IFX54441EJ V [INFINEON]

IFX54441 是一款微功耗、低噪声、低压差的调节器。该器件能够实现 300mA 的输出电流,270mV 的压差。专为电池供电系统设计,30μA 的低静态电流使其成为理想的选择。        ;
IFX54441EJ V
型号: IFX54441EJ V
厂家: Infineon    Infineon
描述:

IFX54441 是一款微功耗、低噪声、低压差的调节器。该器件能够实现 300mA 的输出电流,270mV 的压差。专为电池供电系统设计,30μA 的低静态电流使其成为理想的选择。        

电池 调节器
文件: 总31页 (文件大小:2442K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IFX54441  
Wide Input Range Low Noise 300mA LDO  
Data Sheet  
Rev. 1.1, 2014-10-30  
Standard Power  
Wide Input Range Low Noise 300mA LDO  
IFX54441  
1
Overview  
Features  
Low Noise down to 24 µVRMS (BW = 10 Hz to 100 kHz)  
300mA Current Capability  
Low Quiescent Current: 30 µA  
Wide Input Voltage Range: 1.8 V to 20 V  
2.5% Output Voltage Accuracy (over full temperature and load range)  
Low Dropout Voltage: 270 mV  
Very low Shutdown Current: < 1µA  
No Protection Diodes Needed  
Fixed Output Voltage: 3.3V  
Adjustable Version with Output from 1.22V to 20V  
Stable with 3.3 µF Output Capacitor  
Stable with Aluminium, Tantalum or Ceramic Capacitors  
Reverse Battery Protection  
PG-DSO-8 Exposed Pad  
No Reverse Current  
Overcurrent and Overtemperature Protected  
DSO-8 Exposed Pad and TSON-10 Exposed Pad packages  
Green Product (RoHS compliant)  
PG-TSON-10  
Applications  
Microcontroller Supply  
Battery-Powered Systems  
Noise Sensitive Instruments  
Radar Applications  
Image Sensors  
The IFX54441 is not qualified and manufactured according to the requirements of Infineon Technologies with  
regards to automotive and/or transportation applications. For automotive applications please refer to the Infineon  
TLx (TLE, TLS, TLF.....) voltage regulator products.  
Type  
Package  
Marking  
54441EV  
54441E33  
544LV  
IFX54441EJV  
IFX54441EJV33  
IFX54441LDV  
IFX54441LDV33  
PG-DSO-8 Exposed Pad  
PG-DSO-8 Exposed Pad  
PG-TSON-10  
PG-TSON-10  
544L33  
Data Sheet  
2
Rev. 1.1, 2014-10-30  
IFX54441  
Overview  
The IFX54441 is a micropower, low noise, low dropout voltage regulator. The device is capable of supplying an  
output current of 300 mA with a dropout voltage of 270 mV. Designed for use in battery-powered systems, the low  
quiescent current of 30 µA makes it an ideal choice.  
A key feature of the IFX54441 is its low output noise. By adding an external 0.01 µF bypass capacitor output noise  
values down to 24 µVRMS over a 10 Hz to 100 kHz bandwidth can be reached. The IFX54441 voltage regulator is  
stable with output capacitors as small as 3.3 µF. Small ceramic capacitors can be used without the series  
resistance required by many other regulators. Its internal protection circuitry includes reverse battery protection,  
current limiting and reverse current protection. The IFX54441 comes as fixed output voltage 3.3V as well as  
adjustable device with a 1.22 V reference voltage. It is available in a DSO-8 Exposed Pad and as well as in a  
TSON-10 Exposed Pad package.  
Data Sheet  
3
Rev. 1.1, 2014-10-30  
IFX54441  
Block Diagram  
2
Block Diagram  
Note:Pin numbers in the block diagrams refer to the DSO-8 EP package type.  
Saturation  
Control  
IFX54441  
IN  
8
5
1
OUT  
Over Current  
Protection  
Temperature  
Protection  
EN  
Bias  
Voltage  
reference  
4
BYP  
Error  
Amplifier  
2
SENSE  
6
GND  
Figure 1  
Block Diagram IFX54441 fixed voltage version  
IFX54441 ADJ  
Saturation  
Control  
IN  
8
1
OUT  
Over Current  
Protection  
Temperature  
Protection  
5
EN  
Bias  
Voltage  
reference  
4
BYP  
Error  
Amplifier  
2
ADJ  
6
GND  
Figure 2  
Block Diagram IFX54441 adjustable version  
Data Sheet  
4
Rev. 1.1, 2014-10-30  
IFX54441  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
1
2
8
7
1
2
8
7
OUT  
IN  
OUT  
ADJ  
IN  
SENSE  
NC  
NC  
3
4
6
5
3
4
6
5
NC  
GND  
EN  
NC  
GND  
EN  
9
9
BYP  
BYP  
IFX54441EJ V33  
IFX54441EJ V  
Figure 3  
Pin Configuration of IFX54441 in PG-DSO-8 Exposed Pad for fixed voltage and adjustable  
version  
OUT  
OUT  
1
2
3
4
5
10  
9
OUT  
OUT  
NC  
1
2
3
4
5
10  
9
IN  
IN  
IN  
IN  
NC  
8
8
NC  
EN  
NC  
EN  
SENSE  
BYP  
7
ADJ  
BYP  
7
11  
11  
6
6
GND  
GND  
IFX54441LD V33  
IFX54441LD V  
Figure 4  
Pin Configuration of IFX54441 in TSON10 for fixed voltage and adjustable version  
Data Sheet  
5
Rev. 1.1, 2014-10-30  
IFX54441  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Pin  
Symbol  
Function  
1 (DSO-8 EP)  
1,2 (TSON-10)  
OUT  
Output. Supplies power to the load. For this pin a minimum output capacitor of  
3.3 µF is required to prevent oscillations. Larger output capacitors may be  
required for applications with large transient loads in order to limit peak voltage  
transients or when the regulator is applied in conjunction with a bypass capacitor.  
For more details please refer to the section “Application Information” on  
Page 24.  
2 (DSO-8 EP)  
4 (TSON-10)  
SENSE  
Output Sense. For the fixed voltage version the SENSE pin is the input to the  
(fix voltage error amplifier. This allows to achieve an optimized regulation performance in  
version)  
case of small voltage drops Rp that occur between regulator and load. In  
applications where such drops are relevant they can be eliminated by connecting  
the SENSE pin directly at the load. In standard configuration the SENSE pin can  
be connected directly to the OUT pin. For further details please refer to the section  
“Kelvin Sense Connection” on Page 25.  
2 (DSO-8 EP)  
4 (TSON-10)  
ADJ  
Adjust. For the adjustable version the ADJ pin is the input to the error amplifier.  
(adjustable The ADJ pin voltage is 1.22V referenced to ground and allows a output voltage  
version)  
range from 1.22V to 20V - VDR. The ADJ pin is internally clamped to ±7 V. Please  
note that the bias current of the ADJ pin is flowing into the pin.1)  
3, 7 (DSO-8 EP) NC  
3, 8 (TSON-10)  
No Connect. The NC Pins have no connection to any internal circuitry. Connect  
either to GND or leave open.  
4 (DSO-8)  
5 (TSON-10)  
BYP  
Bypass. The BYP pin is used to bypass the reference of the IFX54441 to achieve  
low noise performance. The BYP-pin is clamped internally to ±0.6 V (i.e. one VBE).  
A small capacitor from the output to the BYP pin will bypass the reference to lower  
the output voltage noise2). If not used this pin must be left unconnected.  
5 (DSO-8 EP)  
7 (TSON-10)  
EN  
Enable. With the EN pin the IFX54441 can be put into a low power shutdown  
state. The output will be off when the EN is pulled low. The EN pin can be driven  
by 5V logic or open-collector logic with pull-up resistor. The pull-up resistor is  
required to supply the pull-up current of the open-collector gate3) and the EN pin  
current4). Please note that if the EN pin is not used it must be connected to VIN. It  
must not be left floating.  
6 (DSO-8 EP)  
6,(TSON-10)  
GND  
IN  
Ground. For the ADJ version connect the bottom of the output voltage setting  
resistor divider directly to the GND pin for optimum load regulation performance.  
8 (DSO-8 EP)  
9, 10 (TSON-10)  
Input. Via the input pin IN the power is supplied to the device. A capacitor at the  
input pin is required if the device is more than 6 inches away from the main input  
filter capacitor or if non-negligible inductance is present at the IN pin5). The  
IFX54441 is designed to withstand reverse voltages on the Input pin with respect  
to GND and Output. In the case of reverse input (e.g. due to a wrongly attached  
battery) the device will act as if there is a diode in series with its input. In this way  
there will be no reverse current flowing into the regulator and no reverse voltage  
will appear at the load. Hence, the device will protect both - the device itself and  
the load.  
9 (DSO-8 EP)  
11 (TSON-10)  
Tab  
Exposed Pad. To ensure proper thermal performance, solder Pin 11 (exposed  
pad) of TSON10 to the PCB ground and tie directly to Pin 6. In the case of DSO-  
8 EP as well solder Pin 9 (exposed pad) to the PCB ground and tie directly to Pin  
6.  
Data Sheet  
6
Rev. 1.1, 2014-10-30  
IFX54441  
Pin Configuration  
1) The typical value of the ADJ pin bias current is 60 nA with a very good temperature stability.See also the corresponding  
Typical Performance Graph “Adjust Pin Bias current IADJ versus Junction Temperature TJ” on Page 20.  
2) A maximum value of 10 nF can be used for reducing output voltage noise over the bandwidth from 10 Hz to 100 kHz.  
3) Normally several microamperes.  
4) Typical value is 1 µA.  
5) In general the output impedance of a battery rises with frequency, so it is advisable to include a bypass capacitor in battery-  
powered circuits. Depending on actual conditions an input capacitor in the range of 1 to 10 µF is sufficient.  
Data Sheet  
7
Rev. 1.1, 2014-10-30  
IFX54441  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 1  
Absolute Maximum Ratings1)  
Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
-20  
Max.  
Input Voltage  
Voltage  
VIN  
20  
V
P_4.1.1  
Output Voltage  
Voltage  
VOUT  
-20  
20  
20  
V
V
P_4.1.2  
P_4.1.3  
Input to Output Differential  
Voltage  
VIN - VOUT -20  
Sense Pin  
Voltage  
VSENSE  
VADJ  
VBYP  
VEN  
-20  
-7  
20  
7
V
V
V
V
P_4.1.4  
P_4.1.5  
P_4.1.6  
P_4.1.7  
ADJ Pin  
Voltage  
BYP Pin  
Voltage  
-0.6  
-20  
0.6  
20  
Enable Pin  
Voltage  
Temperatures  
Junction Temperature  
Storage Temperature  
ESD Susceptibility  
All Pins  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.8  
P_4.1.9  
Tstg  
VESD  
VESD  
-2  
-1  
2
1
kV  
kV  
HBM2)  
CDM3)  
P_4.1.10  
P_4.1.11  
All Pins  
1) Not subject to production test, specified by design.  
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 k, 100 pF)  
3) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not  
designed for continuous repetitive operation.  
Data Sheet  
8
Rev. 1.1, 2014-10-30  
IFX54441  
General Product Characteristics  
4.2  
Functional Range  
Table 2  
Functional Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Input Voltage Range  
(3.3 V voltage version)  
VIN  
VIN  
Tj  
3.8 V  
20  
V
P_4.2.1  
P_4.2.2  
P_4.2.3  
1)  
Input Voltage Range  
(adjustable voltage version)  
2.3  
20  
V
Operating Junction Temperature  
-40  
125  
°C  
1) For the IFX54441 adjustable version the minimum limit of the functional range VIN is tested and specified with the ADJ- pin  
connected to the OUT pin.  
Note:Within the functional or operating range, the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the Electrical Characteristics table.  
4.3  
Thermal Resistance  
Note:This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go  
to www.jedec.org.  
Table 3  
Thermal Resistance1)  
Symbol  
Parameter  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Number  
Min.  
Max.  
IFX54441 EJ (PG-DSO8 Exposed Pad)  
Junction to Case  
RthJC  
RthJA  
RthJA  
RthJA  
7.0  
39  
K/W  
K/W  
K/W  
K/W  
P_4.3.1  
P_4.3.2  
P_4.3.3  
2)  
Junction to Ambient  
Junction to Ambient  
Junction to Ambient  
155  
66  
Footprint only3)  
300 mm2 heatsink P_4.3.4  
area on PCB3)  
Junction to Ambient  
RthJA  
52  
K/W  
600 mm2 heatsink P_4.3.5  
area on PCB3)  
IFX54441 LD (PG-TSON10)  
Junction to Case  
RthJC  
RthJA  
RthJA  
RthJA  
6.4  
53  
K/W  
K/W  
K/W  
K/W  
P_4.3.6  
P_4.3.7  
P_4.3.8  
2)  
Junction to Ambient  
Junction to Ambient  
Junction to Ambient  
183  
69  
Footprint only3)  
300 mm2 heatsink P_4.3.9  
area on PCB3)  
Junction to Ambient  
RthJA  
57  
K/W  
600 mm2 heatsink P_4.3.10  
area on PCB3)  
1) Not subject to production test, specified by design.  
Data Sheet  
9
Rev. 1.1, 2014-10-30  
IFX54441  
General Product Characteristics  
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product  
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 µm Cu, 2 x 35 µm Cu).  
Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
3) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product  
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70 µm Cu).  
Data Sheet  
10  
Rev. 1.1, 2014-10-30  
IFX54441  
Electrical Characteristics  
5
Electrical Characteristics  
5.1  
Electrical Characteristics Table  
Table 4  
Electrical Characteristics  
-40 °C < Tj < 125 °C; all voltages with respect to ground; positive current defined flowing out of pin; unless  
otherwise specified.  
Parameter  
Symbol  
Values  
Typ.  
1.8  
Unit  
Note / Test Condition  
OUT = 300 mA1)2)3)  
Number  
Min.  
Max.  
Minimum Operating Voltage  
VIN,min  
2.3  
V
I
P_5.1.1  
Output Voltage4)  
IFX54441EJ V33  
IFX54441LD V33  
VOUT  
VOUT  
3.220 3.30  
1.190 1.22  
3.380  
1.250  
V
V
1 mA < IOUT < 300 mA,  
4.3 V < VIN < 20 V  
P_5.1.2  
P_5.1.3  
IFX54441EJV  
IFX54441LDV  
1m A < IOUT < 300 mA;  
2.3 V < VIN < 20 V3)  
Line Regulation  
IFX54441EJ V33  
IFX54441LD V33  
VOUT  
VOUT  
1
1
20  
20  
mV  
mV  
VIN = 3.8 V to 20 V;  
P_5.1.4  
P_5.1.5  
I
OUT = 1 mA  
VIN = 2.0 V to 20 V;  
OUT = 1 mA3)  
IFX54441EJ V  
IFX54441LD V  
I
Load Regulation  
IFX54441EJV33  
IFX54441LDV33  
VOUT  
VOUT  
VOUT  
VOUT  
6
3
15  
28  
8
mV  
mV  
mV  
mV  
TJ = 25°C;VIN = 4.3 V;  
IOUT = 1 to 300 mA  
P_5.1.6  
P_5.1.7  
P_5.1.8  
P_5.1.9  
IFX54441EJV33  
IFX54441LDV33  
VIN = 4.3 V;  
IOUT = 1 to 300 mA  
IFX54441EJV  
IFX54441LDV  
TJ = 25°C; VIN = 2.3 V;  
IOUT = 1 to 300 mA3)  
IFX54441EJV  
IFX54441LDV  
12  
VIN = 2.3 V;  
IOUT = 1 to 300 mA3)  
Dropout Voltage2)5)6)  
Dropout Voltage  
VDR  
VDR  
VDR  
VDR  
VDR  
VDR  
VDR  
100  
130  
190  
190  
250  
220  
300  
300  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
I
OUT = 10 mA;  
VIN = VOUT,nom; TJ = 25°C  
OUT = 10 mA;  
VIN = VOUT,nom  
OUT = 50 mA;  
VIN = VOUT,nom; TJ = 25°C  
OUT = 50 mA;  
VIN = VOUT,nom  
OUT = 100 mA;  
VIN = VOUT,nom; TJ = 25°C  
OUT = 100 mA;  
VIN = VOUT,nom  
OUT = 300 mA;  
VIN = VOUT,nom; TJ = 25°C  
P_5.1.10  
P_5.1.11  
P_5.1.12  
P_5.1.13  
P_5.1.14  
P_5.1.15  
P_5.1.16  
Dropout Voltage  
Dropout Voltage  
Dropout Voltage  
Dropout Voltage  
Dropout Voltage  
Dropout Voltage  
I
150  
I
I
190  
I
I
270  
I
Data Sheet  
11  
Rev. 1.1, 2014-10-30  
IFX54441  
Electrical Characteristics  
Table 4  
Electrical Characteristics (cont’d)  
-40 °C < Tj < 125 °C; all voltages with respect to ground; positive current defined flowing out of pin; unless  
otherwise specified.  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Number  
Min.  
Max.  
Dropout Voltage  
VDR  
400  
mV  
I
OUT = 300 mA;  
P_5.1.17  
VIN = VOUT,nom  
GND Pin Current5)7)  
GND Pin Current  
IGND  
IGND  
IGND  
IGND  
IGND  
30  
50  
300  
0.7  
4
60  
µA  
µA  
µA  
mA  
mA  
µA  
VIN = VOUT,nom;  
OUT = 0 mA  
VIN = VOUT,nom;  
OUT = 1 mA  
VIN = VOUT,nom;  
OUT = 50 mA  
VIN = VOUT,nom;  
OUT = 100 mA  
VIN = VOUT,nom;  
OUT = 300 mA  
P_5.1.18  
P_5.1.19  
P_5.1.20  
P_5.1.21  
P_5.1.22  
P_5.1.23  
I
GND Pin Current  
GND Pin Current  
GND Pin Current  
GND Pin Current  
100  
850  
2.2  
12  
I
I
I
I
Quiescent Current in Off-Mode Iq  
(EN-pin low)  
0.1  
1
VIN = 6 V; VEN = 0 V;  
TJ = 25°C  
Enable  
Enable Threshold High  
Enable Threshold Low  
EN Pin Current8)  
Vth,EN  
0.8  
0.65  
0.01  
1
2.0  
V
V
V
V
V
OUT = Off to On  
P_5.1.24  
P_5.1.25  
P_5.1.26  
P_5.1.27  
Vtl,EN  
IEN  
0.25  
V
OUT = On to Off  
µA  
µA  
EN = 0 V; TJ = 25°C  
EN = 20 V; TJ = 25°C  
EN Pin Current8)  
IEN  
Adjust Pin Bias Current9)11)  
ADJ Pin Bias Current  
Output Voltage Noise11)  
Ibias,ADJ  
eno  
60  
41  
nA  
TJ = 25°C  
P_5.1.28  
P_5.1.29  
Output Voltage Noise  
IFX54441EJV10)  
IFX54441LDV10)  
µVRMS  
C
C
OUT = 10 µF ceramic;  
BYP = 10 nF;  
I
OUT = 300 mA;  
(BW = 10Hz to100kHz)  
OUT = 10 µF ceramic  
+250mresistor in series;  
BYP = 10 nF;  
OUT = 300 mA;  
(BW = 10 Hz to100 kHz)  
Output Voltage Noise  
IFX54441EJV10)  
IFX54441LDV10)  
eno  
28  
µVRMS  
C
P_5.1.30  
C
I
Output Voltage Noise  
IFX54441EJV10)  
eno  
29  
24  
µVRMS  
C
C
OUT = 22 µF ceramic;  
BYP = 10 nF;  
P_5.1.31  
P_5.1.32  
IFX54441LDV10)  
I
OUT = 300 mA;  
(BW = 10 Hz to100 kHz)  
OUT = 22 µF ceramic  
+250mresistor in series;  
BYP = 10 nF;  
OUT = 300 mA;  
(BW = 10 Hz to100 kHz)  
Output Voltage Noise  
IFX54441EJV10)  
IFX54441LDV10)  
eno  
µVRMS C  
C
I
Data Sheet  
12  
Rev. 1.1, 2014-10-30  
IFX54441  
Electrical Characteristics  
Table 4  
Electrical Characteristics (cont’d)  
-40 °C < Tj < 125 °C; all voltages with respect to ground; positive current defined flowing out of pin; unless  
otherwise specified.  
Parameter  
Symbol  
Values  
Typ.  
45  
Unit  
Note / Test Condition  
Number  
Min.  
Max.  
Output Voltage Noise  
IFX54441EJV33  
eno  
µVRMS  
COUT = 10 µF ceramic;  
BYP = 10 nF;  
P_5.1.33  
C
IFX54441LDV33  
I
OUT = 300 mA;  
(BW = 10 Hz to100 kHz)  
OUT = 10 µF ceramic  
+250mresistor in series;  
BYP = 10 nF;  
OUT = 300 mA;  
(BW = 10 Hz to100 kHz)  
Output Voltage Noise  
IFX54441EJV33  
IFX54441LDV33  
eno  
35  
µVRMS  
C
P_5.1.34  
C
I
Output Voltage Noise  
IFX54441EJV33  
IFX54441LDV33  
eno  
33  
30  
µVRMS  
C
C
OUT = 22 µF ceramic;  
BYP = 10 nF;  
P_5.1.35  
P_5.1.36  
I
OUT = 300 mA;  
(BW = 10 Hz to100 kHz)  
OUT = 22 µF ceramic  
+250mresistor in series;  
BYP = 10 nF;  
OUT = 300 mA;  
Output Voltage Noise  
IFX54441EJV33  
IFX54441LDV33  
eno  
µVRMS C  
C
I
(BW = 10 Hz to100 kHz)  
Power Supply Ripple Rejection11)  
Power Supply Ripple  
Rejection  
PSRR  
65  
dB  
VIN - VOUT = 1.5 V (avg);  
P_5.1.37  
V
RIPPLE = 0.5 Vpp;  
fr = 120 Hz;  
OUT = 300 mA  
I
Output Current Limitation  
Output Current Limit  
IOUT,limit 320  
IOUT,limit 320  
mA  
mA  
VIN = 7 V; VOUT = 0 V  
VIN = VOUT,nom + 1 V or  
P_5.1.38  
P_5.1.39  
Output Current Limit  
2.3V12)  
;
VOUT = -0.1 V  
Input Reverse Leakage Current  
Input Reverse Leakage  
Reverse Output Current13)  
Fixed Voltage Versions  
Ileak,rev  
1
mA  
µA  
VIN = -20 V; VOUT = 0 V  
P_5.1.40  
P_5.1.41  
IReverse  
10  
20  
VOUT = VOUT,nom;  
VIN < VOUT,nom  
;
TJ = 25°C  
Adjustable Voltage Version  
IReverse  
5
10  
µA  
VOUT = 1.22 V;  
VIN < 1.22 V; TJ = 25°C3)  
P_5.1.42  
Data Sheet  
13  
Rev. 1.1, 2014-10-30  
IFX54441  
Electrical Characteristics  
Table 4  
Electrical Characteristics (cont’d)  
-40 °C < Tj < 125 °C; all voltages with respect to ground; positive current defined flowing out of pin; unless  
otherwise specified.  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Number  
Min.  
Max.  
Output Capacitor11)  
Output Capacitance  
ESR  
COUT  
ESR  
3.3  
3
µF  
C
BYP = 0 nF  
P_5.1.43  
P_5.1.44  
14)  
1) This parameter defines the minimum input voltage for which the device is powered up and provides the maximum output  
current of 300 mA. Due to the nominal output voltage of 3.3 V of the fixed voltage version or depending on the chosen  
setting of the external voltage divider as well as on the applied conditions the device may either regulate its nominal output  
voltage or it may be in tracking mode. For further details please also refer to the VOUT specification in Table 4.  
2) For the IFX54441EJV and IFX54441LDV adjustable versions the dropout voltage for certain output voltage / load  
conditions will be restricted by the minimum input voltage specification.  
3) The adjustable versions of the IFX54441 are tested and specified for these conditions with the ADJ pin connected to the  
OUT pin.  
4) The operation conditions are limited by the maximum junction temperature. The regulated output voltage specification will  
only apply for conditions where the limit of the maximum junction temperature is fulfilled. It will therefore not apply for all  
possible combinations of input voltage and output current at a given output voltage. When operating at maximum input  
voltage, the output current must be limited for thermal reasons. The same holds true when operating at maximum output  
current where the input voltage range must be limited for thermal reasons.  
5) To satisfy requirements for minimum input voltage, the adjustable version of the IFX54441 is tested and specified for these  
conditions with an external resistor divider (two 250 kresistors) for an output voltage of 2.44 V. The external resistors will  
add a 5 µA DC load on the output.  
6) The dropout voltage is the minimum input to output voltage differential needed to maintain regulation at a specified output  
current. In dropout, the output voltage will be equal to VIN - VDR  
.
7) GND-pin current is tested with VIN = VOUT,nom or VIN = 2.3 V, whichever is greater, and a current source load. This means  
that this parameter is tested while being in dropout condition and thus reflects a worst case condition. The GND-pin current  
will in most cases decrease slightly at higher input voltages - please also refer to the corresponding typical performance  
graphs.  
8) The EN pin current flows into EN pin.  
9) The ADJ pin current flows into ADJ pin.  
10) ADJ pin connected to OUT pin.  
11) Not subject to production test, specified by design.  
12) whichever of the two values of VIN is greater in order to also satisfy the requirements for VIN,min  
.
13) Reverse output current is tested with the IN pin grounded and the OUT pin forced to the rated output voltage. This current  
flows into the OUT pin and out of the GND pin.  
14) CBYP = 0 nF, COUT 3.3 µF; please note that for cases where a bypass capacitor at BYP is used - depending on the actual  
applied capacitance of COUT and CBYP - a minimum requirement for ESR may apply. For further details please also refer  
to the corresponding typical performance graph.  
Note:The listed characteristics are ensured over the operating range of the integrated circuit. Typical  
characteristics specified mean values expected over the production spread. If not otherwise specified,  
typical characteristics apply at TA = 25 °C and the given supply voltage.  
Data Sheet  
14  
Rev. 1.1, 2014-10-30  
IFX54441  
Typical Performance Characteristics  
6
Typical Performance Characteristics  
Dropout Voltage VDR versus  
Output Current IOUT  
Guaranteed Dropout Voltage VDR versus  
Output Current IOUT  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
Δ = Guaranteed Limits  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Tj = −40 °C  
Tj = 25 °C  
Tj = 125 °C  
Tj 25 °C  
Tj 125 °C  
0
0
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
IOUT [A]  
IOUT [A]  
Dropout Voltage VDR versus  
Junction Temperature TJ  
Quiescent Current versus  
Junction Temperature TJ  
500  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
IOUT = 10 mA  
450  
IOUT = 50 mA  
IOUT = 100 mA  
400  
IOUT = 300 mA  
350  
300  
250  
200  
150  
100  
50  
VIN = 6 V  
IOUT = 0 mA .  
VEN = V  
IN  
0
0
−50  
0
50  
Tj [°C]  
100  
−50  
0
50  
Tj [°C]  
100  
Data Sheet  
15  
Rev. 1.1, 2014-10-30  
IFX54441  
Typical Performance Characteristics  
Output Voltage VOUT versus  
Output / ADJ Pin Voltage VOUT versus  
Junction Temperature TJ (IFX54441EJV33)  
Junction Temperature TJ (IFX54441EJV)  
3.36  
3.34  
3.32  
3.3  
1.24  
1.235  
1.23  
1.225  
1.22  
1.215  
1.21  
3.28  
3.26  
1.205  
IOUT = 1 mA  
IOUT = 1 mA  
3.24  
−50  
1.2  
−50  
0
50  
Tj [°C]  
100  
0
50  
Tj [°C]  
100  
Quiescent Current Iq versus  
Quiescent Current Iq versus  
Input Voltage VIN (IFX54441EJV33)  
Input Voltage VIN (IFX54441EJV)  
800  
700  
600  
500  
400  
300  
40  
35  
30  
25  
20  
15  
10  
VOUT,nom = 3.3 V  
IOUT,nom = 0 mA  
200  
100  
0
VOUT,nom = 1.22 V  
RLoad = 250 kΩ  
VEN = V  
IN  
VEN = V  
IN  
Tj = 25 °C  
5
0
Tj = 25 °C  
0
2
4
6
8
10  
0
5
10  
15  
20  
VIN [V]  
VIN [V]  
Data Sheet  
16  
Rev. 1.1, 2014-10-30  
IFX54441  
Typical Performance Characteristics  
GND Current IGND versus  
GND Current IGND versus  
Input Voltage VIN (IFX54441EJV33)  
Input Voltage VIN (IFX54441EJV)  
1200  
400  
RLoad = 3.3 kΩ / IOUT = 1 mA*  
RLoad = 1.22 kΩ / IOUT = 1 mA*  
RLoad = 330 Ω / IOUT = 10 mA*  
RLoad = 66 Ω / IOUT = 50 mA*  
RLoad = 122 Ω / IOUT = 10 mA*  
RLoad = 24.4 Ω / IOUT = 50 mA*  
350  
300  
250  
200  
150  
100  
50  
1000  
800  
600  
400  
200  
0
[* for VOUT = 3.3 V]  
Tj = 25°C  
[* for VOUT = 1.22 V]  
Tj = 25°C  
0
0
2
4
6
8
10  
0
2
4
6
8
10  
VIN [V]  
VIN [V]  
GND Current IGND versus  
GND Current IGND versus  
Input Voltage VIN (IFX54441EJV33)  
Input Voltage VIN (IFX54441EJV)  
8
8
RLoad = 33.0 Ω / IOUT = 100 mA*  
RLoad = 11.0 Ω / IOUT = 300 mA* .  
RLoad = 12.2 Ω / IOUT = 100 mA*  
RLoad = 4.07 Ω / IOUT = 300 mA* .  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
[* for VOUT = 3.3 V]  
Tj = 25°C  
[* for VOUT = 1.22 V]  
Tj = 25°C  
0
2
4
6
8
10  
0
2
4
6
8
10  
VIN [V]  
VIN [V]  
Data Sheet  
17  
Rev. 1.1, 2014-10-30  
IFX54441  
Typical Performance Characteristics  
GND Current IGND versus  
Output Current IOUT  
EN Pin Threshold (On-to-Off) versus  
Junction Temperature TJ  
1.2  
1
5
1 mA  
300 mA  
VIN = VOUT,nom + 1 V  
Tj = 25 ° C  
4.5  
4
3.5  
3
0.8  
0.6  
0.4  
0.2  
0
2.5  
2
1.5  
1
0.5  
0
−50  
0
50  
Tj [°C]  
100  
0
50  
100  
150  
200  
250  
300  
IOUT [mA]  
EN Pin Threshold (Off-to-On) versus  
EN Pin Input Current versus  
Junction Temperature TJ  
EN Pin Voltage VEN  
1.2  
1
1.4  
1.2  
1
Tj = 25 °C  
VIN = 20 V  
1 mA  
300 mA  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
−50  
0
50  
Tj [°C]  
100  
0
5
10  
VEN [V]  
15  
20  
Data Sheet  
18  
Rev. 1.1, 2014-10-30  
IFX54441  
Typical Performance Characteristics  
EN Pin Input Current versus  
Current Limit versus  
Junction Temperature TJ  
Input Voltage VIN  
1.6  
1.4  
1.2  
1
1
VOUT = 0 V  
VEN = 20 V  
T = 25 ° C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
j
0.8  
0.6  
0.4  
0.2  
0
−50  
0
50  
Tj [°C]  
100  
0
1
2
3
4
5
6
7
VIN [V]  
Current Limit versus  
Reverse Output Current versus  
Junction Temperature TJ  
Output Voltage VOUT  
1.2  
1
90  
VOUT.nom= 1.22 V (ADJ)  
VIN = 7 V  
VOUT = 0 V  
VOUT.nom= 3.3 V (V33)  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 0 V  
Tj = 25 °C  
0.8  
0.6  
0.4  
0.2  
0
−50  
0
50  
Tj [°C]  
100  
0
2
4
6
8
10  
VOUT [V]  
Data Sheet  
19  
Rev. 1.1, 2014-10-30  
IFX54441  
Typical Performance Characteristics  
Reverse Output Current versus  
Minimum Input Voltage1) versus  
Junction Temperature TJ  
Junction Temperature TJ  
20  
3
2.5  
2
VOUT.nom= 1.22 V (ADJ)  
18  
VOUT.nom= 3.3 V (V33)  
16  
VIN = 0 V  
14  
12  
10  
8
1.5  
1
6
4
0.5  
0
IOUT = 1 mA  
2
IOUT = 300 mA  
0
−50  
0
50  
Tj [°C]  
100  
−50  
0
50  
Tj [°C]  
100  
Load Regulation versus  
Junction Temperature TJ  
Adjust Pin Bias current IADJ versus  
Junction Temperature TJ  
5
140  
120  
100  
80  
V33: VIN = 4.3 V VOUT.nom= 3.3 V  
ADJ: VIN = 2.3 V VOUT.nom= 1.22 V  
0
−5  
−10  
−15  
−20  
−25  
60  
40  
20  
ΔILoad = 1 mA to 300 mA  
0
−50  
0
50  
Tj [°C]  
100  
−50  
0
50  
Tj [°C]  
100  
1) VIN,min is referred here as the minimum input voltage for which the requested current is provided and VOUT reaches 1 V.  
Data Sheet  
20  
Rev. 1.1, 2014-10-30  
IFX54441  
Typical Performance Characteristics  
ESR Stability versus  
ESR(COUT) with CBYP = 10 nF versus  
Output Current IOUT (for COUT = 3.3µF)  
Output Capacitance COUT  
3
2.5  
2
101  
CByp = 10 nF  
measurement limit  
ESRmax CByp = 0 nF  
100  
stable region above blue line  
ESRmin CByp = 0 nF  
ESRmax CByp = 10 nF  
ESRmin CByp = 10 nF  
1.5  
1
COUT = 3.3 µF  
(0.06 Ω is measurement limit)  
0.5  
0
10−1  
0
50  
100  
150  
200  
250  
300  
2
3
4
5
6
7
IOUT [mA]  
COUT [µF]  
Input Ripple Rejection PSRR versus  
Frequency f  
Input Ripple Rejection PSRR versus  
Junction Temperature TJ  
72  
70  
68  
66  
64  
100  
VIN = VOUTnom + 1.5 V  
Vripple = 0.5 Vpp  
COUT = 10 µF  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
62  
VIN = VOUTnom + 1.5 V  
Vripple = 0.5 Vpp  
fripple = 120 Hz  
60  
COUT = 10 µF  
IOUT = 300mA CBYP = 0 nF  
IOUT = 300mA CBYP = 10nF  
IOUT = 50mA CBYP = 0 nF  
IOUT = 50mA CBYP = 10nF  
58  
56  
IOUT = 300mA; CBYP = 0 nF  
IOUT = 300mA; CBYP = 10nF  
50  
Tj [°C]  
−50  
0
100  
10  
100  
1k  
10k  
100k  
f [Hz]  
Data Sheet  
21  
Rev. 1.1, 2014-10-30  
IFX54441  
Typical Performance Characteristics  
Output Noise Spectral Density (ADJ) versus  
Frequency (COUT = 10 µF, IOUT = 50 mA1))  
Output Noise Spectral Density (ADJ) versus  
Frequency (COUT = 22 µF, IOUT = 50 mA1))  
101  
101  
COUT = 10 µF  
IOUT = 50 mA  
COUT = 22 µF  
IOUT = 50 mA  
100  
100  
10−1  
10−1  
CByp = 0 nF; ESR(COUT)=0  
CByp = 10 nF; ESR(COUT)=0  
CByp = 0 nF; ESR(COUT)=0  
CByp = 10 nF; ESR(COUT)=0  
CByp = 10 nF; ESR(COUT)=250mΩ  
CByp = 10 nF; ESR(COUT)=250mΩ  
10−2  
10−2  
101  
102  
103  
f [Hz]  
104  
105  
101  
102  
103  
f [Hz]  
104  
105  
Output Noise Spectral Density (3.3 V) versus  
Frequency (COUT = 10 µF, IOUT = 50 mA1))  
Output Noise Spectral Density (3.3 V) versus  
Frequency (COUT = 22 µF, IOUT = 50 mA1))  
101  
101  
COUT = 10 µF  
IOUT = 50 mA  
COUT = 22 µF  
IOUT = 50 mA  
100  
100  
10−1  
10−1  
CByp = 0 nF; ESR(COUT)=0  
CByp = 10 nF; ESR(COUT)=0  
CByp = 0 nF; ESR(COUT)=0  
CByp = 10 nF; ESR(COUT)=0  
CByp = 10 nF; ESR(COUT)=250mΩ  
CByp = 10 nF; ESR(COUT)=250mΩ  
10−2  
10−2  
101  
102  
103  
f [Hz]  
104  
105  
101  
102  
103  
f [Hz]  
104  
105  
1) Load condition 50 mA is representing a worst case condition with regard to output voltage noise performance.  
Data Sheet  
22  
Rev. 1.1, 2014-10-30  
IFX54441  
Typical Performance Characteristics  
Transient Response CBYP = 0nF (IFX54441EJV33)  
Transient Response CBYP = 10nF (IFX54441EJV33)  
0,3  
0,15  
COUT = 10 µF  
COUT = 10 µF  
CBYP  
VIN = 6 V  
= 0 nF  
CBYP = 10 nF  
0,2  
0,1  
0
0,1  
0,05  
0
VIN  
=
6V  
-0,1  
-0,2  
-0,3  
-0,05  
-0,1  
-0,15  
0
100  
200  
300  
400  
500  
Time (μs)  
600  
700  
800  
900  
1000  
0
20  
40  
60  
80  
100  
Time / [μs]  
120  
140  
160  
180  
200  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
IOUT : 100 to 300mA  
IOUT : 100 to 300mA  
0
0
0
100  
200  
300  
400  
500  
Time (μs)  
600  
700  
800  
900  
1000  
0
20  
40  
60  
80  
100  
Time / [μs]  
120  
140  
160  
180  
200  
Data Sheet  
23  
Rev. 1.1, 2014-10-30  
IFX54441  
Application Information  
7
Application Information  
Note:The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
IFX54441  
VIN  
VOUT  
IN  
OUT  
CIN  
SENSE  
RLoad  
COUT  
CBYP  
1µF  
10nF  
10µF  
EN  
BYP  
GND  
GND  
Figure 5  
Typical Application Circuit IFX54441 (fixed voltage version)  
IFX54441 (ADJ)  
VIN  
VOUT  
IN  
OUT  
R2  
R1  
CIN  
ADJ  
RLoad  
1µF  
COUT  
CBYP  
10nF  
10µF  
EN  
BYP  
GND  
GND  
Calculation of VOUT  
:
VOUT = 1.22V x (1 + R2 / R1) + (IADJ x R2)  
Figure 6  
Typical Application Circuit IFX54441 (adjustable version)  
Note:This is a very simplified example of an application circuit. The function must be verified in the real  
application1)2)  
.
1) Please note that in case a non-negligible inductance at IN pin is present, e.g. due to long cables, traces, parasitics, etc, a  
bigger input capacitor CIN may be required to filter its influence. As a rule of thumb if the IN pin is more than six inches away  
from the main input filter capacitor an input capacitor value of CIN = 10 µF is recommended.  
2) For specific needs a small optional resistor may be placed in series to very low ESR output capacitors COUT for enhanced  
noise performance (for details please see “Bypass Capacitance and Low Noise Performance” on Page 25).  
Data Sheet  
24  
Rev. 1.1, 2014-10-30  
IFX54441  
Application Information  
The IFX54441 is a 300 mA low dropout regulator with very low quiescent current and Enable-functionality. The  
device is capable of supplying 300 mA at a dropout voltage of 270 mV. Output voltage noise numbers down to  
24 µVRMS can be achieved over a 10 Hz to 100 kHz bandwidth with the addition of a 10 nF reference bypass  
capacitor. The usage of a reference bypass capacitor will additionally improve transient response of the regulator,  
lowering the settling time for transient load conditions. The device has a low operating quiescent current of typical  
30 µA that drops to less than 1 µA in shutdown (EN-pin pulled to low level). The device also incorporates several  
protection features which makes it ideal for battery-powered systems. It is protected against both reverse input  
and reverse output voltages. In battery backup applications where the output can be held up by a backup battery  
when the input is pulled to ground the device behaves like it has a diode in series with its output and prevents  
reverse current flow.  
7.1  
Adjustable Operation  
The adjustable version of the IFX54441 has an output voltage range of 1.22 V to 20 V - VDR. The output voltage  
is set by the ratio of two external resistors, as it can be seen in Figure 6 (for the calculation of VOUT the formula  
given in the figure can be used). The device controls the output to maintain the ADJ pin at 1.22 V referenced to  
ground. The current in R1 is then equal 1.22 V / R1 and the current in R2 equals the current in R1 plus the ADJ pin  
bias current. The ADJ pin bias current, which is ~ 60 nA @ 25°C, flows through R2 into the ADJ pin. The value of  
R1 should be not greater than 250 kin order to minimize errors in the output voltage caused by the ADJ pin bias  
current. Note that when the device is shutdown (i.e. low level applied to EN pin) the output is turned off and  
consequently the divider current will be zero. For details of the ADJ pin bias current see also the corresponding  
typical performance graph Figure “Adjust Pin Bias current IADJ versus Junction Temperature TJ” on  
Page 20.  
7.2  
Kelvin Sense Connection  
For the fixed voltage version of the IFX54441 the SENSE pin is the input to the error amplifier. An optimum  
regulation will be obtained at the point where the SENSE pin is connected to the OUT pin of the regulator. In critical  
applications however small voltage drops can be caused by the resistance Rp of the PC-traces and thus may lower  
the resulting voltage at the load. This effect may be eliminated by connecting the SENSE pin to the output as close  
as possible at the load (see Figure 7). Please note that the voltage drop across the external PC trace will add up  
to the dropout voltage of the regulator.  
IFX54441  
RP  
OUT  
IN  
VIN  
CIN  
SENSE  
RLoad  
COUT  
EN  
BYP  
GND  
RP  
Figure 7  
Kelvin Sense Connection  
7.3  
Bypass Capacitance and Low Noise Performance  
The IFX54441 regulator may be used in combination with a bypass capacitor connecting the OUT pin to the BYP  
pin in order to minimize output voltage noise1).This capacitor will bypass the reference of the regulator, providing  
1) a good quality low leakage capacitor is recommended.  
Data Sheet  
25  
Rev. 1.1, 2014-10-30  
IFX54441  
Application Information  
a low frequency noise pole. The noise pole provided by such a bypass capacitor will lower the output voltage noise  
in the considered bandwidth. For a given output voltage actual numbers of the output voltage noise will - next to  
the bypass capacitor itself - be dependent on the capacitance of the applied output capacitor and its ESR: In case  
of the IFX54441EJV applied with unity gain (i.e. VOUT = 1.22 V) the usage of a bypass capacitor of 10 nF in  
combination with a (low ESR) ceramic COUT of 10 µF will result in output voltage noise numbers of typical  
41 µVRMS. This Output Noise level can be reduced to typical 28 µVRMS under the same conditions by adding a  
small resistor of ~250 min series to the 10 µF ceramic output capacitor acting as additional ESR. A reduction of  
the output voltage noise can also be achieved by increasing capacitance of the output capacitor. For COUT = 22 µF  
(ceramic low ESR) the output voltage noise will be typically around 29 µVRMS and can again be further lowered to  
24 µVRMS by adding a small resistance of ~250 min series to COUT. In case of the fix voltage version  
IFX54441EJV33 the output voltage noise for the described cases vary from 45 µVRMS down to 30 µVRMS. For  
further details please also see “Output Voltage Noise11)” on Page 12,, of the Electrical Characteristics. Please  
note that next to reducing the output voltage noise level the usage of a bypass capacitor has the additional benefit  
of improving transient response which will be also explained in the next chapter. However one needs to take into  
consideration that on the other hand the regulator start-up time is proportional to the size of the bypass capacitor  
and slows down to values around 15 ms when using a 10 nF bypass capacitor in combination with a 10 µF COUT  
output capacitor.  
7.4  
Output Capacitance Requirements and Transient Response  
The IFX54441 is designed to be stable with a wide range of output capacitors. The ESR of the output capacitor is  
an essential parameter with regard to stability, most notably with small capacitors. A minimum output capacitor of  
3.3 µF with an ESR of 3 or less is recommended to prevent oscillations. Like in general for LDO’s the output  
transient response of the IFX54441 will be a function of the output capacitance. Larger values of output  
capacitance decrease peak deviations and thus improve transient response for larger load current changes.  
Bypass capacitors, used to decouple individual components powered by the IFX54441 will increase the effective  
output capacitor value. Please note that with the usage of bypass capacitors for low noise operation either larger  
values of output capacitors are needed or a minimum ESR requirement of COUT may have to be considered (see  
also Figure “ESR(COUT) with CBYP = 10 nF versus Output Capacitance COUT” on Page 21 as example). In  
conjunction with the usage of a 10 nF bypass capacitor an output capacitor COUT 6.8 µF is recommended. The  
benefit of a bypass capacitor to the transient response performance is impressive and illustrated as one example  
in Figure 8 where the transient response of the IFX54441EJV33 to one and the same load step from 100 mA to  
300 mA is shown with and without a 10 nF bypass capacitor: for the given configuration of COUT = 10 µF with no  
bypass capacitor the load step will settle in the range of less than 100 µs while for COUT = 10 µF in conjunction  
with a 10 nF bypass capacitor the same load step will settle in the range of 10 µs. Due to the shorter reaction time  
of the regulator by adding the bypass capacitor not only the settling time improves but also output voltage  
deviations due to load steps are sharply reduced.  
0,3  
C_BYP = 0nF  
C_BYP = 10nF  
COUT = 10 µF  
BYP = 0 vs 10nF  
VIN = 6 V  
C
0,2  
0,1  
0
-0,1  
-0,2  
-0,3  
0
100  
200  
300  
400  
500  
Time (μs)  
600  
700  
800  
900  
1000  
Figure 8  
Influence of CBYP: example of transient response to one and the same load step with and  
without CBYP of 10 nF (IOUT 100 mA to 300 mA, IFX54441EJV33)  
Data Sheet  
26  
Rev. 1.1, 2014-10-30  
IFX54441  
Application Information  
7.5  
Protection Features  
The IFX54441 regulators incorporate several protection features which make them ideal for usage in battery-  
powered circuits. In addition to normal protection features associated with monolithic regulators like current limiting  
and thermal limiting the device is protected against reverse input voltage, reverse output voltage and reverse  
voltages from output to input.  
Current limit protection and thermal overload protection are intended to protect the device against current overload  
conditions at the output of the device. For normal operation the junction temperature must not exceed 125°C.  
The input of the device will withstand reverse voltages of 20 V. Current flowing into the device will be limited to  
less than 1 mA (typically less than 100 µA) and no negative voltage will appear at the output. The device will  
protect both itself and the load. This provides protection against batteries being plugged backwards.  
The output of the IFX54441 can be pulled below ground without damaging the device. If the input is left open-circuit  
or grounded, the output can be pulled below ground by 20 V. Under such conditions the output of the device by  
itself behaves like an open circuit with practically no current flowing out of the pin1). In more application relevant  
cases however where the output is either connected to the SENSE pin (fix voltage variant) or tied either via an  
external voltage divider or directly to the ADJ pin (adjustable variant) a small current will be present from this origin.  
In the case of the fixed voltage version this current will typically be below 100 µA while for the adjustable version  
it depends on the magnitude of the top resistor of the external voltage divider 2). If the input is powered by a voltage  
source the output will source the short circuit current of the device and will protect itself by thermal limiting. In this  
case grounding the EN pin will turn off the device and stop the output from sourcing the short-circuit current.  
The ADJ pin of the adjustable device can be pulled above or below ground by as much as 7 V without damaging  
the device. If the input is grounded or left open-circuit, the ADJ pin will act inside this voltage range like a large  
resistor (typically 100 k) when being pulled above ground and like a resistor (typically 5 k) in series with a diode  
when being pulled below ground. In situations where the ADJ pin is at risk of being pulled outside its absolute  
maximum ratings ±7 V the ADJ pin current must be limited to 1 mA (e.g. in cases where the ADJ pin is connected  
to a resistor divider that would pull the ADJ pin above its 7 V clamp voltage). Let’s consider for example the case  
where a resistor divider is used to provide a 1.5 V output from the 1.22 V reference and the output is forced to  
20 V. The top resistor of the resistor divider must then be chosen to limit the current into the ADJ pin to 1 mA or  
less when the ADJ pin is at 7 V. The 13 V difference between output and ADJ pin divided by the 1 mA maximum  
current into the ADJ pin requires a minimum resistor value of 13 k.  
In circuits where a backup battery is required, several different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled to ground, pulled to some intermediate voltage or is left  
open-circuit. Current flow back into the output will follow the curve as shown in Figure 9 below.  
When the IN pin of the fixed voltage version is forced below the OUT pin, or the OUT pin is pulled above the IN  
pin, the input current will drop to very small values – typically down to less than 2 µA, once VOUT exceeds VIN by  
some 300 mV or more. This can happen if the input of the device is connected to a discharged battery and the  
output is held up by either a backup battery or a second regulator circuit. The state of the EN pin will have no effect  
on the reverse output current when the output is pulled above the input.  
1) typically < 1 µA for the mentioned conditions, VOUT being pulled below ground with other pins either grounded or open.  
2) In case there is no external voltage divider applied i.e. the ADJ pin is directly connected to the output and the output is  
pulled below ground by 20 V the current flowing out of the ADJ pin will be typically ~ 4 mA. Please ensure in such cases  
that the absolute maximum ratings of the ADJ pin are respected.  
Data Sheet  
27  
Rev. 1.1, 2014-10-30  
IFX54441  
Application Information  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT.nom= 1.22 V (ADJ)  
VOUT.nom= 3.3 V (V33)  
VIN = 0 V  
Tj = 25 °C  
0
2
4
6
8
10  
VOUT [V]  
Figure 9  
Reverse Output Current  
Data Sheet  
28  
Rev. 1.1, 2014-10-30  
IFX54441  
Package Outlines  
8
Package Outlines  
0.35 x 45˚  
1)  
±0.1  
3.9  
0.1 C D 2x  
+0.06  
9
0.1  
0.08  
Seating Plane  
C
C
0.64±0.25  
±0.2  
0.2  
1.27  
2)  
M
±0.09  
0.41  
D 8x  
6
M
0.2  
C A-B D 8x  
D
Bottom View  
±0.2  
3
A
1
4
8
5
1
4
8
5
B
0.1 C A-B 2x  
1)  
±0.1  
4.9  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Dambar protrusion shall be maximum 0.1 mm total in excess of lead width  
3) JEDEC reference MS-012 variation BA  
PG-DSO-8-27-PO V01  
Figure 10 PG-DSO-8 Exposed Pad package outlines  
±0.1  
2.58  
±0.1  
0.1  
±0.1  
±0.1  
±0.1  
3.3  
0.36  
0.53  
0.05  
Z
Pin 1 Marking  
±0.1  
0.5  
Pin 1 Marking  
±0.1  
0.25  
PG-TSON-10-2-PO V02  
Z (4:1)  
0.07 MIN.  
Figure 11 PG-TSON-10 Package Outlines  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
29  
Rev. 1.1, 2014-10-30  
IFX54441  
Revision History  
9
Revision History  
Revision  
Date  
Changes  
Updated Data Sheet including additional package type PG-TSON-10:  
1.1  
2014-10-30  
PG-TSON-10 package variants added: Product Overview, Pin Configuration  
Thermal Resistance, wording, etc, added / updated accordingly.  
Footnote 7) on Page 14 reworked.  
Application Information updated: Clarification and correction of wording.  
Typical values updated and footnotes added.  
Editorial changes throughout the document.  
1.0  
2014-03-12  
Data Sheet - Initial Release  
Data Sheet  
30  
Rev. 1.1, 2014-10-30  
Edition 2014-10-30  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2014 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems  
and/or automotive, aviation and aerospace applications or systems only with the express written approval of  
Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-  
support automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device  
or system. Life support devices or systems are intended to be implanted in the human body or to support and/or  
maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user  
or other persons may be endangered.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY