IR2128C [INFINEON]

Buffer/Inverter Based MOSFET Driver, CMOS,;
IR2128C
型号: IR2128C
厂家: Infineon    Infineon
描述:

Buffer/Inverter Based MOSFET Driver, CMOS,

文件: 总17页 (文件大小:142K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD65003  
IR2127C/IR2128C/IR21271C  
CURRENT SENSING SINGLE CHANNEL DRIVERDIE IN  
WAFER FORM  
Features  
c
100 % Tested at Probe  
d
Available in Chip Pack, Unsawn Wafer, Sawn on Film  
Floating channel designed for bootstrap operation  
Fully operational to +600V  
Tolerant to negative transient voltage dV/dt immune  
Application- specific gate drive range: Motor Drive: 12 to 20V (IR2127/IR2128)  
Automotive: 9 to 20V (IR21271)  
Undervoltage lockout  
3.3V, 5V and 15V input logic compatible  
FAULT  
lead indicates shutdown has occured  
Output in phase with input (IR2127/IR21271)  
Output out of phase with input (IR2128)  
Typical Connection  
VCC  
IN  
VCC  
VB  
HO  
CS  
VS  
IN  
FAULT  
FAULT  
COM  
VCC  
IN  
VCC  
VB  
HO  
CS  
VS  
IR2127/IR21271  
IN  
(Refer to the Die Outlines for correct pin  
configuration). This/These diagram(s) show  
electrical connections only. Please refer to  
our Application Notes and DesignTips for  
proper circuit board layout.  
FAULT  
FAULT  
COM  
IR2128  
Notes:  
c This IR product is100% tested at wafer level and is manufactured using established, mature and well characterized  
processes. Due to restrictions in die level processing, die may not be equivalent to standard package products and are  
therefore offered with a conditional performance guarantee. The above data sheet is based on IR sample testing under  
certain predetermined and assumed conditions, and are provided for illustration purposes only. Customers are encouraged  
to perform testing in actual proposed packaged and use conditions. IR die products are tested using IR-based quality  
assurance procedures and are manufactured using IR’s established processes. Programs for customer-specified testing  
are available upon request. IR has experienced assembly yields of generally 95% or greater for individual die; however,  
customer’s results will vary. Estimates such as those described and set forth in this data sheet for semiconductor die will  
vary depending on a number of packaging, handling, use and other factors. Sold die may not perform on an equivalent  
basis to standard package products and are therefore offered with a limited warranty as described in IR’s applicable  
standard terms and conditions of sale. All IR die sales are subject to IR’s applicable standard terms and conditions of sale,  
which are available upon request. For customers requiring a particular parameter to be guaranteed, special testing can be  
carried out or product can be purchased as known good die.  
d Part number shown is for die in wafer. Contact factory for these other options.  
www.irf.com  
1
IR2127C/IR2128C/IR21271C  
Description  
The IR2127/IR2128/IR21271(S) is a high voltage, high speed power MOSFET and IGBT driver. Proprietary HVIC  
and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible  
with standard CMOS or LSTTL outputs, down to 3.3V. The protection circuity detects over-current in the driven  
power transistor and terminates the gate drive voltage. An open drain  
signal is provided to indicate that  
FAULT  
an over-current shutdown has occurred. The output driver features a high pulse current buffer stage designed for  
minimum cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in  
the high side or low side configuration which operates up to 600 volts.  
Absolute Maximum Ratings  
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters  
are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under  
board mounted and still air conditions.  
Symbol  
Definition  
High Side Floating Supply Voltage  
High Side Floating Offset Voltage  
High Side Floating Output Voltage  
Logic Supply Voltage  
Min.  
Max.  
Units  
V
-0.3  
625  
B
S
V
V
B
- 25  
V
B
+ 0.3  
V
V
V - 0.3  
S
V
+ 0.3  
25  
HO  
B
-0.3  
-0.3  
-0.3  
V
CC  
V
IN  
Logic Input Voltage  
V
V
+ 0.3  
+ 0.3  
+ 0.3  
50  
CC  
V
FLT  
FAULT Output Voltage  
CC  
V
CS  
Current Sense Voltage  
V
S
- 0.3  
V
B
dV /dt  
s
Allowable Offset Supply Voltage Transient  
Junction Temperature  
V/ns  
°C  
T
J
150  
150  
T
Storage Temperature  
-55  
S
Recommended Operating Conditions  
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the  
recommended conditions. The V offset rating is tested with all supplies biased at 15V differential.  
S
Symbol  
Definition  
Min.  
Max.  
Units  
V
High Side Floating Supply Voltage  
(IR2127/IR2128)  
(IR21271)  
V
+ 12  
V
+ 20  
B
S
S
S
V
+ 9  
V
+ 20  
S
V
High Side Floating Offset Voltage  
High Side Floating Output Voltage  
Logic Supply Voltage  
Note 1  
600  
S
V
HO  
V
S
V
B
V
V
CC  
10  
0
20  
V
IN  
Logic Input Voltage  
V
CC  
V
FLT  
FAULT Output Voltage  
0
V
CC  
V
Current Sense Signal Voltage  
Ambient Temperature  
V
V + 5  
S
CS  
S
T
-40  
125  
°C  
A
Note 1: Logic operational for V of -5 to +600V. Logic state held for V of -5V to -V . (Please refer to the Design Tip  
S
S
BS  
DT97-3 for more details).  
2
www.irf.com  
IR2127C/IR2128C/IR21271C  
Static Electrical Characteristics  
V
(V , V ) = 15V and T = 25°C unless otherwise specified. The V , V and I parameters are referenced to  
BIAS CC BS A IN TH IN  
COM. The V and I parameters are referenced to V .  
O
O
S
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
V
Logic “1” Input Voltage  
Logic “0” Input Voltage  
Logic “0” Input Voltage  
Logic “1” Input Voltage  
CS Input Positive  
(IR2127/IR21271)  
(IR2128)  
IH  
3.0  
V
V
(IR2127/IR21271)  
(IR2128)  
IL  
VCC = 10V to 20V  
0.8  
V
(IR2127/IR2128)  
(IR21271)  
180  
250  
1.8  
320  
mV  
V
CSTH+  
Going Threshold  
V
OH  
High Level Output Voltage, V  
- VO  
100  
100  
50  
IO = 0A  
IO = 0A  
BIAS  
mV  
V
OL  
Low Level Output Voltage, VO  
Offset Supply Leakage Current  
I
LK  
V
V
= V = 600V  
B
S
I
Quiescent V Supply Current  
200  
60  
400  
120  
15  
QBS  
QCC  
BS  
= 0V or 5V  
IN  
I
Quiescent V Supply Current  
CC  
µA  
I
Logic “1” Input Bias Current  
Logic “0” Input Bias Current  
“High” CS Bias Current  
“High” CS Bias Current  
7.0  
V
V
= 5V  
= 0V  
= 3V  
= 0V  
IN+  
IN  
I
1.0  
1.0  
1.0  
IN-  
IN  
I
V
V
CS+  
CS  
CS  
I
CS-  
V
V
Supply Undervoltage  
(IR2127/IR2128)  
(IR21271)  
8.8  
6.3  
10.3  
7.2  
11.8  
8.2  
BSUV+  
BS  
Positive Going Threshold  
Supply Undervoltage  
V
(IR2127/IR2128)  
(IR21271)  
V
V
BS  
7.5  
6.0  
9.0  
6.8  
10.6  
7.7  
BSUV-  
Threshold  
Negative Going  
I
Output High Short Circuit Pulsed Current  
Output Low Short Circuit Pulsed Current  
FAULT - Low on Resistance  
200  
420  
250  
500  
125  
V = 0V, V = 5V  
O IN  
O+  
PW 10 µs  
mA  
I
V
= 15V, V = 0V  
O-  
O
IN  
PW 10 µs  
Ron, FLT  
www.irf.com  
3
IR2127C/IR2128C/IR21271C  
Functional Block Diagram IR2127/IR21271  
VB  
HO  
VS  
VCC  
UV  
DETECT  
R
Q
HV  
LEVEL  
SHIFT  
BUFFER  
R
S
PULSE  
FILTER  
UP  
SHIFTERS  
IN  
PULSE  
GEN  
VB  
DELAY  
PULSE  
GEN  
Q
R
S
FAULT  
-
CS  
DOWN  
SHIFTER  
+
PULSE  
FILTER  
Q
R
S
COM  
Functional Block Diagram IR2128  
VB  
VCC  
UV  
DETECT  
R
Q
5V  
HV  
LEVEL  
SHIFT  
BUFFER  
HO  
VS  
R
S
PULSE  
FILTER  
UP  
SHIFTERS  
IN  
PULSE  
GEN  
VB  
DELAY  
PULSE  
GEN  
Q
R
S
FAULT  
-
CS  
DOWN  
SHIFTER  
+
PULSE  
FILTER  
Q
R
S
COM  
4
www.irf.com  
IR2127C/IR2128C/IR21271C  
Bonding Pad Definitions  
Symbol  
Description  
VCC  
IN  
Logic and gate drive supply  
Logic input for gate driver output (HO), in phase with HO (IR2127/IR21271)  
out of phase with HO (IR2128)  
Indicates over-current shutdown has occurred, negative logic  
Logic ground  
FAULT  
COM  
VB  
High side floating supply  
High side gate drive output  
High side floating supply return  
HO  
VS  
Current sense input to current sense comparator  
CS  
Nominal Front Metal Composition, Thickness  
Wafer Diameter  
Wafer Thickness  
Al-Si (Si: 1.0% ± 0.1%), 2µm  
125mm with std. <100> flat  
625 ± 25µm  
Minimum Street Width  
0.006”  
Reject Ink Dot Size  
0.02” – 0.03”  
Recommended Storage Environment  
Store in original container, in dessicated  
nitrogen, with no contamination.  
www.irf.com  
5
IR2127C/IR2128C/IR21271C  
Device Information  
Process & Design Rule  
Transistor Count  
Die Size  
HVDCMOS 600V  
206  
77 x 85 (mils)  
Die Outline  
Thickness of Gate Oxide  
Connections  
800Å  
Poly Silicon  
4.0 µm  
Material  
Width  
First  
Layer  
Spacing  
Thickness  
Material  
Width  
Spacing  
Thickness  
6.0 µm  
5000Å  
Al - Si (Si: 1.0% ±0.1%)  
6.0 µm  
Second  
Layer  
9.0 µm  
20,000Å  
Contact Hole Dimension  
Insulation Layer  
5 µm X 5 µm  
PSG (SiO2)  
1.6 µm  
PSG (SiO2)  
1.6 µm  
Material  
Thickness  
Material  
Passivation  
Thickness  
Method of Saw  
Method of Die Bond  
Wire Bond  
Full Cut  
Ablebond 84 - 1  
Thermosonic  
Au (1.3 mil)  
Cu  
Method  
Material  
Material  
Die Area  
Lead Plating  
Types  
Leadframe  
Ag  
70-90% Sn (Balance Pb)  
8-Lead PDIP / 8-Lead SOIC  
EME6300H, EM6600RA  
Package  
Materials  
Remarks:  
6
www.irf.com  
IR2127C/IR2128C/IR21271C  
0.077 + / — 0.008  
Die Outline:  
(in inches)  
8
1
2
7
5
6
3
4
y = 0.0000  
y = -0.0084  
y = -  
METAL EDGE  
DIE EDGE  
DATUM POINT  
ON PAD  
0.01136  
Pad  
#
Datum  
Function  
X
Y
1
2
3
4
5
6
7
8
VCC  
IN  
FLT  
COM  
VS  
CS  
HO  
VB  
-0.00004  
0.0490  
0.0378  
0.0105  
0.0000  
-0.0010  
0.0108  
0.0288  
0.0598  
0.0000  
-0.00004  
0.0000  
0.0574  
0.0553  
0.0574  
0.0578  
X and Y Tolerances +/- 0.0002  
All pad sizes are 0.004 x 0.004 inches with tolerance of +/- 0.0002 inches. All units are in inches.  
www.irf.com  
7
IR2127C/IR2128C/IR21271C  
IN  
(IR2128)  
50%  
50%  
50%  
50%  
IN  
(IR2128)  
IN  
(IR2127/  
IR21271)  
IN  
CS  
(IR2127/  
IR21271)  
t
on  
t
t
t
f
r
off  
90%  
90%  
FAULT  
HO  
10%  
10%  
Figure 2. Switching Time Waveform Definition  
HO  
Figure 1. Input/Output Timing Diagram  
IN  
50%  
(IR2128)  
50%  
IN  
t
bl  
(IR2127/  
IR21271)  
CS  
90%  
HO  
FAULT  
Figure 3. Start-up Blanking Time Waveform Definitions  
V
CSTH  
V
CSTH  
CS  
HO  
CS  
t
cs  
t
flt  
90%  
90%  
FAULT  
Figure 4. CS Shutdown Waveform Definitions  
Figure 5. CS to  
Waveform Definitions  
FAULT  
8
www.irf.com  
IR2127C/IR2128C/IR21271C  
500  
400  
300  
200  
100  
0
500  
400  
M ax.  
300  
M ax.  
T yp  
200  
Typ.  
100  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
o
VBIAS Supply Voltage (V)  
Temperature ( C)  
Figure 10B Turn-On Time vs. Supply Voltage  
Figure 10A Turn-On Time vs. Temperature  
500  
400  
300  
350  
300  
250  
200  
150  
100  
50  
M
ax  
200  
100  
0
T yp .  
0
-50  
-25  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10 12 14 16 18 20  
o
InputV oltage (V)  
Temperature ( C)  
Figure 10C Turn-On Time vs. Input Voltage  
Figure 11A Turn-Off Time vs. Temperature  
400  
350  
300  
250  
500  
400  
300  
200  
100  
0
Max  
Typ  
.
M
ax.  
200  
150  
100  
50  
.
T yp .  
0
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10 12 14 16 18 20  
VBIAS Supply Voltage (V)  
Input Voltage (V)  
Figure 11C Turn-OffTime vs. Input Voltage  
Figure 11B Turn-Off Time vs. Supply Voltage  
www.irf.com  
9
IR2127C/IR2128C/IR21271C  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
M
ax.  
Max  
T yp .  
100  
Typ  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
o
75  
100 125  
Temperature ( C)  
VBIAS Supply Voltage (V)  
Figure 12A Turn-On Rise Time vs. Temperature  
Figure 12B Turn-On Rise Time vs. Supply Voltage  
200  
150  
100  
200  
150  
100  
Max.  
M
ax.  
50  
0
Typ.  
50  
T yp  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
o
Temperature ( C)  
VBIAS Supply Voltage (V)  
Figure 13A Turn-Off Fall Time vs. Temperature  
Figure 13B Turn-Off Fall Time vs. Voltage  
1600  
1400  
1200  
1000  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
M
ax.  
M
ax.  
T yp .  
800  
600  
400  
200  
0
T yp  
in .  
M
in .  
M
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
o
Temperature ( C)  
Vcc Supply Voltage (V)  
Figure 14B Start-Up Blanking Time  
vs Voltage  
Figure 14A Start-Up Blanking Time vs. Temperature  
10  
www.irf.com  
IR2127C/IR2128C/IR21271C  
500  
500  
400  
300  
200  
100  
0
M
A X .  
400  
300  
200  
100  
0
M
ax  
T yp .  
T yp .  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
o
Temperature ( C)  
Vcc Supply Voltage (V)  
Figure 15A CS Shutdown Propagation Delay  
vs. Temperature  
Figure 15B CS Shutdown Propagation Delay  
vs. Voltage  
800  
700  
800  
700  
600  
Max.  
Typ  
600  
500  
400  
300  
200  
100  
0
500  
Max.  
400  
Typ  
300  
200  
100  
0
-50 -25  
0
25  
50  
o
75  
100 125  
10  
12  
14  
16  
18  
20  
Temperature ( C)  
VCC Supply Voltage (V)  
Figure 16A CS to FAULT Pull-Up Propagation Delay  
vs. Temperature  
Figure 16B CS to FAULT Pull-Up Propagation Delay  
vs. Voltage  
8
7
6
5
4
8
7
6
5
4
M
in .  
M
in .  
3
2
1
0
3
2
1
0
-50  
-25  
0
25  
50  
o
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature ( C)  
VCC Supply Voltage (V)  
Figure 17A Logic “1” Input Voltage (IR2127)  
Logic “0” Input Voltage (IR2128)  
vs Temperature  
Figure 17B Logic “1” Input Voltage (IR2127)  
Logic “0” Input Voltage (IR2128)  
vs Voltage  
www.irf.com  
11  
IR2127C/IR2128C/IR21271C  
4
4
3.2  
2.4  
1.6  
0.8  
0
3.2  
2.4  
1.6  
M
ax  
0.8  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
o
Temperature ( C)  
VCC Supply Voltage (V)  
Figure 18A Logic “0” Input Voltage (IR2127)  
Logic “1” Input Voltage (IR2128)  
vs Temperature  
Figure 18B Logic “0” Input Voltage (IR2127)  
Logic “1” Input Voltage (IR2128)  
vs Voltage  
500  
400  
300  
200  
100  
0
500  
400  
Max.  
M
ax.  
300  
200  
T yp .  
Typ.  
Min.  
100  
0
M
in .  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
o
Temperature ( C)  
Vcc Supply Voltage (V)  
Figure 19A CS Input Positive Going Voltage  
vs Temperature (IR2127/IR2128)  
Figure 19B CS Input Positive Going Voltage  
vs Voltage (IR2127/IR2128)  
1
0.8  
0.6  
0.4  
1
0.8  
0.6  
0.4  
M ax.  
0.2  
Max.  
0.2  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
o
Temperature ( C)  
Vcc Supply Voltage (V)  
Figure 20A High Level Output vs Temperature  
Figure 20B High Level Output vs Voltage  
12  
www.irf.com  
IR2127C/IR2128C/IR21271C  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
Max.  
Max.  
0.2  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
o
Temperature ( C)  
Vcc Supply Voltage (V)  
Figure 21A Low Level Output vs Temperature  
Figure 21B Low Level Output vs Voltage  
500  
400  
300  
200  
500  
400  
300  
200  
100  
0
100  
M ax.  
M ax.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
0
100  
200  
300  
400  
500  
600  
o
VB Boost Voltage (V)  
Temperature ( C)  
Figure 22B Offset Supply Current  
vs Voltage  
Figure 22A Offset Supply Current  
vs Temperature  
800  
700  
800  
700  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
Max.  
Typ.  
M
ax.  
T yp .  
100  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
o
Vcc Supply Voltage (V)  
Temperature ( C)  
Figure 23B VBS Supply Current  
vs Voltage  
Figure 23A VBS Supply Current  
vs Temperature  
www.irf.com  
13  
IR2127C/IR2128C/IR21271C  
300  
250  
300  
250  
200  
150  
100  
200  
150  
100  
M ax  
M
ax  
T yp  
50  
0
T yp  
50  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
o
Vcc Supply Voltage (V)  
Temperature ( C)  
Figure 24B Vcc Supply Current  
vs Voltage  
Figure 24A Vcc Supply Current  
vs Temperature  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
M
ax.  
Max.  
Typ  
T yp  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
o
Temperature ( C)  
Vcc Supply Voltage (V)  
Figure 25A Logic “1” Input Current  
vs Temperature  
Figure 25B Logic “1” Input Current  
vs Voltage  
5
4
3
2
1
0
5
4
3
2
1
0
Max.  
Max.  
-50  
-25  
0
25  
50  
o
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature ( C)  
Vcc Supply Voltage (V)  
Figure 26A Logic “0” Input Current  
vs Temperature  
Figure 26B Logic “0” Input Current  
vs Voltage  
14  
www.irf.com  
IR2127C/IR2128C/IR21271C  
5
4
3
5
4
3
2
1
0
2
Max.  
1
Max.  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
o
Vcc Supply Voltage (V)  
Temperature ( C)  
Figure 27B “High” CS Bias Current  
vs Voltage  
Figure 27A “High” CS Bias Current  
vs Temperature  
5
4
3
2
1
0
5
4
3
2
1
0
Max.  
Max.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
o
VCC Supply Voltage (V)  
Temperature ( C)  
Figure 28B “Low” CS Bias Current vs Voltage  
Figure 28A “Low” CS Bias Current  
vs Temperature  
15  
14  
13  
15  
14  
13  
12  
11  
10  
9
Max.  
M
ax.  
T yp  
in .  
12  
11  
10  
9
Typ.  
Min.  
M
8
8
7
7
6
6
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
o
VCC Supply Voltage (V)  
Temperature ( C)  
Figure 29B VBS Undervoltage Threshold (+)  
vs Voltage (IR2127/IR2128)  
Figure 29A VBS Undervoltage Threshold (+)  
vs Temperature (IR2127/IR2128)  
www.irf.com  
15  
IR2127C/IR2128C/IR21271C  
15  
14  
13  
12  
15  
14  
13  
12  
11  
10  
9
Max.  
M
ax.  
11  
10  
9
T yp.  
in.  
Typ.  
Min.  
M
8
8
7
7
6
6
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
o
Vcc Supply Voltage (V)  
Temperature ( C)  
Figure 30B VBS Undervoltage Threshold (-)  
vs Voltage (IR2127/IR2128)  
Figure 30A VBS Undervoltage Threshold (-)  
vs Temperature (IR2127/IR2128)  
500  
400  
500  
400  
300  
T yp .  
300  
200  
100  
0
200  
M
in .  
T yp .  
100  
M
in .  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
o
Temperature ( C)  
VBIAS Supply Voltage (V)  
Figure 31A Output Source Current vs Temperature  
Figure 31B Output Source Current vs Voltage  
800  
800  
700  
600  
500  
700  
T yp .  
600  
500  
M
in .  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
Typ.  
Min.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
o
Temperature ( C)  
VBIAS Supply Voltage (V)  
Figure 32A Output Sink Current vs Temperature  
Figure 32B Output Sink Current vs Voltage  
16  
www.irf.com  
IR2127C/IR2128C/IR21271C  
Additional Testing and Screening  
For Customers requiring product supplied as Known Good Die (KGD) or requiring specific die level  
testing, please contact your local IR Sales.  
Shipping  
Three shipping options are offered as standard.  
Un-sawn wafer  
Die in waffle pack  
Die on film  
Tape and Reel is also available for some products.  
Please specify your required shipping option when requesting priCes and ordering Die product. If not  
specified, Un-sawn wafer will be assumed.  
Handling  
Product must be handled only at ESD safe workstations. Standard ESD precautions and safe  
work environments are as defined in MIL-HDBK-263.  
Product must be handled only in a class 10,000 or better-designated clean room environment.  
Singulated die are not to be handled with tweezers. A vacuum wand with a non-metallic ESD  
protected tip should be used.  
Wafer/Die Storage  
Proper storage conditions are necessary to prevent product contamination and/or degradation  
after shipment.  
Un-sawn wafers and singulated die can be stored for up to 12 months when in the original  
sealed packaging at room temperature (45% +/- 15% RH controlled environment).  
Un-sawn wafers and singulated die that have been opened can be stored when returned to  
their containers and placed in a Nitrogen purged cabinet, at room temperature (45% +/- 15%  
RH controlled environment).  
Note: To reduce the risk of contamination or degradation, it is recommended that product not  
being used in the assembly process be returned to their original containers and resealed with a  
vacuum seal process.  
Sawn wafers on a film frame are intended for immediate use and have a limited shelf life.  
Die in Surf Tape type carrier tape are intended for immediate use and have a limited shelf life.  
This is primarily due to the nature of the adhesive tape used to hold the product in the carrier  
tape cavity. This product can be stored for up to 30 days. This applies whether or not the material  
has remained in its original sealed container.  
For further information: Please contact your local IR Sales office or email your enquiry to http://die.irf.com  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
Visit us at www.irf.com for sales contact information.  
10/31/2005  
www.irf.com  
17  

相关型号:

IR2128PBF

CURRENT SENSING SINGLE CHANNEL DRIVER
INFINEON

IR2128S

CURRENT SENSING SINGLE CHANNEL DRIVER
INFINEON

IR2128SPBF

CURRENT SENSING SINGLE CHANNEL DRIVER
INFINEON

IR2128STR

暂无描述
INFINEON

IR2128STRPBF

暂无描述
INFINEON

IR2130

3-PHASE BRIDGE DRIVER
INFINEON

IR21303C

3-PHASE BRIDGE DRIVER
INFINEON

IR2130D

3-PHASE DRIVER
INFINEON

IR2130J

3-PHASE BRIDGE DRIVER
INFINEON

IR2130JPBF

3-PHASE BRIDGE DRIVER
INFINEON

IR2130JTRPBF

Half Bridge Based MOSFET Driver, 0.5A, BICMOS, PQCC32, PLASTIC, MS-018AC, LCC-44/32
INFINEON

IR2130PBF

3-PHASE BRIDGE DRIVER
INFINEON