IM393-X6E3 [INFINEON]

CIPOS™ Tiny IPM 600V/20A;
IM393-X6E3
型号: IM393-X6E3
厂家: Infineon    Infineon
描述:

CIPOS™ Tiny IPM 600V/20A

文件: 总26页 (文件大小:1945K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IM393-X6E  
CIPOSTiny IPM 600V/20A  
IM393-X6E  
Description  
IM393-X6E is a 20A, 600V Integrated Power Hybrid IC with Open Emitter pins for advanced Appliance Motor  
Drives applications such as energy efficient fan and pumps. Infineons technology offers an extremely com-  
pact, high performance AC motor-driver in a single isolated package to simplify design.  
This advanced IPM is a combination of Infineons newest low VCE(on) Trench IGBT technology optimized for  
best trade-off between conduction and switching losses and the industry benchmark 3 phase high voltage,  
high speed driver (3.3V compatible) in a fully isolated thermally enhanced package. A built-in high precision  
temperature monitor and over-current protection feature, along with the short-circuit rated IGBTs and inte-  
grated under-voltage lockout function, deliver high level of protection and fail-safe operation. Using a dual in  
line package with full transfer mold structure resolves isolation problems to heatsink.  
Features  
Integrated gate drivers and bootstrap function  
Temperature monitor  
Protection shutdown pin  
Low VCE (on) Trench IGBT technology  
Under voltage lockout for all channels  
Matched propagation delay for all channels  
3.3V Schmitt-triggered input logic  
Cross-conduction prevention logic  
Isolation 2000VRMS min and CTI > 600  
Recognized by UL (File Number : E314539)  
Tiny DIP  
IM393-X6E  
Potential applications  
Washing machines  
Air-conditioners  
Refrigerators  
Fans  
Dishwashers  
Low power motor drives  
Product validation  
Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.  
Table1  
Part Ordering Table  
Standard Pack  
Form  
Base part number  
Package Type  
Quantity  
DIP 34x15  
DIP 34x15  
DIP 34x15  
30 Tubes  
30 Tubes  
30 Tubes  
450  
450  
450  
IM393-X6E  
IM393-X6E2  
IM393-X6E3  
Final Datasheet  
www.infineon.com  
Please read the important Notice and Warnings at the end of this document  
V2.0  
2019-05-21  
 
CIPOSTiny  
IM393-X6E  
Table of Contents  
Table of Contents  
Description ....................................................................................................................................1  
Features ........................................................................................................................................1  
Potential Applications ....................................................................................................................1  
Product validation .........................................................................................................................1  
Table of Contents ...........................................................................................................................2  
1
2
Internal Electrical Schematic ..................................................................................................3  
Pin Configuration ..................................................................................................................4  
2.1 Pin Assignment .................................................................................................................................................5  
2.2 Pin Descriptions ...............................................................................................................................................6  
3
Absolute Maximum Rating ......................................................................................................8  
3.1 Module ..............................................................................................................................................................8  
3 .2 Inverter .............................................................................................................................................................8  
3 .3 Control ..............................................................................................................................................................8  
4
5
6
Thermal Characteristics .........................................................................................................9  
Recommended Operating Conditions ……………………………………………………………………...10  
Static Parameters …………………………………………………………………………………………... 11  
6.1 Inverter …………………………………………………………………………………………………………… 11  
6 .2 Control ……………………………………………………………………………………………………………..11  
7
Dynamic Parameters ............................................................................................................ 13  
7.1 Inverter ...........................................................................................................................................................13  
7 .2 Control ........................................................................................................................................................13  
8
9
Thermistor Characteristics .................................................................................................... 14  
Mechanical Characteristics and Ratings ..................................................................................15  
10 Qualification Information ...................................................................................................... 16  
11 Diagrams & Tables ................................................................................................................ 17  
11.1 Tc Measurement Point ...................................................................................................................................17  
11.2 Input-Output Logic Table ..............................................................................................................................17  
11.3 Switching Time Definitions ............................................................................................................................18  
12 Application Notes ................................................................................................................ 19  
12.1 Typical Application Schematic .......................................................................................................................19  
12.2 Performance Charts ........................................................................................................................................20  
12.3 TJ vs TTH ...........................................................................................................................................................20  
12.4 –VS Immunity ..................................................................................................................................................21  
13 Package Outline ...................................................................................................................22  
Revision History ........................................................................................................................... 24  
2
Final Datasheet  
V2.0  
2019-05-21  
 
CIPOSTiny  
IM393-X6E  
Internal Electrical Schematic  
1
Internal Electrical Schematic  
(35) P  
(33) P  
(1) P  
(3) VS(W)  
(4) VB(W)  
VB3  
VB2  
HO3  
VS3  
(32) W  
(31) V  
(6) VS(V)  
(7) VB(V)  
HO2  
VS2  
(9) VS(U)  
(10) VB(U)  
VB1  
HO1  
VS1  
(12) VDD  
(13) VTH  
VDD  
(30) U  
-t°  
(14) COM  
(15) COM  
(16) ITRIP  
(17) RFE  
COM  
VSS  
LO3  
LO2  
LO1  
ITRIP  
RFE  
(29) N(W)  
(28) N(V)  
(27) N(U)  
(18) HIN(U)  
HIN1  
(19) HIN(V)  
(20) HIN(W)  
HIN2  
HIN3  
(21) LIN(U)  
(22) LIN(V)  
(23) LIN(W)  
(24) N(W)  
(25) N(V)  
LIN1  
LIN2  
LIN3  
(26) N(U)  
Figure 1  
Internal electrical schematic  
3
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Pin Configuration  
2
Pin Configuration  
2.1  
Pin Assignment  
(1) P  
(35) P  
(3) VS(W)  
(4) VB(W)  
(6) VS(V)  
(7) VB(V)  
(9) VS(U)  
(33) P  
(10) VB(U)  
(32) W  
(12) VDD  
(13) VTH  
(14) COM  
(15) COM  
(31) V  
(16) ITRIP  
(17) RFE  
(18) HIN(U)  
(19) HIN(V)  
(20) HIN(W)  
(21) LIN(U)  
(22) LIN(V)  
(30) U  
(29) N(W)  
(23) LIN(W)  
(28) N(V)  
(27) N(U)  
(24) N(W)  
(25) N(V)  
(26) N(U)  
Figure 2  
Pin configuration  
4
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Pin Configuration  
Table 2  
Pin Assignment  
Pin  
Name  
Description  
1
( 2 )  
3
P
N/A  
Positive bus input voltage  
None  
VS(W)  
VB(W)  
N/A  
W-phase high side floating supply offset voltage  
W-phase high side floating supply voltage  
None  
4
( 5 )  
6
VS(V)  
VB(V)  
N/A  
V - phase high side floating supply offset voltage  
V - phase high side floating supply voltage  
None  
7
( 8 )  
9
VS(U)  
VB(U)  
N/A  
U- phase high side floating supply offset voltage  
U- phase high side floating supply voltage  
None  
10  
( 11 )  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
( 34 )  
35  
( 36 )  
VDD  
VTH  
COM  
COM  
ITRIP  
RFE  
Low side control supply  
Temperature monitor  
Low side control negative supply  
Low side control negative supply  
Over current protection input  
RCIN / Fault / Enable  
HIN(U)  
HIN(V)  
HIN(W)  
LIN(U)  
LIN(V)  
LIN(W)  
N(W)  
N(V)  
N(U)  
N(U)  
N(V)  
N(W)  
U
U-phase high side gate driver input  
V-phase high side gate driver input  
W-phase high side gate driver input  
U-phase low side gate driver input  
V-phase low side gate driver input  
W-phase low side gate driver input  
W-phase low side emitter  
V-phase low side emitter  
U-phase low side emitter  
U-phase low side emitter  
V-phase low side emitter  
W-phase low side emitter  
U-phase output  
V
V-phase output  
W
W-phase output  
P
Positive bus input voltage  
None  
N/A  
P
Positive bus input voltage  
None  
N/A  
5
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Pin Descriptions  
2.2  
Pin Descriptions  
VDD, COM (Low side control supply and reference)  
HIN(U,V,W) and LIN(U,V,W) (High side and low  
side control pins)  
VDD is the control supply and it provides power both  
to input logic and to output power stage. Input  
logic is referenced to COM ground.  
These pins are positive logic and they are  
responsible for the control of the integrated  
IGBT. The Schmitt-trigger input thresholds of  
them are such to guarantee LSTTL and CMOS  
compatibility down to 3.3V controller outputs.  
Pull-down resistor of about 4kis internally  
provided to pre-bias inputs during supply start-  
up and an ESD diode is provided for pin  
protection purposes. Input Schmitt-trigger and  
noise filter provide beneficial noise rejection to  
short input pulses.  
The under-voltage circuit enables the device to  
operate at power on when a supply voltage of at  
least a typical voltage of VDDUV+ = 10.4V is present.  
The IC shuts down all the gate drivers power  
outputs, when the VDD supply voltage is below  
VDDUV- = 9.4V. This prevents the external power  
switches from critically low gate voltage levels  
during on-state and therefore from excessive power  
dissipation.  
The noise filter suppresses control pulses which  
are below the filter time TFILIN. The filter acts  
according to Figure 4.  
VB(U,V,W) and VS(U,V,W) (High side supplies)  
VB to VS is the high side supply voltage. The high  
side circuit can float with respect to COM following  
the external high side power device emitter  
voltage.  
CIPOSTM TINY  
Schmitt-Trigger  
HIN(X)  
LIN(X)  
INPUT NOISE  
FILTER  
Due to the low power consumption, the floating  
driver stage is supplied by integrated bootstrap  
circuit.  
4k  
SWITCH LEVEL  
VIH; VIL  
COM  
The under-voltage detection operates with a rising  
supply threshold of typical VBSUV+ = 10.41V and a  
falling threshold of VBSUV- = 9.4V.  
Figure 3  
Input pin structure  
a)  
b)  
tFILIN  
VS(U,V,W) provide a high robustness against negative  
voltage in respect of COM. This ensures very stable  
designs even under rough conditions.  
tFILIN  
HIN(X)  
LIN(X)  
HIN(X)  
LIN(X)  
high  
N (U, V, W) (Low side emitters)  
HOx  
LOx  
HOx  
LOx  
low  
The low side emitters are available for current  
measurements of each phase leg. It is  
recommended to keep the connection to pin COM  
as short as possible in order to avoid unnecessary  
inductive voltage drops.  
Figure 4  
Input filter timing diagram  
The integrated gate drive provides additionally a  
shoot through prevention capability which avoids  
the simultaneous on-state of the high-side and  
low-side switch of the same inverter phase. A  
minimum deadtime insertion of typically 275ns is  
also provided by driver IC, in order to reduce  
cross-conduction of the external power switches.  
VTH (Thermistor)  
A UL certified NTC is integrated in the module with  
one terminal of the chip connected to COM and the  
other to VTH. When pulled up to a rail voltage such  
as VDD or 3.3V by a resistor, the VTH pin provides an  
analog voltage signal corresponding to the  
temperature of the thermistor.  
6
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Pin Configuration  
RFE (RCIN / Fault / Enable)  
VRFE(t) = 3.3V * e-t/RC < VIN,TH-  
The RFE pin combines 3 functions in one pin: RCIN or  
RC-network based programmable fault clear timer,  
fault output and enable input.  
CRCIN < 350ns / ( - ln (VIN,TH- / 3.3V) * RRFE_ON  
)
Consider VIN,TH- of 0.8V and RRFE_ON of 50ohm, CRCIN  
should be less than 4.9nF. It is also suggested to  
use a RRCIN of between 0.5Mand 2MΩ.  
The RFE pin is normally connected to an RC network  
on the PCB per the schematic in Figure 5. Under  
normal operating conditions, RRCIN pulls the RFE pin  
to 3.3V, thus enabling all the functions in the IPM.  
The microcontroller can pull this pin low to disable  
the IPM functionality. This is is the Enable function.  
Input  
Noise  
filter  
HIN(X)  
Deadtime &  
Shoot-Through  
Prevention  
Input  
Noise  
filter  
LIN(X)  
+3.3V  
VDD  
Under-  
voltage  
RRCIN  
COM  
To Microcontroller  
detection  
RFE  
CRCIN  
ITRIP  
ITRIP  
Noise  
filter  
Figure 5  
Typical PCB circuit connected  
to the RFE pin  
The Fault function allows the IPM to report a Fault  
condition to the microcontroller by pulling the RFE  
pin low in one of two situations. The first is an under-  
voltage condition on VDD and the second is when the  
Noise  
filter  
RFE  
ITRIP pin sees a voltage rising above VIT,TH+  
.
The programmable fault clear timer function  
provides a means of automatically re-enabling the  
module operation a preset amount of time (TFLT-CLR  
)
aꢀer the fault condition has disappeared. Figure 6  
shows the RFE-related circuit block diagram inside  
the IPM .  
Figure 6  
RFE internal circuit structure  
The length of TFLT-CLR can be determined by using  
the formula below.  
U,V,W (High side emitter and low side  
collector)  
VRFE(t) = 3.3V * (1 – e-t/RC  
)
These pins are motor U, V, W input pins.  
TFLT-CLR = -RRCIN * CRCIN * ln(1-VIN,TH+/3.3V)  
P (Positive bus input voltage)  
For example, if RRCIN is 1.2Mand CRCIN is 1nF, the TFLT-  
is about 1.7ms with VIN,TH+ of 2.5V. It is also  
iCmLR portant to note that CRCIN needs to be minimized  
in order to make sure it is fully discharged in case of  
over current event.  
The high side IGBTs are connected to the bus  
voltage. It is noted that the bus voltage does not  
exceed 450V.  
Since the ITRIP pin has a 350ns input filter, it is  
appropriate to ensure that CRCIN will be discharged  
below VIN,TH- by the open-drain MOSFET, aꢀer 350ns.  
Therefore, the max CRCIN can be calculated as:  
7
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Absolute Maximum Rating  
3
Absolute Maximum Rating  
3.1  
Module  
Table 3  
Parameter  
Symbol  
TJ  
Conditions  
IGBT, diode, HVIC  
Value  
-40 ~ 150  
-40 ~ 125  
-40 ~ 125  
2000  
Units  
°C  
Operating junction temperature  
Operating case temperature  
Storage temperature  
°C  
TC  
°C  
TSTG  
VISO  
V
Isolation test voltage  
AC RMS, 1 minute, 60Hz  
3.2  
Inverter  
Table 4  
Parameter  
Symbol  
VCES  
Conditions  
Value  
600  
Units  
Blocking voltage  
IGBT, diode, HVIC  
V
V
V
A
DC –link supply voltage of P-N  
DC –link supply voltage (surge) of P-N  
Output current  
VPN  
450  
Applied between P and N  
Applied between P and N  
VPN(surge)  
IO  
500  
±20  
TC = 25°C, TJ < 150°C  
TC = 25°C, TJ < 150°C, less than  
1ms  
Peak output current  
IO(peak)  
±30  
A
Power dispassion per IGBT  
Short Circuit withstand time  
Ptot  
TSC  
27  
3
W
TJ < 150°C, VDC =360V, VGE = 15V  
μs  
3.3  
Control  
Table 5  
Parameter  
Symbol  
Conditions  
Value  
Units  
Logic supply voltage  
Input voltage  
VDD  
VIN  
-0.3 ~ 20  
-0.3 ~ 20  
V
V
LIN, HIN, ITRIP, RFE  
High side floating supply voltage  
VBS(U,V,W)  
-0.3 ~ 20  
V
8
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Thermal Characteristics  
4
Thermal Characteristics  
Table 6  
Value  
Typ.  
Parameter  
Symbol  
Conditions  
Units  
Min.  
Max.  
Low side W-phase  
IGBT (See Figure 8 for  
TC measurement point)  
Single IGBT thermal resistance,  
°C/W  
RTH(J-C)  
-
4.0  
5.4  
4.6  
junction-case  
Low side W-phase  
diode (See Figure 8 for  
TC measurement point)  
Single diode thermal resistance,  
°C/W  
RTH(J-C)D  
-
6.2  
junction-case  
9
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Recommended Operating Conditions  
5
Recommended Operating Conditions  
For proper operation the device should be used within the recommended conditions. All voltages are absolute  
referenced to COM. The VS offset is tested with all supplies biased at 15V differential.  
Table 7  
Value  
Min. Typ. Max.  
Parameter  
Symbol  
Conditions  
Units  
Positive DC bus input voltage  
Low side control supply voltage  
High side floating supply voltage  
Input voltage  
VDC  
VDD  
VBS  
-
13.5  
12.5  
0
-
15  
15  
-
450  
16.5  
17.5  
5
V
V
V
LIN, HIN, ITRIP, RFE  
VIN  
V
PWM carrier frequency  
FPWM  
VCOM  
DT  
PWIN(ON)  
PWIN(OFF)  
-
20  
-
-
kHz  
V
Voltage between COM and N (including surge)  
-5  
5
External dead time between HIN & LIN  
Input pulse width  
1
1
-
-
-
µs  
µs  
-
10  
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Static Parameters  
6
Static Parameters  
6.1  
Inverter  
VBIAS(VDD, VBS(U,V,W))=15V, TJ=25°C unless otherwise specified  
Table 8  
Value  
Parameter  
Symbol  
Conditions  
Units  
Min. Typ. Max.  
-
-
-
1.5  
1.7  
10  
1.9  
-
V
V
IC = 10A  
Collector-Emiꢀer saturaꢁon voltage  
VCE(ON)  
IC = 10A, TJ = 150°C  
VIN = 0V, VCE = 600V  
80  
μA  
Collector-Emitter leakage current  
ICES  
VIN = 0V, VCE = 600V, TJ=150°C  
-
80  
-
μA  
IC = 10A  
-
-
1.6  
1.6  
2.2  
V
V
Diode forward voltage drop  
VF  
IC = 10A, TJ = 150°C  
-
6.2  
Control  
VBIAS(VDD, VBS(U,V,W))=15V, TJ=25ºC, unless otherwise specified. The VIN parameters are referenced to COM and are  
applicable to all six channels  
Table 9  
Value  
Min. Typ. Max.  
Parameter  
Symbol  
Conditions  
LIN, HIN, RFE  
Units  
V
V
Logic “1” input voltage  
Logic “0” input voltage  
VDD/VBS supply undervoltage,  
positive going threshold  
VDD/VBS supply undervoltage,  
negative going threshold  
VIN,TH+  
VIN,TH-  
VDD,UV+, VBS,UV+  
2.5  
-
-
-
LIN, HIN, RFE  
-
0.8  
9.6  
8.6  
10.4  
9.4  
11.2  
10.2  
V
V
VDD,UV-, VBS,UV-  
VDD/VBS supply undervoltage  
VDDUVH, VBSUVH  
-
1
-
V
lock-out hysteresis  
Quiescent VBS supply current  
Quiescent VDD supply current  
IQBS  
IQDD  
-
-
-
-
150  
3.2  
μA  
mA  
Offset supply leakage  
ILK  
VS = 600V  
VIN = 3.3V  
-
-
-
50  
μA  
μA  
current  
Input bias current for LIN,  
HIN  
IIN+  
825  
1110  
Input bias current for RFE  
Input bias current for ITRIP  
ITRIP threshold voltage  
IIN,RFE+  
ITRIP+  
VREF = 3.3V  
VITRIP = 3.3V  
-
-
0
4
1
μA  
μA  
V
16  
VITRIP  
0.44 0.49  
0.54  
11  
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Static Parameters  
Value  
Parameter  
Symbol  
Conditions  
Units  
Min. Typ. Max.  
ITRIP input hysteresis  
Bootstrap resistance  
RFE low on resistance  
VITRIP,HYS  
RBS  
-
-
-
0.07  
200  
50  
-
-
V
Ω
Ω
RRFE  
100  
12  
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Dynamic Parameters  
7
Dynamic Parameters  
7.1  
Inverter  
VBIAS(VDD, VBS(U,V,W))=15V, TJ=25ºC, unless otherwise specified.  
Table 10  
Value  
Min. Typ. Max.  
Parameter  
Symbol  
Conditions  
Units  
Input to output turn-on propagation  
TON  
IC = 10A, VDC = 300V  
IC = 10A, VDC = 300V  
VRFE = 5V to 0V  
-
-
-
-
-
-
-
-
1.15  
1.15  
1.35  
1.5  
μs  
μs  
μs  
μs  
delay  
Input to output turn-off propagation  
TOFF  
TEN  
delay  
RFE low to six switch turn-off  
propagation delay  
ITRIP to six switch turn-off propagation  
TITRIP  
IC = 10A, VDC = 300V  
delay  
VDC = 300V, IC = 10A  
TJ = 25°C  
-
-
290  
400  
-
-
IGBT turn-on energy  
IGBT turn-off energy  
EON  
μJ  
150°C  
VDC = 300V, IC = 10A  
TJ = 25°C  
-
-
155  
210  
-
-
μJ  
μJ  
EOFF  
150°C  
VDC = 300V, IC = 10A  
TJ = 25°C  
-
-
35  
70  
-
-
Diode reverse recovery energy  
Reverse Bias Safe Operating Area  
EREC  
150°C  
TJ = 150°C, IC = 40A, VP = 600V,  
VDC = 450V,VDD = +15V to 0V  
RBSOA  
FULL SQUARE  
7.2  
Control  
VBIAS(VDD, VBS(U,V,W))=15V, TJ=25ºC, unless otherwise specified.  
Table 11  
Value  
Parameter  
Symbol  
Conditions  
VIN = 0 or VIN = 5V  
Units  
Min. Typ. Max.  
Input filter time (HIN, LIN, ITRIP)  
Input filter time (RFE)  
-
350  
-
-
ns  
ns  
TFILIN  
TFILRFE  
TFLT  
VRFE = 0 or VRFE = 5V  
100 200  
ITRIP to Fault propagation delay  
Internal injected dead time  
VIN = 0 or VIN = 5V, VITRIP = 5V  
VIN = 0 or VIN = 5V  
400 600 800  
190 275 420  
ns  
ns  
TDT  
Matching propagation delay time  
(On & Off) all channels  
MT  
External dead time > 420ns  
-
-
50  
ns  
13  
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Thermistor Characteristics  
8
Thermistor Characteristics  
Table 12  
Value  
Typ.  
47  
Parameter  
Symbol  
Conditions  
Units  
Min.  
44.65  
1.27  
3989  
-40  
Max.  
49.35  
1.56  
Resistance  
T = 25°C, ±5% tolerance  
R25  
R125  
B
kΩ  
kΩ  
K
Resistance  
1.41  
4050  
-
T = 125°C  
25-50°C, R2=R1e[B1/T2-1/T1)]  
B-constant  
4111  
125  
Temperature Range  
°C  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
+5V  
REXT  
VTHERM  
RTHERM  
Max  
Typ  
Min  
-40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100 110 120 130  
Thermistor Temperature [ C]  
Figure 7  
Thermistor readout vs. temperature (with 4.7kohm REXT pull-up resistor) and typical  
thermistor resistance values vs. temperature table (For more details, please refer to the  
application note AN2018-13 CIPOSIM393-XX IPM technical description_1R0_final’)  
14  
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Mechanical Characteristics and Ratings  
9
Mechanical Characteristics and Ratings  
Table 13  
Value  
Typ.  
Parameter  
Symbol  
Conditions  
Units  
Min.  
Max.  
Flat, greased surface. Heatsink  
Thermal resistance, case-  
RTH(C-S)  
CTI  
-
0.25  
-
°C/W  
compound thermal conductivity  
heatsink  
1W/mK  
Comparative Tracking Index  
600  
0
-
-
V
Curvature of module backside BKC  
-
150  
0.8  
-
µm  
Nm  
g
Mounting torque  
Weight  
T
W
M3 screw and washer  
0.6  
-
0.7  
6.0  
Figure 8  
Backside curvature measurement position  
15  
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Qualification Information  
10  
Qualification Information  
Table 14  
UL Certified  
File Number : E314539  
Yes  
RoHS Compliant  
Human body model  
Class 3A  
Class C3  
ESD  
Charge discharge model  
16  
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Diagram & Tables  
11  
Diagram & Tables  
11.1  
Tc Measurement Point  
Figure 9  
TC measurement point  
11.2  
Input-Output Logic Table  
P
Ho  
Lo  
HIN(U, V, W)  
LIN(U, V, W)  
U, V, W  
Driver  
IC  
ITRIP  
RFE  
Figure 10  
Table 15  
Module block diagram  
Input-output logic level table  
RFE  
ITRIP  
HIN(U,V,W)  
LIN(U,V,W)  
U,V,W  
1
1
0
0
0
0
1
X
1
0
0
1
X
X
0
1
0
1
X
X
VDC  
0
Off*  
Off*  
Off*  
Off*  
1
1
1
0
* Voltage depends on direction of phase current  
17  
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Diagrams & Tables  
11.3  
Switching Time Definitions  
HIN(U, V, W)  
LIN(U, V, W)  
50%  
50%  
ITRIP  
TFLT  
50%  
RFE  
U, V, W  
50%  
50%  
TITRIP  
TFLT-CLR  
Figure 11  
ITRIP time waveform  
50%  
RFE  
TEN  
U, V, W  
50%  
Figure 12  
Output disable timing diagram  
HINx  
2.1V  
LINx  
0.9V  
trr  
toff  
ton  
10%  
10%  
iCx  
90%  
90%  
tf  
tr  
10%  
10%  
10%  
vCEx  
tc(on)  
tc(off)  
Figure 13  
Switching times definition  
18  
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Application Guide  
12  
Application Guide  
12.1  
Typical Application Schematic  
#10  
(1) P  
P (35)  
P (33)  
(3) VS(W)  
(4) VB(W)  
VB3  
VB2  
HO3  
VS3  
(6) VS(V)  
(7) VB(V)  
W (32)  
V (31)  
#4  
(9) VS(U)  
HO2  
VS2  
#3  
(10) VB(U)  
VB1  
3-ph AC  
Motor  
5 or 3.3V  
15V  
#8  
#2  
(12) VDD  
(13) VTH  
HO1  
VS1  
VDD  
U (30)  
-t°  
#9  
5 or 3.3V  
(14) COM  
COM  
VSS  
#5  
(15) COM  
(16) ITRIP  
(17) RFE  
LO3  
LO2  
LO1  
ITRIP  
RFE  
N(W) (29)  
N(V) (28)  
N(U) (27)  
Micro  
Controller  
(18) HIN(U)  
HIN1  
#7  
#6  
(19) HIN(V)  
(20) HIN(W)  
HIN2  
HIN3  
(21) LIN(U)  
(22) LIN(V)  
(23) LIN(W)  
Power GND  
LIN1  
LIN2  
LIN3  
(24) N(W)  
(25) N(V)  
#1  
(26) N(U)  
Figure 14  
Typical application connection  
1. Input circuit  
-RC filter can be used to reduce input signal noise (100Ω, 1nF)  
-The capacitors should be located close to CIPOSTiny (to COM terminal especially).  
2. Itrip circuit  
-To prevent a mis operation of protection function, RC filter is recommended  
-The capacitor must be located close to Itrip and COM terminals.  
3. VTH circuit  
-This terminal should be pulled up to the bias voltage of 5V/3.3V through a proper resistor to define  
suitable voltage for temperature monitoring.  
-It is recommended that RC filter is placed close to the controller  
4. VB-VS circuit  
-Capacitors for high side floating supply voltage should be placed close to VB and VS terminals.  
-Additional high frequency capacitors, typically 0.1µF, are strongly recommended.  
5. Snubber capacitor  
-The wiring among CIPOSTiny, snubber capacitor and shunt resistors should be short as possible.  
6. Shunt resistor  
-SMD type shunt resistors are strongly recommended to minimize its internal stray inductance.  
7. Ground pattern  
-Pattern overlap of power ground and signal ground should be minimized. The patterns should be  
connected at the common end of shunt resistors only for the same potential.  
8. COM pattern  
-Both of the COM terminals should be connected together.  
9. RFE circuit  
-To setup R and C parameter for fault clear time, please refer to Figure 5.  
-This R is also mandatory for fault out reporting function because it is open drain structure.  
10. P pattern  
-Both of the P terminals should be connected together.  
19  
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Application Guide  
12.2  
Performance Charts  
20  
18  
16  
14  
12  
10  
8
FPWM=6kHz  
FPWM=16kHz  
6
V+ = 300V, VDD=VBS=15V,  
TJ≤150ꢀC, TC≤125ꢀC, MI=0.8,  
PF=0.8, Sinusoidal PWM  
4
2
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110 120 130 140 150  
Case Temperature Tc []  
Figure 15  
Maximum operating current SOA  
1. This maximum operating current SOA is just one of example based on typical characteristics for this product.  
It can be change by each users actual operating conditions.  
12.3  
Tj vs. Tth  
160  
150  
140  
130  
120  
110  
100  
TJ avg = 1.24 x TTherm + 21  
105  
105  
90  
65  
70  
75  
80  
85  
90  
95  
100  
110  
115  
Internal Thermistor Temperature Equivalent Read Out - °C  
Figure 16  
Typical Tj vs Tth correlation, sinusoidal modulation, VDC=300V, Iphase=5Arms, fsw=16kHz,  
fmod=50Hz, MI=0.8, PF=0.6  
20  
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Application Guide  
12.4  
–VS Immunity  
Figure 17  
Negative transient Vs SOA for integrated gate driver  
21  
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Package Information  
13  
Package Outline  
MISSING PIN : 2, 5, 8, 11, 34  
±0.30  
32.00  
±0.15  
5.55  
7.62  
4X3.81  
2X2.54  
8X0.70  
8X0.60  
1.90  
33  
32  
31  
30  
29  
28  
27  
35  
16.00  
±0.20  
1.70  
0°~4°  
3
4
9
10  
1
15  
17  
19  
21  
23  
26  
7
13  
25X1.27  
8.30  
15.875  
31.75  
Default tolerance : ± 0.5mm  
34.00  
Figure 18  
IM393-X6E  
22  
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Package Information  
MISSING PIN : 2, 5, 8, 11, 34  
±0.30  
32.00  
±0.15  
2.90  
7.62  
4X3.81  
2X2.54  
8X0.70  
8X0.60  
1.90  
33  
32  
31  
30  
29  
28  
27  
35  
16.00  
±0.20  
1.70  
0°~4°  
3
1
4
9
10  
15  
17  
19  
21  
23  
26  
7
13  
25X1.27  
5.65  
15.875  
31.75  
Default tolerance : ± 0.5mm  
34.00  
Figure 19  
IM393-X6E2  
23  
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Package Information  
MISSING PIN : 2, 5, 8, 11, 34  
±0.30  
32.00  
±0.15  
3.60  
7.62  
4X3.81  
2X2.54  
8X0.70  
8X0.60  
1.90  
33  
32  
31  
30  
29  
28  
27  
35  
16.00  
±0.20  
1.70  
0°~4°  
3
1
4
9
10  
15  
17  
19  
21  
23  
26  
7
13  
25X1.27  
6.35  
15.875  
31.75  
Default tolerance : ± 0.5mm  
34.00  
Figure 20  
IM393-X6E3  
24  
Final Datasheet  
V2.0  
2019-05-21  
CIPOSTiny  
IM393-X6E  
Revision History  
Revision History  
Major changes since the last revision  
Page or Reference  
Revision  
Date  
Description of changes  
25  
Final Datasheet  
V2.0  
2019-05-21  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
For further information on the product, technology,  
delivery terms and conditions and prices please  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”) .  
Edition 2017-09-26  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
© 2017 Infineon Technologies AG.  
All Rights Reserved.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Do you have a question about this  
document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
In addition, any information given in this document  
is subject to customers compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customers products and any use of the  
product of Infineon Technologies in customers  
applications.  
Technologies in  
a written document signed by  
Document reference  
authorized representatives of Infineon Technologies,  
Infineon Technologiesproducts may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customers technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY