IPG20N04S4-09A [INFINEON]

This Dual SS08 MOSFET can replace two DPAKs for significant PCB area savings and system level cost reduction. The bond wire is 200um and the current capability is 20A. This product is AEC Q101 qualified.;
IPG20N04S4-09A
型号: IPG20N04S4-09A
厂家: Infineon    Infineon
描述:

This Dual SS08 MOSFET can replace two DPAKs for significant PCB area savings and system level cost reduction. The bond wire is 200um and the current capability is 20A. This product is AEC Q101 qualified.

PC
文件: 总9页 (文件大小:245K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IPG20N04S4-09A  
OptiMOS-T2 Power-Transistor  
Product Summary  
VDS  
40  
8.6  
20  
V
4)  
RDS(on),max  
mW  
A
ID  
Features  
• Dual N-channel Normal Level - Enhancement mode  
PG-TDSON-8-10  
• AEC Q101 qualified  
• MSL1 up to 260°C peak reflow  
• 175°C operating temperature  
• Green Product (RoHS compliant)  
• 100% Avalanche tested  
1
• Feasible for automatic optical inspection (AOI)  
Type  
Package  
Marking  
IPG20N04S4-09A  
PG-TDSON-8-10 4N0409  
Maximum ratings, at T j=25 °C, unless otherwise specified  
Value  
Parameter  
Symbol  
Conditions  
Unit  
Continuous drain current  
one channel active  
T C=25 °C, V GS=10 V1)  
I D  
20  
20  
80  
A
T C=100 °C,  
V GS=10 V2)  
Pulsed drain current2)  
one channel active  
I D,pulse  
-
Avalanche energy, single pulse2, 4)  
Avalanche current, single pulse4)  
Gate source voltage  
E AS  
I AS  
I D=10A  
145  
15  
mJ  
A
-
V GS  
-
±20  
V
Power dissipation  
one channel active  
P tot  
T C=25 °C  
54  
W
T j, T stg  
Operating and storage temperature  
-
-55 ... +175  
°C  
Rev. 1.0  
page 1  
2015-05-04  
IPG20N04S4-09A  
Values  
Parameter  
Symbol  
Conditions  
Unit  
min.  
typ.  
max.  
Thermal characteristics2)  
R thJC  
R thJA  
Thermal resistance, junction - case  
SMD version, device on PCB  
-
-
-
-
-
2.8  
K/W  
minimal footprint  
100  
60  
-
-
6 cm2 cooling area3)  
Electrical characteristics, at T j=25 °C, unless otherwise specified  
Static characteristics  
V (BR)DSS V GS=0 V, I D= 1 mA  
V GS(th) V DS=V GS, I D= 22µA  
Drain-source breakdown voltage  
Gate threshold voltage  
40  
-
-
V
2.0  
3.0  
4.0  
V DS=40 V, V GS=0 V,  
T j=25 °C  
Zero gate voltage drain current4)  
I DSS  
-
-
0.01  
1
1
µA  
V DS=18 V, V GS=0 V,  
T j=85 °C2)  
100  
Gate-source leakage current4)  
I GSS  
V GS=20 V, V DS=0 V  
-
-
-
100 nA  
Drain-source on-state resistance4)  
R DS(on) V GS=10 V, I D=17 A  
7.9  
8.6  
mW  
Rev. 1.0  
page 2  
2015-05-04  
IPG20N04S4-09A  
Values  
Parameter  
Symbol  
Conditions  
Unit  
min.  
typ.  
max.  
Dynamic characteristics2)  
Input capacitance4)  
Output capacitance4)  
Reverse transfer capacitance4)  
Turn-on delay time  
Rise time  
C iss  
C oss  
Crss  
t d(on)  
t r  
-
-
-
-
-
-
-
1730  
440  
13  
2250 pF  
570  
V GS=0 V, V DS=25 V,  
f =1 MHz  
30  
12  
-
-
-
-
ns  
3
V DD=20 V, V GS=10 V,  
I D=20 A, R G=11 W  
t d(off)  
t f  
Turn-off delay time  
Fall time  
15  
10  
Gate Charge Characteristics2, 4)  
Gate to source charge  
Gate to drain charge  
Q gs  
-
-
-
-
9.1  
2.9  
12  
6.7  
28  
-
nC  
Q gd  
V DD=32 V, I D=20 A,  
V GS=0 to 10 V  
Q g  
Gate charge total  
21.7  
5.3  
V plateau  
Gate plateau voltage  
V
A
Reverse Diode  
Diode continous forward current2)  
one channel active  
I S  
-
-
-
-
-
-
20  
80  
1.3  
-
T C=25 °C  
Diode pulse current2)  
one channel active  
I S,pulse  
V SD  
t rr  
-
V GS=0 V, I F=17 A,  
T j=25 °C  
Diode forward voltage  
0.9  
34  
30  
V
V R=20 V, I F=I S,  
di F/dt =100 A/µs  
Reverse recovery time2)  
Reverse recovery charge2, 4)  
ns  
nC  
Q rr  
-
1) Current is limited by bondwire; with an R thJC =2.8 K/W the chip is able to carry 61A at 25°C.  
2) Specified by design. Not subject to production test.  
3) Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm2 (one layer, 70 µm thick) copper area for drain  
connection. PCB is vertical in still air.  
4) Per channel  
Rev. 1.0  
page 3  
2015-05-04  
IPG20N04S4-09A  
1 Power dissipation  
2 Drain current  
P tot = f(T C); V GS = 10V; one channel active  
I D = f(T C); V GS = 10 V; one channel active  
60  
50  
40  
30  
20  
10  
0
25  
20  
15  
10  
5
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
TC [°C]  
TC [°C]  
3 Safe operating area  
4 Max. transient thermal impedance  
Z thJC = f(t p)  
I D=f(V DS); T C=25°C; D =0; one channel active  
parameter: t p  
parameter: D =t p/T  
101  
100  
1 µs  
10 µs  
100 µs  
0.5  
100  
10  
0.1  
0.05  
1 ms  
10-1  
1
0.01  
single pulse  
10-2  
0.1  
0.1  
1
10  
100  
10-6  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
VDS [V]  
tp [s]  
Rev. 1.0  
page 4  
2015-05-04  
IPG20N04S4-09A  
5 Typ. output characteristics4)  
I D = f(V DS); T j = 25 °C  
parameter: V GS  
6 Typ. drain-source on-state resistance4)  
R DS(on) = f(I D); T j = 25 °C  
parameter: V GS  
80  
45  
10 V  
6.5 V  
7 V  
5 V  
5.5 V  
6 V  
60  
40  
20  
0
35  
25  
15  
5
6 V  
6 .5V  
5.5 V  
5 V  
10 V  
0
2
4
6
8
0
20  
40  
60  
80  
VDS [V]  
ID [A]  
7 Typ. transfer characteristics4)  
I D = f(V GS); V DS = 6V  
parameter: T j  
8 Typ. drain-source on-state resistance4)  
R DS(on) = f(T j); I D = 17 A; V GS = 10 V  
80  
60  
40  
20  
14  
11  
8
175 °C  
25 °C  
-55 °C  
0
5
3
4
5
6
7
-60  
-20  
20  
60  
100  
140  
180  
VGS [V]  
Tj [°C]  
Rev. 1.0  
page 5  
2015-05-04  
IPG20N04S4-09A  
10 Typ. Capacitances4)  
9 Typ. gate threshold voltage  
V GS(th) = f(T j); V GS = V DS  
parameter: I D  
C = f(V DS); V GS = 0 V; f = 1 MHz  
104  
103  
102  
101  
4
3.5  
3
Ciss  
220µA  
22µA  
Coss  
2.5  
2
1.5  
1
Crss  
0
5
10  
15  
20  
25  
30  
-60  
-20  
20  
60  
Tj [°C]  
100  
140  
180  
VDS [V]  
11 Typical forward diode characteristicis4)  
12 Avalanche characteristics4)  
I A S= f(t AV  
IF = f(VSD)  
)
parameter: T j  
parameter: Tj(start)  
102  
100  
25 °C  
150 °C  
100 °C  
101  
10  
25 °C  
175 °C  
100  
1
1
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
10  
100  
1000  
VSD [V]  
tAV [µs]  
Rev. 1.0  
page 6  
2015-05-04  
IPG20N04S4-09A  
13 Avalanche energy4)  
E AS = f(T j)  
14 Drain-source breakdown voltage  
V BR(DSS) = f(T j); I D = 1 mA  
parameter: I D  
44  
43  
42  
41  
40  
39  
38  
37  
150  
120  
90  
60  
30  
0
-60  
-20  
20  
60  
100  
140  
180  
25  
50  
75  
100  
125  
150  
175  
Tj [°C]  
Tj [°C]  
15 Typ. gate charge4)  
16 Gate charge waveforms  
V GS = f(Q gate); I D = 20 A pulsed  
parameter: V DD  
12  
10  
8
V GS  
Q g  
8 V  
32 V  
6
V gs(th)  
4
2
Q g(th)  
Q sw  
Q gd  
Q gate  
Q gs  
0
0
5
10  
15  
20  
25  
Qgate [nC]  
Rev. 1.0  
page 7  
2015-05-04  
IPG20N04S4-09A  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© Infineon Technologies AG 2015  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions  
or characteristics. With respect to any examples or hints given herein, any typical values stated  
herein and/or any information regarding the application of the device, Infineon Technologies hereby  
disclaims any and all warranties and liabilities of any kind, including without limitation, warranties  
of non-infringement of intellectual property rights of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact  
the nearest Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances.  
For information on the types in question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the  
express written approval of Infineon Technologies, if a failure of such components can reasonably be  
expected to cause the failure of that life-support device or system or to affect the safety or  
effectiveness of that device or system. Life support devices or systems are intended to be implanted  
in the human body or to support and/or maintain and sustain and/or protect human life.  
If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.  
Rev. 1.0  
page 8  
2015-05-04  
IPG20N04S4-09A  
Revision History  
Version  
Date  
Changes  
Data Sheet revision 1.0  
Revision 1.0  
03.05.2015  
Rev. 1.0  
page 9  
2015-05-04  

相关型号:

IPG20N04S4-12

OptiMOS-T2 Power-Transistor
INFINEON

IPG20N04S4-12A

Power Field-Effect Transistor
INFINEON

IPG20N04S408AATMA1

Power Field-Effect Transistor,
INFINEON

IPG20N04S408ATMA1

Power Field-Effect Transistor, 20A I(D), 40V, 0.0076ohm, 2-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, GREEN, PLASTIC, TDSON-8
INFINEON

IPG20N04S4L-07

OptiMOS-T2 Power-Transistor
INFINEON

IPG20N04S4L-07A

车规级MOSFET
INFINEON

IPG20N04S4L-08

OptiMOS-T2 Power-Transistor
INFINEON

IPG20N04S4L-11

OptiMOS-T2 Power-Transistor
INFINEON

IPG20N04S4L-11A

Power Field-Effect Transistor, 20A I(D), 40V, 0.0116ohm, 2-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TDSON-8-10, 8 PIN
INFINEON

IPG20N04S4L07ATMA1

Power Field-Effect Transistor, 20A I(D), 40V, 0.0072ohm, 2-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, GREEN, PLASTIC, TDSON-8
INFINEON

IPG20N04S4L08AATMA1

Power Field-Effect Transistor, 20A I(D), 40V, 0.0082ohm, 2-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, GREEN, PLASTIC, TDSON-8
INFINEON

IPG20N04S4L11AATMA1

Power Field-Effect Transistor, 20A I(D), 40V, 0.0116ohm, 2-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, GREEN, PLASTIC, TDSON-8
INFINEON