillator frequency –  
65 kHz (minimum Fsw)  
fOSC2_MIN  
23.4  
28  
33.2  
kHz  
Tj = 25°C  
Frequency jittering range  
Frequency jittering period  
Maximum duty cycle  
Feedback pull-up resistor  
PWM-OP gain  
FJITTER  
TJITTER  
DMAX  
RFB  
± 4  
4
%
Tj = 25°C  
Tj = 25°C  
ms  
%
70  
11  
1.91  
0.42  
75  
80  
20  
2.16  
0.58  
15  
kΩ  
GPWM  
VPWM  
2.03  
0.50  
Offset for voltage ramp  
Slope compensation rate -  
100 kHz  
V
MCOMP  
MCOMP  
41  
50  
58  
38  
mV/μs  
Vcs = 0 V  
Vcs = 0 V  
Slope compensation rate -  
65 kHz  
26.5  
32.5  
mV/μs  
4.6  
Error amplifier  
Table 11  
Error amplifier  
Parameter  
Symbol  
Limit values  
Unit  
Note or  
test condition  
Min.  
2.14  
6.9  
Typ.  
2.80  
9.2  
Max.  
Transconductance  
GERR_M  
3.44  
11.6  
223  
223  
1.84  
3.15  
mA/V  
mA/V  
μA  
Transconductance Burst mode  
Error amplifier source current  
Error amplifier sink current  
Error amplifier reference voltage  
GERR_BM  
IERR_SOURCE  
IERR_SINK  
VERR_REF  
VERR_DYN  
85  
150  
150  
1.80  
85  
μA  
1.76  
0.05  
V
Error amplifier output dynamic  
range of transconductance  
V
Error amplifier mode bias current  
Error amplifier mode threshold  
IERR_P_BIAS  
VERR_P_BIAS  
9.5  
14.0  
0.20  
18.5  
0.24  
μA  
0.16  
V
4.7  
Current sense  
Table 12  
Current sense  
Parameter  
Symbol  
Limit values  
Unit  
Note or  
test condition  
Min.  
Typ.  
Max.  
Peak current limitation in normal VCS_N  
operation  
0.72  
0.80  
0.88  
V
V
dVsense/dt = 0.41 V/μ s  
Peak current limitation in normal VCS_N15  
operation, 15% of TON  
0.74  
0.79  
0.84  
Leading edge-blanking time  
tCS_LEB  
70  
220  
0.27  
365  
ns  
V
Peak current limitation in ABM -  
high power  
VCS_BHP  
0.23  
0.31  
Datasheet  
23 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Electrical characteristics  
Peak current limitation in ABM -  
low power  
VCS_BLP  
VCS_STG  
0.18  
0.22  
0.26  
V
Abnormal CS voltage threshold  
0.06  
0.10  
3
0.15  
V
Abnormal CS voltage consecutive PCS_STG  
cycle  
trigger  
Abnormal CS voltage sample  
period  
tCS_STG_SAM  
tPERIOD  
× 0.36 × 0.4  
tPERIOD  
tPERIOD µs  
× 0.44  
4.8  
Soft start  
Table 13  
Soft start  
Parameter  
Symbol  
Limit values  
Unit Note or  
test condition  
Min.  
7.3  
Typ.  
12.0  
3
Max.  
Soft start time  
Soft start time step  
tSS  
tSS_S  
ms  
ms  
1
1
CS peak voltage at first step of soft VSS1  
start  
Step increment of CS peak voltage  
in soft start  
0.30  
V
CS peak voltage.  
CS peak voltage.  
1
VSS_S  
0.15  
V
4.9  
Active burst mode  
Table 14  
Active Burst mode  
Parameter  
Symbol  
Limit values  
Unit Note or  
test condition  
Min.  
Typ.  
Max.  
Charging current to select burst  
mode  
Isel  
2.5  
3.0  
3.5  
µA  
Burst mode selection reference  
voltage threshold  
VFB_P_BIAS1  
VFB_P_BIAS2  
VFB_EBHP  
VFB_EBLP  
tFB_BEB  
1.65  
2.76  
0.98  
0.88  
1.73  
2.89  
1.03  
0.93  
1.80  
3.01  
1.08  
0.98  
V
Burst mode selection reference  
voltage threshold  
V
Feedback voltage for entering  
ABM for high power  
V
Feedback voltage for entering  
ABM for low power  
V
Blanking time for entering ABM  
36  
ms  
V
Feedback voltage for leaving ABM VFB_LB  
2.63  
2.26  
2.73  
2.35  
2.83  
2.45  
Feedback voltage for burst-on  
VFB_Bon_ISO  
V
isolated case  
Feedback voltage for burst-off  
VFB_BOff_ISO  
1.88  
2.00  
2.05  
V
isolated case  
1 Not subject to production test, specified by design.  
Datasheet  
24 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Electrical characteristics  
Feedback voltage for burst-on  
non-isolated case  
VFB_Bon_NISO  
VFB_BOff_NISO  
1.88  
1.50  
1.95  
1.55  
2.05  
1.64  
V
V
Feedback voltage for burst-off  
non-isolated case  
4.10  
Line overvoltage protection (CZ version)  
Table 15  
Line OVP  
Parameter  
Symbol  
Limit values  
Unit Note or  
test condition  
Test Condition  
Min.  
2.75  
Typ.  
2.85  
250  
Max.  
2.95  
Line overvoltage threshold  
Line overvoltage blanking  
VVIN_LOVP  
V
tVIN_LOVP_B  
µs  
4.11  
VCC overvoltage protection  
Table 16  
VCC overvoltage protection  
Parameter  
Symbol  
Limit values  
Unit Note or  
test condition  
Test Condition  
Min.  
24.0  
Typ.  
25.5  
55  
Max.  
27.0  
VCC overvoltage threshold  
VCC overvoltage blanking  
VVCC_OVP  
V
tVCC_OVP_B  
µs  
4.12  
Overload protection  
Table 17  
Overload protection  
Parameter  
Symbol Limit values  
Unit Note or  
test condition  
Min.  
Typ.  
Max.  
Overload detection threshold for  
OLP protection at FB pin  
VFB_OLP  
2.63  
2.73  
2.83  
V
Overload protection blanking time  
tFB_OLP_B  
30  
54  
ms  
4.13  
Thermal protection  
Table 18  
Thermal protection  
Parameter  
Symbol  
Limit values  
Unit Note or  
test condition  
Min.  
129  
Typ.  
140  
40  
Max.  
150  
1
Overtemperature protection  
Overtemperature hysteresis  
Overtemperature blanking time  
Tjcon_OTP  
°C  
°C  
µs  
Junction temperature of  
the controller chip (not  
the CoolMOS™ chip).  
TjHYS_OTP  
Tjcon_OTP_B  
50  
1Not subject to production test, specified by design.  
Datasheet  
25 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Electrical characteristics  
4.14  
CoolMOS™ section  
Table 19  
ICE5xRxxxxxZ  
Parameter  
Symbol Limit values  
Unit Note or  
test condition  
Min.  
Typ. Max.  
V(BR)DSS  
Drain source breakdown voltage  
ICE5xRxx80xZ  
ICE5xR3995xZ  
V
Tj = 25°C  
800  
950  
RDSon  
Drain source on-resistance  
(inclusive of low side MOSFET)  
ICE5BR4780BZ  
ICE5xR2280xZ  
ICE5xR3995xZ  
4.13 4.85  
8.691  
2.13 2.35  
4.311  
Tj = 25°C  
Tj = 125°C at ID = 0.4 A  
Tj = 25°C  
Tj = 125°C at ID = 1 A  
Tj = 25°C  
Tj = 125°C at ID = 0.8 A  
3.46 4.05  
7.691  
Co(er)  
Effective output capacitance,  
energy related1  
pF  
ICE5BR4780BZ  
ICE5xR2280xZ  
ICE5xR3995xZ  
Rise time  
3
7
5
VGS = 0 V, VDS = 0 ~ 500 V  
VGS = 0 V, VDS = 0 ~ 500 V  
VGS = 0 V, VDS = 0 ~ 400 V  
2
trise  
30  
30  
ns  
ns  
2
Fall time  
tfall  
1Not subject to production test, specified by design.  
2Measured in a typical flyback / buck converter application.  
Datasheet  
26 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
CoolMOS™ performance characteristics  
5
CoolMOS™ performance characteristics  
Figure 18 Safe operating area (SOA) curve for ICE5BR4780BZ  
Figure 19 Safe operating area (SOA) curve for ICE5xR2280xZ  
Datasheet  
27 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
CoolMOS™ performance characteristics  
Figure 20 Safe operating area (SOA) curve for ICE5xR3995xZ  
Figure 21  
Power dissipation of ICE5BR4780BZ; Ptot = f(Ta) (Maximum ratings as given in chapter 4.1  
must not be exceeded)  
Datasheet  
28 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
CoolMOS™ performance characteristics  
Figure 22  
Power dissipation of ICE5xR3995xZ;Ptot = f(Ta) (Maximum ratings as given in chapter 4.1  
must not be exceeded)  
Figure 23  
Power dissipation of ICE5xR2280xZ;Ptot = f(Ta) (Maximum ratings as given in chapter 4.1  
must not be exceeded)  
Datasheet  
29 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
CoolMOS™ performance characteristics  
Figure 24  
Drain-source breakdown voltage ICE5xRxx80xZ; VBR(DSS) = f(TJ), ID = 1 mA  
Figure 25  
Drain-source breakdown voltage ICE5xR3995xZ; VBR(DSS) = f(TJ), ID = 1 mA  
Datasheet  
30 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
CoolMOS™ performance characteristics  
Figure 26  
Typical CoolMOS™ capacitances of ICE5BR4780BZ (C = f(VDS); VGS = 0 V; f = 250 kHz)  
Figure 27  
Typical CoolMOS™ capacitances of ICE5xR2280xZ (C = f(VDS); VGS = 0 V; f = 250 kHz)  
Datasheet  
31 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
CoolMOS™ performance characteristics  
Figure 28  
Typical CoolMOS™ capacitances of ICE5xR3995xZ (C = f(VDS); VGS = 0 V; f = 250 kHz)  
Datasheet  
32 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Output power curve  
6
Output power curve  
The calculated output power curves versus ambient temperature are shown below. The curves are derived  
based on a typical DCM/CCM flyback in an open frame design setting the maximum Tj of the integrated  
CoolMOS™ at 125°C, using minimum drain pin copper area in a 2 oz copper single-sided PCB and steady state  
operation only (no design margins for abnormal operation modes are included).  
The output power figure is for selection purpose only. The actual power can vary depending on a particular  
design. In a power supply system, appropriate thermal design margins must be considered to make sure that  
the operation of the device is within the maximum ratings given in chapter 4.1.  
Figure 29 Output power curve of ICE5BR4780BZ  
Datasheet  
33 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Output power curve  
Figure 30 Output power curve of ICE5BR3995xZ  
Figure 31 Output power curve of ICE5AR3995BZ  
Datasheet  
34 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Output power curve  
Figure 32 Output power curve of ICE5AR2280CZ  
Figure 33 Output power curve of ICE5BR2280BZ  
Datasheet  
35 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Output current curve  
7
Output current curve  
The calculated output current curves showing typical output power against ambient temperature are shown  
below. The curves are derived based on an open-frame design at Ta = 50°C, TJ = 125°C (integrated HV MOSFET  
for CoolSET™), using the minimum 100 mm2 drain pin copper area in a 2 oz copper single-sided PCB and steady-  
state operation only (no design margins for abnormal operation modes are included). The output power figure  
is for selection purposes only. The actual power can vary depending on the specific design.  
Figure 34  
Output current curve of ICE5BRxxxxBZ  
Datasheet  
36 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Package information  
8
Package information  
Figure 35  
PG-DIP-7  
Green product (RoHS-compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations, the device is available as a green product. Green products are RoHS-compliant  
(i.e., Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages  
https://www.infineon.com/packages  
Datasheet  
37 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Package information  
8.1  
Marking  
Figure 36 Marking of PG-DIP-7  
Datasheet  
38 of 40  
Rev 1.1  
2022-07-19  
Fixed-frequency 800 V / 950 V CoolSET™  
in DIP-7 package  
Revision history  
9
Revision history  
Revision  
Rev 1.0  
Rev 1.1  
Date  
Changes  
22 February 2022  
19 July 2022  
Initial release  
Add new part number - ICE5AR3995BZ  
Datasheet  
39 of 40  
Rev 1.1  
2022-07-19  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics ("Beschaffenheitsgarantie").  
For further information on the product, delivery  
terms and conditions and prices please contact  
your nearest Infineon Technologies office  
(www.infineon.com).  
Edition 2022-07-19  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement  
of intellectual property rights of any third party.  
In addition, any information given in this document  
is subject to customer's compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and  
standards concerning customer's products and any  
use of the product of Infineon Technologies in  
customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  
WARNINGS  
Due to technical requirements products may  
contain dangerous substances. For information on  
the types in question please contact your nearest  
Infineon Technologies office.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
Do you have a question about this  
document?  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of  
the product or any consequences of the use thereof  
can reasonably be expected to result in personal  
injury.  
Email: erratum@infineon.com  
Document reference  
ICE5xRxxxxxZ  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY