ICE5QR0680BG [INFINEON]

Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package;
ICE5QR0680BG
型号: ICE5QR0680BG
厂家: Infineon    Infineon
描述:

Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package

文件: 总39页 (文件大小:2184K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICE5QRxx80BG  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Product Highlights  
Integrated 800 V avalanche rugged CoolMOS™  
Novel Quasi-Resonant operation and proprietary implementation for low EMI  
Enhanced Active Burst Mode with selectable entry and exit standby power  
Active Burst Mode to reach the lowest standby power <100 mW  
Fast startup achieved with cascode configuration  
PG-DSO-12  
Digital frequency reduction for better overall system efficiency  
Robust line protection with input OVP and brownout  
Comprehensive protection  
Pb-free lead plating, halogen free mold compound, RoHS compliant  
Features  
Applications  
Integrated 800 V avalanche rugged CoolMOS™  
Auxiliary power supply for Home Appliances/white Goods, TV,  
PC & Server  
Minimum switching frequency difference between low & high  
line for higher efficiency & better EMI  
Blu-ray player, Set-top box & LCD/LED Monitor  
Enhanced Active Burst Mode with selectable entry and exit  
standby power  
Description  
Active Burst Mode to reach the lowest standby power <100 mW  
Fast startup achieved with cascode configuration  
Digital frequency reduction up to 10 zero crossings  
Built-in digital soft start  
The Quasi-Resonant CoolSET™- (ICE5QRxx80BG) is the 5th  
generation of Quasi-Resonant integrated power IC optimized for  
off-line switch power supply in cascode configuration. It is housed  
in single package with 2 separate chips; one is controller chip and  
other is HV MOSFET chips. The IC can achieve lower EMI and  
higher efficiency with improved digital frequency reduction  
through the proprietary novel Quasi-Resonant operation. The  
enhanced Active Burst Mode enables flexibility in standby power  
range selection. The product has a wide operation range (10 ~  
25.5 V) of IC power supply and lower power consumption. The  
numerous protection functions including the robust line  
protection (both input OVP and brownout) to support the  
protections of the power supply system in failure situations. All of  
these make the CoolSET™ (ICE5QRxx80BG) series an outstanding  
integrated power device in Quasi-Resonant flyback converter in  
the market.  
Cycle-by-cycle peak current limitation  
Maximum on/off time limitation to avoid audible noise during  
start up and power down  
Robust line protection with input OVP and brownout  
Auto restart mode protection for VCC Over Voltage, VCC Under  
Voltage, Over load/Open Loop, Line/Output Over Voltage, Over  
Temperature  
Limited charging current for VCC short to GND  
Pb-free lead plating, halogen free mold compound, RoHS  
compliant  
Figure 1  
Typical application  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 39  
V 2.1  
2020-01-21  
 
 
 
 
 
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Output Power of 5th generation Quasi-Resonant CoolSET™  
Output Power of 5th generation Quasi-Resonant CoolSET™  
Table 1  
Output Power of 5th generation Quasi-Resonant CoolSET™  
1
2
VDS  
Package  
Marking  
RDSon  
220VAC ±20%2  
28 W  
85-300 VAC  
15 W  
Type  
ICE5QR4780BG  
ICE5QR2280BG  
ICE5QR1680BG  
ICE5QR0680BG  
PG-DSO-12  
PG-DSO-12  
PG-DSO-12  
PG-DSO-12  
5QR4780BG  
5QR2280BG  
5QR1680BG  
5QR0680BG  
800 V  
800 V  
800 V  
800 V  
4.13 Ω  
2.13 Ω  
1.53 Ω  
0.71 Ω  
42 W  
23 W  
50 W  
27 W  
77 W  
42 W  
1 Typ. at TJ =25°C (inclusive of low side MOSFET)  
2 Calculated maximum output power rating in an open frame design at Ta=50°C, TJ=125°C (integrated high voltage MOSFET) and using  
minimum drain pin copper area in a 2 oz copper single sided PCB. The output power figure is for selection purpose only. The actual  
power can vary depending on particular designs. Please contact to a technical expert from Infineon for more information.  
Datasheet  
2 of 39  
V 2.1  
2020-01-21  
 
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Table of Contents  
Table of Contents  
Product Highlights.......................................................................................................................... 1  
Features ........................................................................................................................................ 1  
Applications................................................................................................................................... 1  
Description .................................................................................................................................... 1  
Output Power of 5th generation Quasi-Resonant CoolSET™ ................................................................ 2  
Table of Contents ........................................................................................................................... 3  
1
2
Pin Configuration and Functionality......................................................................................... 5  
Representative Block Diagram................................................................................................. 6  
3
Functional Description............................................................................................................ 7  
VCC Pre-Charging and Typical VCC Voltage during Start-up.....................................................................7  
Soft-start..................................................................................................................................................7  
Normal Operation ...................................................................................................................................8  
Digital Frequency Reduction .............................................................................................................8  
3.1  
3.2  
3.3  
3.3.1  
3.3.1.1  
3.3.1.2  
3.3.1.3  
3.3.2  
3.3.2.1  
3.3.3  
3.3.4  
3.4  
Minimum ZC Count Determination ..............................................................................................8  
Up/down counter..........................................................................................................................8  
Zero crossing (ZC counter) ...........................................................................................................9  
Ringing suppression time ................................................................................................................10  
Switch on determination............................................................................................................10  
Switch off determination.................................................................................................................10  
Modulated gate drive .......................................................................................................................11  
Current limitation..................................................................................................................................11  
Active Burst Mode with selectable power level....................................................................................12  
Entering Active Burst Mode Operation............................................................................................13  
During Active Burst Mode Operation...............................................................................................13  
Leaving Active Burst Mode Operation .............................................................................................13  
Protection Functions.............................................................................................................................14  
Line Over Voltage .............................................................................................................................15  
Brownout..........................................................................................................................................15  
VCC Over Voltage or Under Voltage...................................................................................................15  
Over Load .........................................................................................................................................15  
Output Over Voltage ........................................................................................................................15  
Over Temperature............................................................................................................................15  
3.5  
3.5.1  
3.5.2  
3.5.3  
3.6  
3.6.1  
3.6.2  
3.6.3  
3.6.4  
3.6.5  
3.6.6  
4
Electrical Characteristics .......................................................................................................18  
Absolute Maximum Ratings ..................................................................................................................18  
Operating Range....................................................................................................................................19  
Operating Conditions............................................................................................................................19  
Internal Voltage Reference....................................................................................................................20  
PWM Section..........................................................................................................................................20  
Current Sense ........................................................................................................................................20  
Soft Start................................................................................................................................................21  
Digital Zero Crossing .............................................................................................................................21  
Active Burst Mode..................................................................................................................................22  
Line Over Voltage Protection ................................................................................................................22  
Brownout Protection.............................................................................................................................22  
VCC Over Voltage Protection ..................................................................................................................22  
Over Load Protection ............................................................................................................................23  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
4.10  
4.11  
4.12  
4.13  
Datasheet  
3 of 39  
V 2.1  
2020-01-21  
 
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Table of Contents  
4.14  
4.15  
4.16  
Output Over Voltage Protection ...........................................................................................................23  
Thermal Protection ...............................................................................................................................23  
CoolMOS™ Section ................................................................................................................................24  
5
6
7
8
CoolMOS™ Performance Characteristics ..................................................................................25  
Output Power Curve ..............................................................................................................32  
Outline Dimension.................................................................................................................36  
Marking................................................................................................................................37  
Revision history.............................................................................................................................38  
Datasheet  
4 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Pin Configuration and Functionality  
1
Pin Configuration and Functionality  
The pin configuration is shown in Figure 2 and the functions are described in Table 2.  
12  
1
11  
2
10  
3
9
4
8
5
7
6
Figure 2  
Pin Configuration  
Table 2  
Pin  
Pin Definitions and Functions  
Symbol  
Function  
Feedback & Burst entry/exit control  
1
FB  
FB pin combines the functions of feedback control, selectable burst entry/exit  
control and overload/open loop protection.  
Input Line OVP & Brownout  
2
VIN  
VIN pin is connected to the bus via resistor divider (see Figure 1) to sense the  
line voltage. This pin combines the functions of input Line OVP, Brownout and  
minimum ZC count setting for low and high line.  
Current Sense  
3
4
CS  
The CS pin is connected to the shunt resistor for the primary current sensing  
externally and to the PWM signal generator block for switch-off determination  
(together with the feedback voltage) internally.  
Zero Crossing Detection  
ZCD  
ZCD pin combines the functions of start up, zero crossing detection and output  
over voltage protection. During the start up, it is used to provide a voltage level  
to the gate of power switch CoolMOSto charge VCC capacitor.  
Drain  
5, 6, 7, 8  
11  
DRAIN  
VCC  
The DRAIN pin is connected to the drain of the integrated CoolMOS.  
VCC(Positive Voltage Supply)  
The VCC pin is the positive voltage supply to the IC. The operating range is  
between VVCC_OFF and VVCC_OVP  
.
Ground  
12  
GND  
NC  
The GND pin is the common ground of the CoolSET.  
Not connected.  
9, 10  
Datasheet  
5 of 39  
V 2.1  
2020-01-21  
 
 
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Representative Block Diagram  
2
Representative Block Diagram  
VCC  
ZCD  
LOVP  
Brown In / Out  
Thermal Protection  
250 µs  
Blanking  
time  
50 µs  
Blanking  
time  
VVIN_LOVP  
250 µs  
Blanking  
time  
VVIN_BO  
OTP  
Mode  
C16a  
C16b  
Tj > Tjcon_OTP*  
Brown  
Out  
S
R
Q
C7a  
Input  
OVP  
S
R
Q
S
R
Q
Mode  
VIN  
Mode  
Autorestart  
Protect  
Tj < Tjcon_OTP-TjHYS_OTP  
VVIN_BI  
Autorestart  
Protect  
Autorestart  
Protect  
Power Management  
Zero Crossing  
ZC counter  
VZCD_CT  
Internal  
Bias  
Undervoltage Lockout  
16V  
clk  
C2  
DRAIN  
Voltage  
RZCD  
Reference  
10V  
D1  
&
G1  
Protection  
Comparator  
S
R
Q
C12  
50us  
1
VVCC_OVP  
Up/down counter  
G7  
Autorestart  
Protect  
tVIN_REF  
C8  
VVIN_REF  
S
Q
PWM Control  
Counter  
tCOUNT  
Soft-start  
1
R
G2  
C6  
Autorestart  
Protect  
Counter  
PZCD_OVP_B  
D3  
VZCD_OVP  
C1  
Ringing  
Suppression  
VZCD_RS  
TOffMax  
&
VREF  
Gate  
Drive  
G9  
&
1
C12  
C5  
tFB_OLP_B  
VFB_OLP  
VFB_LB  
/
G5  
G4  
S
R
RFB  
G8  
Q
&
G6  
1
VFB_R  
G3  
TOnMax  
Burst  
Mode  
detect  
Gate  
Drive  
fSB  
enOSC  
C3  
Gate Driver  
VFB_HLC  
VCS_N  
VCS_BL1  
VCS_BL2  
C4  
FB  
C13  
C15  
VFB_LHC  
Regulation  
Peak  
Burst Mode  
Level Select  
Current  
Limit  
VCS_FB  
Leading  
Edge  
Blanking  
tCS_LEB  
VFB_EBL1  
VFB_EBL2  
10kΩ  
CS  
VPWM  
V1  
C9  
tFB_BEB  
Active  
Burst Mode  
D2  
1pF  
GPWM  
2pF  
C20  
PWM  
Comparator  
PWM OP  
C10  
VFB_BOn  
Current Mode  
Delay  
tCS_STG_SAM  
GND  
C17  
C11  
VFB_BOff  
VCS_STG  
Active Burst Block  
Current Limiting/ Current Sense short to Gnd Protection  
Figure 3  
Representative Block Diagram  
Junction temperature of the controller chip is sensed for over temperature protection. The  
Note:  
CoolMOSis a separated chip from the controller chip in the same package. Please refer to the  
design guide and/or consult a technical expert from Infineon for the proper thermal design.  
Datasheet  
6 of 39  
V 2.1  
2020-01-21  
 
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Functional Description  
3
Functional Description  
3.1  
VCC Pre-Charging and Typical VCC Voltage during Start-up  
As shown in Figure 1, once the line input voltage is applied, a rectified voltage appears across the capacitor  
CBUS. The pull up resistor RSTARTUP provides a current to charge the Ciss (input capacitance) of CoolMOS™ and  
gradually generate one voltage level. If the voltage over Ciss is high enough, CoolMOS™ on and VCC capacitor will  
be charged through primary inductance of transformer LP, CoolMOS™ and internal diode D3 with two steps  
1
constant current source IVCC_ Charge11 and IVCC_ Charge3  
.
A very small constant current source (IVCC_Charge1) is charged to the VCC capacitor till VCC reach VCC_SCP to protect the  
controller from VCC pin short to ground during the start up. After this, the second step constant current source  
(IVCC_Charge3) is provided to charge the VCC capacitor further, until the VCC voltage exceeds the turned-on threshold  
VVCC_ON. As shown in the time phase I in Figure 4, the VCC voltage increase almost linearly with two steps.  
VVCC  
I
II  
III  
(VVCC_ON )16V  
(VVCC_OFF) 10V  
tA  
tB  
(VVCC_SCP) 1.1V  
IVCC  
t
t
(IVCC_Normal) 0.9mA  
0
(IVCC_Charge1) -0.2mA  
t1  
t2  
IVCC_Charge2/3) -3/-3.2mA  
-IVCC  
Figure 4  
VCC voltage and current at start up  
The time taking for the VCC pre-charging can then be approximately calculated as:  
ꢀ퐶퐶_푆퐶푃 ∙ ꢁꢀ퐶퐶 (ꢀ퐶퐶_푂푁 ꢀ퐶퐶_푆퐶푃) ∙ ꢁꢀ퐶퐶  
(1)  
1 = 푡A + 푡B =  
+
ꢀ퐶퐶_퐶ℎ푎푟ꢂ푒1  
ꢀ퐶퐶_퐶ℎ푎푟ꢂ푒3  
When the VCC voltage exceeds the VCC turned on threshold VVCC_ON at time t1, the IC begins to operate with soft  
start. Due to power consumption of the IC and the fact that there is still no energy from the auxiliary winding to  
charge the VCC capacitor before the output voltage is built up, the VCC voltage drops (Phase II). Once the output  
voltage is high enough, the VCC capacitor receives the energy from the auxiliary winding from the time t2 onward  
and delivering the IVCC_ Normal2 to the CoolSET™. The VCC then will reach a constant value depending on output  
load.  
3.2  
Soft-start  
As shown in Figure 5, at the time ton, the IC begins to operate with a soft-start. By this soft-start the switching  
stresses for the MOSFET, diode and transformer are minimized. The soft-start implemented in ICE5QRxx80BG is  
a digital time-based function. The preset soft-start time is tSS (12 ms) with 4 steps. If not limited by other  
functions, the peak voltage on CS pin will increase step by step from 0.3 V to 1 V finally. During the first 3 ms of  
soft start, the ringing suppression time is set to 25 µsto avoid irregular switching due to switch off oscillation  
noise.  
1 IVCC_ Charge1/2/3 is charging current from the controller to VCC capacitor during start up  
2 IVCC_ Normal is supply current from VCC capacitor or auxiliary winding to the CoolSET™ during normal operation  
Datasheet  
7 of 39  
V 2.1  
2020-01-21  
 
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Functional Description  
Vcs (V)  
VCS_Peak  
0.75  
0.60  
0.45  
0.30  
ton  
3
6
9
12  
Time(ms)  
Figure 5  
Maximum current sense voltage during soft start  
3.3  
Normal Operation  
During normal operation, the ICE5QRxx80BG works with a digital signal processing circuit composing an  
up/down counter, a zero-crossing counter (ZC counter) and a comparator, and an analog circuit composing a  
current measurement unit and a comparator. The switch-on and -off time points are each determined by the  
digital circuit and the analog circuit, respectively. The input information of the zero-crossing signal and the  
value of the up/down counter are needed to determine the switch-on while the feedback signal VFB and the  
current sensing signal VCS are necessary for the switch-off determination. Details about the full operation of the  
CoolSET™ in normal operation are illustrated in the following paragraphs.  
3.3.1  
Digital Frequency Reduction  
As mentioned above, the digital signal processing circuit consists of an up/down counter, a ZC counter and a  
comparator. These three parts are key to implement digital frequency reduction with decreasing load. In  
addition, a ringing suppression time controller is implemented to avoid mis-triggering by the high frequency  
oscillation when the output voltage is very low under conditions such as soft start period or output short  
circuit. Functionality of these parts is described as in the following.  
3.3.1.1  
Minimum ZC Count Determination  
To reduce the switching frequency difference between low and high line, minimum ZC count determination is  
implemented. Minimum ZC count is set to 1 if VIN less than VVIN_REF which represents for low line. For high line,  
minimum ZC count is set to 3 after VIN higher than VVIN_REF. There is also a hysteresis VVIN_REF with certain blanking  
time tVIN_REF for stable AC line selection between low and high line.  
3.3.1.2  
Up/down counter  
The up/down counter stores the number of the zero crossing which determines valley numbers to switch-on  
the main MOSFET after demagnetization of the transformer. This value is fixed according to the feedback  
voltage, VFB, which contains information about the output power. Indeed, in a typical peak current mode  
control, a high output power results in a high feedback voltage, and a low output power leads to a low  
feedback voltage. Hence, according to VFB, the value in the up/down counter is changed to vary the power  
MOSFET off-time according to the output power. In the following, the variation of the up/down counter value  
according to the feedback voltage is explained.  
Datasheet  
8 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Functional Description  
The feedback voltage VFB is internally compared with three threshold voltages VFB_LHC, VFB_HLC and VFB_R at each  
clock period of 48 ms. The up/down counter counts then upward, keep unchanged or count downward, as  
shown in Table 3.  
Table 3  
VFB  
Operation of up/down counter  
up/down counter action  
Always lower than VFB_LHC  
Count upwards till n=8/101  
Stop counting, no value changing  
Count downwards till n=1/32  
Set up/down counter to n=1/32  
Once higher than VF_LHC, but always lower than VFB_HLC  
Once higher than VFB_HLC, but always lower than VFB_R  
Once higher than VFB_R  
The number of zero crossing is limited and therefore, the counter varies among 1 to 8 (for low line) or 3 to 10  
(for high line) and any attempt beyond this range is ignored. When VFB exceeds VFB_R voltage, the up/down  
counter is reset to 1 (low line) and 3 (high line) in order to allow the system to react rapidly to a sudden load  
increase. The up/down counter value is also reset to 1 (low line) and 3 (high line) at the start-up time, to ensure  
an efficient maximum load start up. Figure 6 shows some examples on how up/down counter is changed  
according to the feedback voltage over time.  
The use of two different thresholds VFB_LHC and VFB_HLC to count upward or downward is to prevent frequency  
jittering when the feedback voltage is close to the threshold point.  
clock  
T=48ms  
clock  
T=48ms  
t
t
t
t
VFB  
VFB,R1  
VFB  
VFB,R3  
VFB,HLC  
VFB,LHC  
VFB,HLC  
VFB,LHC  
Up/down  
Up/down  
counter  
counter  
1
1
1
1
3
3
3
3
Case 1  
Case 2  
Case 3  
5
2
8
6
3
8
7
4
8
8
5
8
8
5
8
8
5
8
7
6
3
6
5
2
5
Case 1  
Case 2  
6
4
7
5
8
6
9
7
9
7
9
8
7
5
8
6
4
7
4
7
7
6
9
Case 3 10 10 10 10 10 10  
Low line  
Up/down counter operation  
High line  
Figure 6  
3.3.1.3  
Zero crossing (ZC counter)  
In the system, the voltage from the auxiliary winding is applied to the ZCD pin through a RC network, which  
provides a time delay to the voltage from the auxiliary winding. Internally this pin is connected to a negative  
clamping network, a zero-crossing detector, an output overvoltage detector and a ringing suppression time  
controller.  
During on-state of the power switch, a positive gate drive voltage is applied to the ZCD pin due to RZCD resistor,  
hence external diode DZC (see Figure 1) is added to block the negative voltage from the auxiliary winding.  
The ZC counter has a minimum value of 1 (for low line) or 3 (for high line) and maximum value of 8 (for low line)  
or 10 (for high line). After the internal high voltage CoolMOS™ is turned off, every time when the falling voltage  
1 n=8 (for low line) and n=10 (for high line)  
2 n=1 (for low line) and n=3 (for high line)  
Datasheet  
9 of 39  
V 2.1  
2020-01-21  
 
 
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Functional Description  
ramp of on ZCD pin crosses the VZCD_CT threshold, a zero crossing is detected and ZC counter will increase by 1. It  
is reset every time after the DRIVER output is changed to high.  
To achieve the switch on at voltage valley, the voltage from the auxiliary winding is fed to a time delay network  
(the RC network consists of RZC and CZC as shown in Figure 1) before it is applied to the zero-crossing detector  
through the ZCD pin. The needed time delay to the main oscillation signal Δt should be approximately one  
fourth of the oscillation period, TOSC (by transformer primary inductor and drain-source capacitor) minus the  
propagation delay from the detected zero-crossing to the switch-on of the main switch tdelay, theoretically:  
푂푆퐶  
(2)  
Δt =  
− 푡푑푒푙푎푦  
4
This time delay should be matched by adjusting the time constant of the RC network which is calculated as:  
푍퐶∙푍퐶퐷  
ꢃd = ꢁ.  
(3)  
+푅푍퐶퐷  
3.3.2  
Ringing suppression time  
After CoolMOS™ is turned off, there will be some oscillation on VDS, which will also appear on VZCD. To avoid mis-  
triggering by such oscillations to turn on the CoolMOS™, a ringing suppression timer is implemented. This  
suppression time is depended on the voltage VZCD. If the voltage VZCD is lower than the threshold VZCD_RS, a longer  
preset time tZCD_RS2 is applied. However, if the voltage VZCD is higher than the threshold, a shorter time tZCD_RS1 is  
set.  
3.3.2.1  
Switch on determination  
After the gate drive goes to low, it cannot be changed to high during ring suppression time.  
After ring suppression time, the gate drive can be turned on when the ZC counter value is equal to up/down  
counter value.  
However, it is also possible that the oscillation between primary inductor and drain-source capacitor damps  
very fast and IC cannot detect zero crossings event. In this case, a maximum off time is implemented. After gate  
drive has been remained off for the period of TOffMax, the gate drive will be turned on again regardless of the ZC  
counter values and VZCD. This function can effectively prevent the switching frequency from going lower than 20  
kHz. Otherwise it will cause audible noise.  
3.3.3  
Switch off determination  
In the converter system, the primary current is sensed by an external shunt resistor, which is connected  
between the internal low side MOSFET and the common ground. The sensed voltage across the shunt resistor  
VCS is applied to an internal current measurement unit, and its output voltage V1 is compared with the feedback  
voltage VFB. Once the voltage V1 exceeds the voltage VFB, the output flip-flop is reset. As a result, the main power  
switch is switched off. The relationship between the V1 and the VCS is described by (see Figure 3):  
CS = 퐼D × 푅CS  
(4)  
푉 = 푃푊푀 퐶푆 + 푃푊푀  
1
where, VCS  
: CS pin voltage  
ID  
: power MOSFET current  
RCS  
V1  
: resistance of the current sense resistor  
: voltage level compared to VFB  
GPWM : PWM-OP gain  
Datasheet  
10 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Functional Description  
To avoid mis-triggering caused by the voltage spike across the shunt resistor at the turn on of the main power  
switch, a leading edge blanking time, tLEB, is applied to the output of the comparator. In other words, once the  
gate drive is turned on, the minimum on time of the gate drive is the leading edge blanking time.  
In addition, there is a maximum on time, tOnMax, limitation implemented in the IC. Once the gate drive has been  
in high state longer than the maximum on time, it will be turned off to prevent the switching frequency from  
going too low because of long on time.  
Also, if the voltage at the current sense pin is lower than the preset threshold VCS_STG after the time tCS_STG_SAM for  
three consecutive pulses during on-time of the power switch, this abnormal VCS will trigger IC into auto restart  
mode.  
3.3.4  
Modulated gate drive  
The drive-stage is optimized for EMI consideration. The switch on speed is slowed down before it reaches the  
CoolMOSturn on threshold. That is a slope control of the rising edge at the output of driver (see Figure 7). Thus  
the leading switch spike during turn on is minimized.  
VGATE (V)  
VGATE_HIGH  
typ. t = 117ns  
5V  
t (ns)  
Figure 7  
Gate rising waveform  
3.4  
Current limitation  
There is a cycle by cycle current limitation realized by the current limit comparator to provide over-current  
detection. The source current of the CoolMOS™ is sensed via a sense resistor RCS. By means of RCS the source  
current is transformed to a sense voltage VCS which is fed into the pin CS. If the voltage VCS exceeds an internal  
voltage limit, adjusted according to the Line voltage, the comparator immediately turns off the gate drive.  
When the main bus voltage increases, the switch on time becomes shorter and therefore the operating  
frequency is also increased. As a result, for a constant primary current limit, the maximum possible output  
power is increased which is beyond the converter design limit.  
To compensate such effect, both the internal peak current limit circuit (VCS) and the ZC count varies with the  
bus voltage according to Figure.  
Datasheet  
11 of 39  
V 2.1  
2020-01-21  
 
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Functional Description  
VCS (V)  
VCS_N, 1  
0.9  
Starting ZC = 1  
Starting ZC = 3  
VVIN (V)  
0.83 1.29 VVIN_REF  
Figure 8  
Variation of the VCS limit voltage according to the VIN voltage  
3.5  
Active Burst Mode with selectable power level  
At light load condition, the IC enters Active Burst Mode operation to minimize the power consumption. Details  
about Active Burst Mode operation are explained in the following paragraphs.  
The burst mode entry level can be selected by changing the different resistor RSel at FB pin. There are 2 levels to  
be selected with different resistor which are targeted for low range of Active Burst Mode power (Level 1) and  
high range of Active Burst Mode power (Level 2). The following table shows the control logic for the entry and  
exit level with the FB voltage.  
Table 4  
Two levels entry and exit Active Burst Mode power  
Level VFB  
VCS  
Entry level  
VFB_EBLX  
Exit level  
VFB_LB  
1
2
VFB > VREF_B  
VFB < VREF_B  
VCS_BL1 = 0.31 V  
VCS_BL2 = 0.35 V  
0.90 V  
2.75 V  
1.05 V  
2.75 V  
During IC first startup, the internal RefGOOD signal is logic low when VCC < 4 V. It will reset the Burst Mode level  
Detection latch. When the Burst Mode Level Detection latch is low and IC is in OFF state, the IC internal RFB  
resistor is disconnected from the FB pin and a current source Isel is turned on instead.  
From VCC=4 V to VCC on threshold, the FB pin will start to charge to a voltage level associated with RSel resistor.  
When VCC reaches VCC on threshold, the FB voltage is sensed. The burst mode thresholds are then chosen  
according to the FB voltage level. The Burst Mode Level Detection latch is then set to high. Once the detection  
latch is set high, any change of the FB level will not change the threshold selection. The current source Isel is  
turned off in 2 μs after VCC reaches VCC on threshold and the RFB resistor is re-connected to FB pin (see Figure 9).  
Datasheet  
12 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Functional Description  
Vdd  
Isel  
S2  
UVLO  
S
2μs  
delay  
R
RFB  
Refgood  
S1  
FB  
Burst mode  
detection latch  
VCS_BLx  
Selection  
Logic  
Compare  
logic  
VREF_B  
VFB _EBL x  
Control unit  
Figure 9  
Burst mode detect and adjust  
3.5.1  
Entering Active Burst Mode Operation  
For determination of entering Active Burst Mode operation, three conditions apply:  
the feedback voltage is lower than the threshold of VFB_EBLX  
the up/down counter is 8 for low line or 10 for high line and  
the above two conditions remain after a certain blanking time tFB_BEB (20 ms)  
Once all of these conditions are fulfilled, the Active Burst Mode flip-flop is set and the controller enters Active  
Burst Mode operation. This multi-condition determination for entering Active Burst Mode operation prevents  
mis-triggering of entering Active Burst Mode operation, so that the controller enters Active Burst Mode  
operation only when the output power is really low during the preset blanking time.  
3.5.2  
During Active Burst Mode Operation  
After entering the Active Burst Mode the feedback voltage rises as VO starts to decrease due to the inactive PWM  
section. One comparator observes the feedback signal if the voltage level VFB_BOn is exceeded. In that case the  
internal circuit is power up to restrart with switching.  
Turn-on of the power MOSFET is triggered by ZC counter with a fixed value of 8 ZC for low line and 10 ZC for  
high line. Turn-off is resulted if the voltage across the shunt resistor at CS pin hits the threshold VCS_BLX  
.
If the output load is still low, the feedback signal decreases as the PWM section is operating. When feedback  
signal reaches the low threshold VFB_BOff , the internal circuit is reset again and the PWM section is disabled until  
next time VFB signal increases beyond the VFB_BOn threshold. In Active Burst Mode, the feedback signal is changing  
like a saw tooth between VFB_BOff and VFB_BOn (see Figure 10).  
3.5.3  
Leaving Active Burst Mode Operation  
The feedback voltage immediately increases if there is a high load jump. This is observed by a comparator with  
threshold of VFB_LB. As the current limit is VCS_BLX (31% or 35%) during Active Burst Mode, a certain load is needed  
so that feedback voltage can exceed VFB_LB. After leaving Active Burst Mode, Gate will only turn on if zero  
crossing is detected (VZCD<VZCD_LB) to ensure full transformer demagnetization. This eases synchronous  
rectification implementation by ensuring DCM operation upon exit of burst mode. Then, normal peak current  
control through VFB is re-activated. In addition, the up/down counter will be set to 1 (low line) or 3 (high line)  
immediately after leaving Active Burst Mode. This is helpful to minimize the output voltage undershoot.  
Datasheet  
13 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Functional Description  
VFB  
Entering Active Leaving Active  
Burst Mode  
Burst Mode  
VFB_LB  
VFB_BOn  
VFB_BOff  
VFB_EBx  
Time to 8th/10th ZC and  
t
Blanking time (tFB_BEB  
)
VCS  
Current limit level during  
Active Burst Mode  
VCS_N  
VCS_BLx  
t
VVCC  
VVCC_OFF  
t
t
VO  
Max. Ripple < 1%  
Figure 10  
Signals in Active Burst Mode  
3.6  
Protection Functions  
The ICE5QRxx80BG provides numerous protection functions which considerably improve the power supply  
system robustness, safety and reliability. The following table summarizes these protection functions. There are  
3 different kinds of protection mode; non switch auto restart, auto restart and odd skip auto restart. The details  
can refer to the Figure 11, Figure 12 and Figure 13.  
Table 5  
Protection functions  
Protection Functions  
Normal Mode  
Burst Mode  
Protection Mode  
Burst ON  
Burst OFF  
Line Over Voltage  
Brownout  
Non switch Auto Restart  
Non switch Auto Restart  
Datasheet  
14 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Functional Description  
Protection Functions  
Normal Mode  
Burst Mode  
Protection Mode  
Burst ON  
Burst OFF  
VCC Over Voltage  
VCC Under Voltage  
Over Load  
Odd skip Auto Restart  
Auto Restart  
NA1  
NA1  
NA1  
NA1  
Odd skip Auto Restart  
Odd skip Auto Restart  
Non switch Auto Restart  
Output Over Voltage  
Over Temperature  
3.6.1  
Line Over Voltage  
The AC Line Over Voltage Protection is detected by sensing bus capacitor voltage through VIN pin via 2 potential  
divider resistors, Rl1 and Rl2 (see Figure 1). Once VVIN voltage is higher than the line over voltage threshold VVIN_LOVP, the  
controller enters Line Over Voltage Protection and it releases the protection mode after VVIN is lower than VVIN_LOVP  
.
3.6.2  
Brownout  
The Brownout protection is observed by VIN pin similar to line over voltage Protection method with a different  
voltage threshold level. When VVIN voltage is lower than the brownout threshold (VVIN_BO), the controller enters  
Brownout Protection and it releases the protection mode after VVIN higher than brownin threshold (VVIN_BI).  
3.6.3  
VCC Over Voltage or Under Voltage  
During operation, the VCC voltage is continuously monitored. In case of a VCC Over Voltage or Under Voltage,  
the IC is reset and the main power switch is then kept off. After the VCC voltage falls below the threshold VVCC_OFF  
the new start up sequence is activated. The VCC capacitor is then charged up. Once the voltage exceeds the  
threshold VVCC_ON, the IC begins to operate with a new soft-start.  
,
3.6.4  
Over Load  
In case of open control loop or output Over Load, the feedback voltage will be pulled up and exceed VFB_OLP  
.
After a blanking time of tFB_OLP_B, the IC enters auto restart mode. The blanking time here enables the converter  
to operate for a certain time during a sudden load jump.  
3.6.5  
Output Over Voltage  
During off-time of the power MOSFET, the voltage at the ZCD pin is monitored for Output Over Voltage  
detection. If the voltage is higher than the preset threshold VZCD_OVP for 10 consecutive pulses, the IC enters  
Output Over Voltage Protection.  
3.6.6  
Over Temperature  
If the junction temperature of controller chip exceeds Tjcon_OTP, the IC enters into Over Temperature protection  
(OTP) auto restart mode. The controller implements with a 40 °C hysteresis. In another word, the controller/IC can  
°
only resume from OTP if its junction temperature drops 40 C from OTP trigger point. Please be noted that the  
separated CoolMOSchip may have different temperature (mostly higher) from the controller chip.  
1 Not Applicable  
Datasheet  
15 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Functional Description  
Fault  
Fault released  
detected  
Switching start at the  
following restart cycle  
Start up and detect at  
every charging cycle  
VVCC  
VCC_ON  
VCC_OFF  
t
t
VCS  
No switching  
Figure 11  
Non switch Auto Restart Mode  
Fault  
Fault released  
detected  
Start up and detect at every  
charging cycle  
Switching start at the  
following restart cycle  
VVCC  
VCC_ON  
VCC_OFF  
t
t
VCS  
Figure 12  
Auto Restart Mode  
Datasheet  
16 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Functional Description  
Fault  
Fault released  
detected  
Start up and detect at  
every even charging  
cycle  
Switching start at the  
following even restart  
VVCC  
No detect  
No detect  
cycle  
VCC_ON  
VCC_OFF  
t
t
VCS  
Figure 13  
Odd skip Auto Restart Mode  
Datasheet  
17 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Electrical Characteristics  
4
Electrical Characteristics  
Attention:  
All voltages are measured with respect to ground (Pin12). The voltage levels are valid if other  
ratings are not violated.  
4.1  
Absolute Maximum Ratings  
Attention:  
Stresses above the maximum values listed here may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may  
cause irreversible damage to the integrated circuit. System design needs to ensure not to  
exceed the maximum limit. Ta=25°C unless otherwise specified.  
Table 6  
Absolute Maximum Ratings  
Parameter  
Symbol  
Limit Values  
Unit  
Note / Test Condition  
Min.  
Max.  
Drain Source Voltage (CoolMOS)  
ICE5QRxx80BG  
VDS  
V
A
Tj = 25 °C  
-
800  
Pulse drain current  
ICE5QR4780BG1  
ID_Pulse  
-
-
-
-
2.6  
5.8  
5.8  
5.8  
ICE5QR2280BG2  
ICE5QR1680BG2  
ICE5QR0680BG2  
Avalanche energy, repetitive,  
EAR  
mJ  
tAR limited by max. TJ=150°C with  
TJ,Start=25°C  
ICE5QR4780BG  
ICE5QR2280BG  
ICE5QR1680BG  
ICE5QR0680BG  
-
-
-
-
0.02  
0.05  
0.07  
0.22  
ID=0.2 A, VDD=50 V  
ID=0.4 A, VDD=50 V  
ID=0.6 A, VDD=50 V  
ID=1.8 A, VDD=50 V  
Avalanche current, repetitive,  
IAR  
A
tAR limited by max. TJ=150°C with  
TJ,Start=25°C  
ICE5QR4780BG  
ICE5QR2280BG  
ICE5QR1680BG  
ICE5QR0680BG  
-
-
-
-
0.2  
0.4  
0.6  
1.8  
27.0  
VCC Supply Voltage  
FB Voltage  
VCC  
VFB  
-0.3  
V
V
V
V
-0.3  
-0.3  
-0.3  
3.6  
27  
ZCD Voltage  
CS Voltage  
VZCD  
VCS  
3.6  
1 Pulse width tP limited by Tj,Max  
2 Pulse width tP=20 µs and limited by Tj,Max  
Datasheet  
18 of 39  
V 2.1  
2020-01-21  
 
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Electrical Characteristics  
VIN Voltage  
VIN  
-0.3  
3.6  
V
Maximum DC current on any pin  
except DRAIN & CS pins  
-10.0  
10.0  
mA  
ESD robustness HBM  
ESD robustness CDM  
VESD_HBM  
VESD_CDM  
TJ  
-
2000  
500  
150  
150  
V
According to EIA/JESD22  
Controller & CoolMOS  
-
V
Junction temperature range  
Storage Temperature  
-40  
-55  
°C  
°C  
TSTORE  
RthJA  
Thermal Resistance (Junction-  
Ambient)  
K/W Setup according to the  
JESD51 standard and  
using minimum drain pin  
copper area in a 2 oz  
copper single sided PCB  
ICE5QR4780BG  
ICE5QR2280BG  
ICE5QR1680BG  
ICE5QR0680BG  
-
-
-
-
105  
98  
95  
94  
4.2  
Operating Range  
Note:  
Within the operating range the IC operates as described in the functional description.  
Table 7  
Operating Range  
Parameter  
Symbol  
Limit Values  
Unit  
Remark  
Min.  
Max.  
VCC Supply Voltage  
VVCC  
VVCC_OFF  
VVCC_OVP  
TjCon_OTP  
150  
Max value limited due  
to OTP of controller  
chip  
Junction Temperature of controller TjCon_op  
Junction Temperature of CoolMOS TjCoolMOS_op  
-40  
-40  
˚C  
˚C  
4.3  
Operating Conditions  
Note:  
The electrical characteristics involve the spread of values within the specified supply voltage and  
junction temperature range TJ from 40 °C to 125 °C. Typical values represent the median values,  
which are related to 25°C. If not otherwise stated, a supply voltage of VCC = 18 V is assumed.  
Table 8  
Operating Conditions  
Parameter  
Symbol  
Limit Values  
Unit  
Note / Test Condition  
Min.  
Typ. Max.  
VCC Charge Current  
VVCC=0V, RStartUp=50MΩ  
and VDRAIN=90V  
IVCC_Charge1  
IVCC_Charge2  
IVCC_Charge3  
IVCC_Startup  
-0.35 -0.2  
-0.09  
mA  
mA  
mA  
mA  
VVCC=3V, RStartUp=50MΩ  
and VDRAIN=90V  
-
-3.2  
-3  
-
VVCC=15V, RStartUp=50MΩ  
and VDRAIN=90V  
-5  
-
-1  
-
Current Consumption, Startup  
Current  
VVCC=15V  
0.19  
Datasheet  
19 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Electrical Characteristics  
IFB=0A (No gate  
switching)  
Current Consumption, Normal  
IVCC_Normal  
-
0.9  
-
mA  
Current Consumption, Auto Restart IVCC_AR  
-
320  
0.5  
16  
-
µA  
mA  
V
Current Consumption, Burst Mode IVCC_Burst Mode  
-
-
VFB=1.8V  
VCC Turn-on Threshold Voltage  
VCC Turn-off Threshold Voltage  
VCC Short Circuit Protection  
VVCC_ON  
VVCC_OFF  
VVCC_SCP  
15.3  
9.5  
-
16.5  
10.5  
1.9  
10  
V
1.1  
V
VCC Turn-off blanking  
tVCC_OFF_B  
-
50  
-
µs  
4.4  
Internal Voltage Reference  
Table 9  
Internal Voltage Reference  
Symbol  
Parameter  
Limit Values  
Unit  
Note / Test Condition  
Min.  
Typ. Max.  
Measured at pin FB  
IFB=0  
Internal Reference Voltage  
VREF  
3.2  
3.3 3.39  
V
4.5  
PWM Section  
Table 10  
PWM Section  
Parameter  
Symbol  
Limit Values  
Unit  
Note / Test Condition  
Min.  
Typ.  
Max.  
Feedback Pull-Up Resistor  
PWM-OP Gain  
RFB  
11  
15  
20  
kΩ  
-
GPWM  
VPWM  
1.95  
0.42  
20  
2.05  
0.5  
2.15  
0.58  
60  
Offset for Voltage Ramp  
V
Maximum on time in normal operation tOnMax  
Maximumoff time in normaloperation tOffMax  
35  
µs  
µs  
24  
42.5  
71  
4.6  
Current Sense  
Table 11  
Current Sense  
Parameter  
Symbol  
Limit Values  
Unit  
Note / Test Condition  
Min.  
Typ.  
Max.  
Peak current limitation in normal  
operation  
VCS_N  
0.94  
1.00  
1.06  
V
Leading Edge Blanking time  
tCS_LEB  
VCS_BL1  
118  
220  
0.31  
462  
ns  
V
Peak Current Limitation in Active  
0.26  
0.36  
Burst Mode Level 1  
Peak Current Limitation in Active  
Burst Mode Level 2  
VCS_BL2  
VCS_STG  
0.3  
0.35  
0.10  
0.4  
V
V
0.06  
0.15  
Abnormal CS voltage threshold  
Datasheet  
20 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Electrical Characteristics  
PCS_STG  
-
3
5
-
-
cycle  
µs  
Abnormal CS voltage Consecutive  
Trigger  
Abnormal CS voltage Sample period tCS_STG_SAM 2.3  
4.7  
Soft Start  
Table 12  
Soft Start  
Parameter  
Symbol  
Limit Values  
Unit  
Note / Test Condition  
Min.  
8.5  
-
-
Typ.  
12  
Max.  
Soft-Start time  
tSS  
tSS_S  
-
-
-
ms  
ms  
V
1
Soft-start time step  
3
1
Internal regulation voltage at first  
VSS1  
0.30  
CS peak voltage  
CS peak voltage  
step  
1
Internal regulation voltage step at  
soft start  
VSS_S  
-
0.15  
-
V
4.8  
Digital Zero Crossing  
Table 13  
Digital Zero Crossing  
Parameter  
Symbol  
Limit Values  
Unit  
Note / Test Condition  
Min.  
60  
-
Typ.  
100  
0.45  
Max.  
150  
-
Zero crossing threshold voltage  
Zero crossing Ringing suppression  
threshold  
VZCD_CT  
VZCD_RS  
mV  
V
Minimum ringing suppression time tZCD_RS1  
1.5  
-
2.5  
4.1  
-
µs  
µs  
VZCD > VZCD,RS  
VZCD < VZCD,RS  
Maximum ringing suppression time tZCD_RS2  
25.00  
Threshold to reset Up/Down  
Counter  
VFB_R  
-
2.80  
-
V
Threshold for downward counting  
VFB_HLC  
-
2.05  
-
V
Threshold for upward counting  
Counter Time  
VFB_LHC  
tCOUNT  
RZCD  
-
1.55  
48  
-
V
-
-
ms  
kΩ  
ZCD resistance  
2.5  
3.0  
3.5  
Internal resistor at  
ZCD pin  
VIN voltage threshold for line  
selection  
Blanking time for VIN voltage  
threshold for line selection  
VVIN_REF  
tVIN_REF  
1.48  
-
1.52  
1.58  
-
V
16.00  
ms  
1 The parameter is not subjected to production test - verified by design/characterization  
Datasheet 21 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Electrical Characteristics  
4.9  
Active Burst Mode  
Table 14  
Active Burst Mode  
Parameter  
Symbol  
Limit Values  
Unit  
µA  
V
Note / Test Condition  
Min.  
Typ.  
Max.  
3.9  
Isel  
2.1  
3
Charging current to select burst  
mode  
VREF_B  
VFB_EBL1  
VFB_EBL2  
tFB_BEB  
2.65  
0.86  
1.0  
2.75  
0.90  
1.05  
2.85  
0.94  
1.1  
Burst mode selection reference  
voltage  
V
Feedback voltage for entering  
Active Burst Mode for level 1  
Feedback voltage for entering  
Active Burst Mode for level 2  
V
Blanking time for entering Active  
Burst Mode  
Feedback voltage for leaving Active VFB_LB  
Burst Mode  
ZCD voltage threshold for first pulse VZCD_LB  
after leaving Active Burst Mode  
-
20  
-
ms  
V
2.65  
60  
2.75  
100  
2.85  
150  
mV  
Feedback voltage for burst-on  
VFB_BOn  
2.3  
1.9  
2.40  
2.00  
2.5  
2.1  
V
V
Feedback voltage for burst-off  
VFB_BOff  
4.10  
Line Over Voltage Protection  
Table 15  
Line OVP  
Parameter  
Symbol  
Limit Values  
Unit  
Note / Test Condition  
Min.  
2.8  
-
Typ.  
2.9  
Max.  
3.0  
-
Line Over Voltage threshold  
Line Over Voltage Blanking  
VVIN_LOVP  
V
tVIN_LOVP_B  
250  
µs  
4.11  
Brownout Protection  
Table 16  
Brownout Protection  
Parameter  
Symbol  
Limit Values  
Unit  
Note / Test Condition  
Min.  
0.63  
-
0.37  
-
Typ.  
0.66  
250  
0.40  
250  
Max.  
0.69  
-
0.43  
-
BrownIn threshold  
BrownIn Blanking  
BrownOut threshold  
BrownOut Blanking  
VVIN_BI  
V
µs  
V
tVIN_BI_B  
VVIN_BO  
tVIN_BO_B  
µs  
4.12  
VCC Over Voltage Protection  
Table 17  
VCC Over Voltage Protection  
Datasheet  
22 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Electrical Characteristics  
Parameter  
Symbol  
Limit Values  
Unit  
Note / Test Condition  
Min.  
24  
-
Typ.  
25.50  
50.00  
Max.  
27  
VCC Over Voltage threshold  
VCC Over Voltage blanking  
VVCC_OVP  
V
tVCC_OVP_B  
-
µs  
4.13  
Over Load Protection  
Table 18  
Overload Protection  
Parameter  
Symbol  
VFB_OLP  
Limit Values  
Unit  
V
Note / Test Condition  
Min.  
Typ.  
Max.  
2.85  
Over Load Detection threshold for  
OLP protection at FB pin  
2.65  
2.75  
Over Load Protection Blanking  
Time  
tFB_OLP_B  
-
30  
-
ms  
4.14  
Output Over Voltage Protection  
Table 19  
Output OVP  
Parameter  
Symbol  
Limit Values  
Unit  
Note / Test Condition  
Min.  
1.9  
-
Typ.  
2.0  
Max.  
2.1  
-
Output Over Voltage threshold  
VZCD_OVP  
V
Output Over Voltage Blanking  
Pulse  
PZCD_OVP_B  
10  
pulse  
Consecutive Pulse  
4.15  
Thermal Protection  
Table 20  
Thermal Protection  
Parameter  
Symbol  
Limit Values  
Unit  
Note / Test Condition  
Min.  
129  
-
Typ.  
Max.  
150  
-
Over temperature protection1  
Over temperature Hysteresis  
Over temperature Blanking Time  
Tjcon_OTP  
TjHYS_OTP  
tjcon_OTP_B  
140  
°C  
°C  
µs  
Junction temperature  
of the controller chip  
(not the CoolMOS™  
chip)  
40  
50  
-
-
1 The parameter is not subjected to production test - verified by design/characterization  
Datasheet 23 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Electrical Characteristics  
4.16  
CoolMOS™ Section  
Table 21  
ICE5QRxx80BG  
Parameter  
Symbol  
Limit Values  
Unit  
Note / Test Condition  
Min.  
Typ.  
Max.  
V(BR)DSS  
RDSon  
Drain Source Breakdown Voltage  
ICE5QRxx80BG  
Drain to CS On-Resistance (inclusive  
of low side MOSFET)  
V
Tj = 25°C  
800  
-
-
ICE5QR4780BG  
ICE5QR2280BG  
ICE5QR1680BG  
ICE5QR0680BG  
-
-
-
-
-
-
-
-
4.13  
8.691  
2.13  
4.311  
1.53  
3.011  
0.71  
1.271  
4.85  
-
2.35  
-
1.75  
-
0.80  
-
Tj = 25°C  
Tj=125°C, ID =0.4A  
Tj = 25°C  
Tj=125°C, ID =1A  
Tj = 25°C  
Tj=125°C, ID =1.4A  
Tj = 25°C  
Tj=125°C, ID =2A  
VGS=0V, VDS=0~500V  
Co(er)  
Effective output capacitance, energy  
related1  
pF  
ICE5QR4780BG  
ICE5QR2280BG  
ICE5QR1680BG  
ICE5QR0680BG  
-
-
-
-
-
3
7
8
24  
30  
-
-
-
-
-
Rise Time2  
ns  
ns  
trise  
tfall  
Fall Time2  
-
30  
-
1The parameter is not subjected to production test - verified by design/characterization  
2Measured in a Typical Flyback Converter Application  
Datasheet  
24 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
CoolMOS™ Performance Characteristics  
5
CoolMOS™ Performance Characteristics  
Figure 14  
Safe Operating Area (SOA) curve for ICE5QR4780BG  
Figure 15  
Safe Operating Area (SOA) curve for ICE5QR2280BG  
Datasheet  
25 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
CoolMOS™ Performance Characteristics  
Figure 16  
Safe Operating Area (SOA) curve for ICE5QR1680BG  
Figure 17  
Safe Operating Area (SOA) curve for ICE5QR0680BG  
Datasheet  
26 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
CoolMOS™ Performance Characteristics  
Figure 18  
Power dissipation of ICE5QR4780BG, DSO-12 package; Ptot=f(Ta), (Maximum ratings as  
given in section 4.1 must not be exceeded)  
Figure 19  
Power dissipation of ICE5QR2280BG, DSO-12 package; Ptot=f(Ta), (Maximum ratings as  
given in section 4.1 must not be exceeded)  
Datasheet  
27 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
CoolMOS™ Performance Characteristics  
Figure 20  
Power dissipation of ICE5QR1680BG, DSO-12 package; Ptot=f(Ta), (Maximum ratings as  
given in section 4.1 must not be exceeded)  
Figure 21  
Power dissipation of ICE5QR0680BG, DSO-12 package; Ptot=f(Ta), (Maximum ratings as  
given in section 4.1 must not be exceeded)  
Datasheet  
28 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
CoolMOS™ Performance Characteristics  
Figure 22  
Drain-source breakdown voltage ICE5QRxx80BG; VBR(DSS)=f(TJ), ID=1 mA  
Figure 23  
Typical CoolMOS™ capacitances of ICE5QR4780BG (C=f(VDS);VGS=0 V; f=250 kHz)  
Datasheet  
29 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
CoolMOS™ Performance Characteristics  
Figure 24  
Typical CoolMOS™ capacitances of ICE5QR2280BG (C=f(VDS);VGS=0 V; f=250 kHz)  
Figure 25  
Typical CoolMOS™ capacitances of ICE5QR1680BG (C=f(VDS);VGS=0 V; f=250 kHz)  
Datasheet  
30 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
CoolMOS™ Performance Characteristics  
Figure 26  
Typical CoolMOS™ capacitances of ICE5QR0680BG (C=f(VDS);VGS=0 V; f=250 kHz)  
Datasheet  
31 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Output Power Curve  
6
Output Power Curve  
The calculated output power curves giving the typical output power versus ambient temperature are shown  
below. The curves are derived based on a typical discontinuous mode flyback in an open frame design at  
Ta=50°C, TJ=125°C (integrated high voltage MOSFET), using minimum drain pin copper area in a 2 oz copper  
single sided PCB and steady state operation only (no design margins for abnormal operation modes are  
included). The output power figure is for selection purpose only. The actual power can vary depending on  
particular designs. In a power supply system, appropriate thermal design margins must be applied to make  
sure that the maximum ratings given in section 4.1 are respected at all times.  
Figure 27  
Output power curve of ICE5QR4780BG, VIN=85~300 VAC; POut=f(Ta)  
Figure 28  
Output power curve of ICE5QR4780BG, VIN=220 VAC; POut=f(Ta)  
Datasheet  
32 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Output Power Curve  
Figure 29  
Output power curve of ICE5QR2280BG, VIN=85~300 VAC; POut=f(Ta)  
Figure 30  
Output power curve of ICE5QR2280BG, VIN=220 VAC; POut=f(Ta)  
Datasheet  
33 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Output Power Curve  
Figure 31  
Output power curve of ICE5QR1680BG, VIN=85~300 VAC; POut=f(Ta)  
Figure 32  
Output power curve of ICE5QR1680BG, VIN=220 VAC; POut=f(Ta)  
Datasheet  
34 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Output Power Curve  
Figure 33  
Output power curve of ICE5QR0680BG, VIN=85~300 VAC; POut=f(Ta)  
Figure 34  
Output power curve of ICE5QR0680BG, VIN=220 VAC; POut=f(Ta)  
Datasheet  
35 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Outline Dimension  
7
Outline Dimension  
Figure 35  
PG-DSO-12  
Datasheet  
36 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Marking  
8
Marking  
Figure 36  
Marking of DSO-12  
Datasheet  
37 of 39  
V 2.1  
2020-01-21  
Quasi-Resonant 800 V CoolSET™ - in DSO-12 Package  
Revision history  
Revision history  
Document  
version  
Date of release  
Description of changes  
V 2.0  
V 2.1  
30 Aug 2019  
21 Jan 2020  
First release  
Change the name of datasheet from ICE5QR0680BG to  
ICE5QRxx80BG to include 3 new variants (ICE5QR4780BG,  
ICE5QR2280BG and ICE5QR1680BG)  
Update of CS pin function and description (refer to errata sheet  
ES_2001_PL83_2002_024629)  
Datasheet  
38 of 39  
V 2.1  
2020-01-21  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
Edition 2020-01-21  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
Published by  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
Infineon Technologies AG  
81726 München, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2020 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about this  
document?  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in  
a written document signed by  
authorized  
representatives  
of  
Infineon  
Email: erratum@infineon.com  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY