IR21363STRPBF [INFINEON]

Half Bridge Based MOSFET Driver, 0.35A, PDSO28, MS-013AE, SOIC-28;
IR21363STRPBF
型号: IR21363STRPBF
厂家: Infineon    Infineon
描述:

Half Bridge Based MOSFET Driver, 0.35A, PDSO28, MS-013AE, SOIC-28

驱动 光电二极管 接口集成电路 驱动器
文件: 总27页 (文件大小:328K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60245  
(
&
IR21363 J S)PbF  
3-PHASE BRIDGE DRIVER  
Features  
Floating channel designed for bootstrap operation  
Packages  
Fully operational to +600V  
Tolerant to negative transient voltage - dV/dt immune  
Gate drive supply range from 12 to 20V  
Undervoltage lockout for all channels  
Over-current shutdown turns off all six drivers  
Independent 3 half-bridge drivers  
Matched propagation delay for all channels  
28-Lead SOIC  
Cross-conduction prevention logic  
28-Lead PDIP  
Lowside outputs out of phase with inputs. High side  
outputs out of phase  
3.3V logic compatible  
Lower di/dt gate driver for better noise immunity  
Externally programmable delay for automatic fault clear  
44-Lead PLCC w/o 12 leads  
Description  
The IR21363(J&S) are high votage, high speed power MOSFET and IGBT drivers with three independent high and  
low side referenced output channels for 3-phase applications. Proprietary HVIC technology enables ruggedized  
monolithic construction. Logic inputs are compatible with CMOS or LSTTL outputs, down to 3.3V logic. A  
current trip function which terminates all six outputs can be derived from an external current sense resistor. An  
enable function is available to terminate all six outputs simultaneously. An open-drain FAULT signal is provided  
to indicate that an overcurrent or undervoltage shutdown has occurred. Overcurrent fault conditions are cleared  
automatically after a delay programmed externally via an RC network connected to the RCIN input. The output  
drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation  
delays are matched to simplify use in high frequency applications. The floating channel can be used to drive N-  
channel power MOSFETs or IGBTs in the high side configuration which operates up to 600 volts.  
Typical Connection  
up to 600V  
VCC  
HHIN1,2,3  
LIN1,2,3  
FAULT  
VCC  
HIN1,2,3  
LIN1,2,3  
FAULT  
EN  
/
VB1,2,3  
HO1,2,3  
VS1,2,3  
EN  
TO  
LOAD  
RCIN  
ITRIP  
VSS  
LO1,2,3  
COM  
GND  
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only.  
Please refer to our Application Notes and DesignTips for proper circuit board layout.  
www.irf.com  
1
(
IR21363  
J&S)PbF  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters  
are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board  
mounted and still air conditions.  
Symbol  
Definition  
Min.  
Max.  
Units  
V
S
High side offset voltage  
V
V
- 25  
V
V
+ 0.3  
B1,2,3  
B1,2,3  
V
High side floating supply voltage  
High side floating output voltage  
Low side and logic fixed supply voltage  
Logic ground  
-0.3  
625  
+ 0.3  
B1,2,3  
BS  
V
- 0.3  
HO  
S1,2,3  
V
-0.3  
25  
CC  
V
V
V
- 25  
V
+ 0.3  
SS  
CC  
CC  
V
V
Low side output voltage  
-0.3  
- 0.3  
SS  
V
+ 0.3  
LO1,2,3  
CC  
V
IN  
Input voltage LIN,HIN,ITRIP, EN, RCIN  
lower of  
(V + 15) or  
SS  
V
CC  
+ 0.3)  
V
FLT  
FAULT output voltage  
V
SS  
- 0.3  
V
+ 0.3  
CC  
dV/dt  
Allowable offset voltage slew rate  
50  
V/ns  
P
D
Package power dissipation @ T +25°C (28 lead PDIP)  
A
-55  
1.5  
1.6  
2.0  
83  
(28 lead SOIC)  
W
(44  
Thermal resistance, junction to ambient  
lead  
PLCC)  
Rth  
JA  
(28 lead PDIP)  
(28 lead SOIC)  
(44 lead PLCC)  
78  
°C/W  
63  
T
J
Junction temperature  
150  
150  
300  
T
S
Storage temperature  
°C  
T
L
Lead temperature (soldering, 10 seconds)  
Recommended Operating Conditions  
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recom-  
mended conditions. All voltage parameters are absolute referenced to COM. The V offset rating is tested with all supplies  
S
biased at 15V differential.  
Symbol  
Definition  
Min.  
Max.  
Units  
V
B1,2,3  
High side floating supply voltage  
V
S1,2,3  
+12  
V
S1,2,3  
+20  
V
High side floating supply offset voltage  
High side output voltage  
Low side output voltage  
Low side and logic fixed supply voltage  
Logic ground  
Note 1  
600  
S1,2,3  
V
V
S1,2,3  
V
B1,2,3  
HO1,2,3  
V
0
V
CC  
LO1,2,3  
V
V
12  
-5  
20  
CC  
V
5
SS  
V
FLT  
FAULT output voltage  
V
SS  
V
CC  
V
RCIN  
RCIN input voltage  
V
SS  
V
CC  
V
ITRIP input voltage  
V
V
+5  
ITRIP  
SS  
SS  
SS  
V
Logic input voltage ꢀꢁ, HIN  
V
SS  
V
+5  
IN  
o
T
Ambient temperature  
-40  
125  
C
A
Note 1: Logic operational for V of COM -5V to COM +600V. Logic state held for V of COM -5V to COM -V .  
S S BS  
(Please refer to the Design Tip DT97-3 for more details).  
Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.  
www.irf.com  
2
(
IR21363  
J&S)PbF  
Static Electrical Characteristics  
(V , V 1,2,3) = 15V unless otherwise specified. The V , V and I parameters are referenced to V and  
IN TH IN SS  
V
BIAS CC BS  
are applicable to all six channels (H 1,2,3 and L 1,2,3). The V and I parameters are referenced to COM and V 1,2,3  
S S O O S  
and are applicable to the respective output leads: H  
and L  
O1,2,3.  
O1,2,3  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
V
Logic “0” input voltage LIN1,2,3, HIN1,2,3  
Logic “1” input voltage LIN1,2,3, HIN1,2,3  
EN positive going threshold  
3.0  
0.8  
3
IH  
V
IL  
V
EN,TH+  
V
EN negative going threshold  
ITRIP positive going threshold  
ITRIP input hysteresis  
0.8  
0.37  
EN,TH-  
V
0.46  
0.07  
8
0.55  
IT,TH+  
V
IT,HYS  
V
RCIN positive going threshold  
RCIN input hysteresis  
RCIN,TH+  
V
3
RCIN,HYS  
V
High level output voltage, V  
- V  
0.9  
0.4  
11.1  
1.4  
0.6  
11.6  
V
I
= 20 mA  
I = 20 mA  
O
OH  
BIAS  
O
O
V
Low level output voltage, V  
OL  
O
V
V
and V supply undervoltage  
BS  
10.6  
CCUV+  
CC  
V
positive going threshold  
BSUV+  
V
V
and V supply undervoltage  
BS  
10.4  
10.9  
0.2  
11.4  
CCUV-  
CC  
V
BSUV-  
negative going threshold  
V
V
and V supply undervoltage  
BS  
CCUVH  
CC  
V
lockout hysteresis  
BSUVH  
I
Offset supply leakage current  
70  
50  
120  
V
=V  
B1,2,3 S1,2,3=600V  
LK  
µA  
I
Quiescent V supply current  
BS  
QBS  
V
IN  
= 0V or 5V  
I
Quiescent V  
supply current  
CC  
3.3  
5.2  
200  
100  
200  
100  
30  
mA  
V
QCC  
V
4.9  
5.5  
300  
220  
300  
220  
100  
1
I
IN,CLAMP  
Input clamp voltage (HIN, LIN, ITRIP and EN)  
Input bias current (LOUT = HI)  
IN =100µA  
V
LIN = 5V  
I
LIN+  
I
Input bias current (LOUT = LO)  
Input bias current (HOUT = HI)  
Input bias current (HOUT = LO)  
“high” ITRIP input bias current  
“low” ITRIP input bias current  
“high” ENABLE input bias current  
“low” ENABLE input bias current  
RCIN input bias current  
V
LIN-  
LIN = 0V  
I
V
HIN+  
HIN = 5V  
I
V
HIN-  
HIN = 0V  
µA  
I
V
= 5V  
=0V  
ITRIP+  
ITRIP  
I
0
V
ITRIP  
ITRIP-  
I
30  
100  
1
V
= 5V  
= 0V  
EN+  
ENABLE  
I
0
V
ENABLE  
EN-  
I
0
1
V
=0Vor 15V  
RCIN  
RCIN  
I
Output high short circuit pulsed current  
Output low short circuit pulsed current  
RCIN low on resistance  
120  
250  
200  
350  
50  
V =0V, PW 10 µs  
O
O+  
mA  
I
V =15V, PW 10 µs  
O
O-  
R
100  
100  
ON,RCIN  
R
FAULT low on resistance  
50  
ON,FLT  
www.irf.com  
3
(
IR21363  
J&S)PbF  
Dynamic Electrical Characteristics  
V
= V = V  
BS  
= 15V, V  
= V = COM, TA = 25oC and C = 1000 pF unless otherwise specified.  
L
S1,2,3 SS  
CC  
BIAS  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
t
Turn-on propagation delay  
Turn-off propagation delay  
Turn-on rise time  
370  
310  
525  
500  
125  
50  
680  
690  
190  
75  
on  
V
= 0 & 5V  
IN  
t
off  
t
r
t
f
Turn-off fall time  
t
ENABLE low to output  
300  
450  
600  
V
V = 0V or 5V  
IN, EN  
EN  
shutdown propagation delay  
ITRIP to output shutdown propagation delay  
ITRIP blanking time  
t
500  
100  
750  
150  
1000  
V
= 5V  
= 0V or 5V  
= 5V  
ITRIP  
ITRIP  
nS  
t
bl  
V
V
IN  
V
ITRIP  
t
ITRIP to FAULT propagation delay  
400  
600  
800  
= 0V or 5V  
IN  
FLT  
V
ITRIP  
= 5V  
t
Input filter time (HIN, LIN)  
(EN)  
310  
200  
1.65  
2
V
= 0 & 5V  
IN  
FILIN  
100  
t
FAULT clear time RCIN: R=2meg, C=1nF  
1.3  
mS  
V
= 0V or 5V  
= 0V  
FLTCLR  
IN  
V
ITRIP  
DT  
MT  
Deadtime  
220  
290  
40  
360  
75  
V
= 0 & 5V  
IN  
Matching delay ON and OFF  
Matching delay, max (t ,t ) - min (t ,t ),  
External dead  
time  
nS  
MDT  
25  
70  
on off  
on off  
(ton,toff are applicable to all 3 channels)  
>400nsec  
PM  
Output pulse width matching, PWin -PWout (fig.2)  
40  
75  
NOTE: For high side PWM, HIN pulse width must be ≥ 1µsec  
VCC  
<UVCC  
15V  
VBS  
X
ITRIP  
X
ENABLE  
FAULT  
LO1,2,3  
HO1,2,3  
X
0 (note 1)  
high imp  
high imp  
0 (note 2)  
high imp  
0
LIN1,2,3  
LIN1,2,3  
0
0
<UVBS  
15V  
0V  
5V  
5V  
5V  
0V  
0
15V  
0V  
HIN1,2,3  
15V  
15V  
>V  
0
0
ITRIP  
15V  
15V  
0V  
0
Note: A shoot-through prevention logic prevents LO1,2,3 and HO1,2,3 for each channel from turning on simultaneously.  
Note 1: UVCC is not latched, when VCC>UVCC, FAULT returns to high impedance.  
Note 2: When ITRIP <V  
, FAULT returns to high-impedance after RCIN pin becomes greater than 8V (@ VCC = 15V)  
ITRIP  
www.irf.com  
4
(
IR21363  
J&S)PbF  
Functional Block Diagram  
VB1  
HO1  
INPUT  
NOISE  
FILTER  
HIN1  
SET  
LATCH  
VSS/COM  
LEVEL  
HV  
DEADTIME  
&
SHOOT-THROUGH  
PREVENTION  
DRIVER  
LEVEL  
SHIFTER  
RESET  
UV  
DETECT  
SHIFTER  
INPUT  
NOISE  
FILTER  
LIN1  
VS1  
VB2  
INPUT  
NOISE  
FILTER  
HIN2  
LIN2  
SET  
LATCH  
VSS/COM  
LEVEL  
SHIFTER  
HV  
LEVEL  
SHIFTER  
DEADTIME  
&
DRIVER  
HO2  
RESET  
SHOOT-THROUGH  
PREVENTION  
UV  
DETECT  
INPUT  
NOISE  
FILTER  
VS2  
VB3  
INPUT  
NOISE  
FILTER  
HIN3  
LIN3  
VSS  
SET  
LATCH  
VSS/COM  
LEVEL  
SHIFTER  
HV  
LEVEL  
SHIFTER  
DEADTIME  
&
DRIVER  
HO3  
VS3  
RESET  
SHOOT-THROUGH  
PREVENTION  
UV  
DETECT  
INPUT  
NOISE  
FILTER  
VCC  
LO1  
UV  
INPUT  
NOISE  
FILTER  
VSS/COM  
LEVEL  
DETECT  
EN  
DRIVER  
DRIVER  
DRIVER  
DELAY  
DELAY  
DELAY  
SHIFTER  
INPUT  
NOISE  
FILTER  
+
-
ITRIP  
VSS/COM  
LEVEL  
0.5V  
S
R
Q
LO2  
SET  
SHIFTER  
DOMINANT  
LATCH  
RCIN  
VSS/COM  
LEVEL  
SHIFTER  
LO3  
FAULT  
COM  
www.irf.com  
5
(
IR21363  
J&S)PbF  
Lead Definitions  
Symbol Description  
V
Low side and logic fixed supply  
Logic Ground  
HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), out of phase  
LIN1,2,3 Logic inputs for low side gate driver outputs (LO1,2,3), out of phase  
CC  
VSS  
FAULT  
Indicates over-current (ITRIP) or low-side undervoltage lockout has occured. Negative logic,  
open-drain output  
EN  
Logic input to enable I/O functionality. Positive logic, i.e. I/O logic functions when ENABLE is  
high. No effect on FAULT and not latched  
ITRIP  
Analog input for overcurrent shutdown. When active, ITRIP shuts down outputs and activates  
FAULT and RCIN low. When ITRIP becomes inactive, FAULT stays active low for an externally  
set time TFLTCLR, then automatically becomes inactive (open-drain high impedance).  
External RC network input used to define FAULT CLEAR delay, TFLTCLR, approximately equal  
to R*C. When RCIN>8V, the FAULT pin goes back into open-drain high-impedance  
Low side gate driver return  
RCIN  
COM  
V 1,2,3 High side floating supply  
B
HO1,2,3 High side gate driver outputs  
V
High voltage floating supply returns  
S1,2,3  
LO1,2,3 Low side gate driver output  
Note: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.  
Lead Assignments  
1
2
28  
27  
26  
25  
VCC  
HIN1  
HIN2  
HIN3  
LIN1  
LIN2  
LIN3  
FAULT  
ITRIP  
EN  
VB1  
HO1  
VS1  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VCC  
HIN1  
HIN2  
HIN3  
LIN1  
LIN2  
LIN3  
FAULT  
ITRIP  
EN  
VB1  
HO1  
VS1  
3
3
6
5
4
3
43  
42  
41  
4
7
4
LIN1  
LIN2  
LIN3  
8
5
VB2 24  
5
VB2  
HO2  
VS2  
9
37  
36  
35  
VB2  
HO2  
VS2  
6
23  
22  
21  
20  
19  
18  
17  
HO2  
VS2  
6
10  
11  
12  
13  
7
7
8
8
FAULT  
9
VB3  
HO3  
VS3  
9
VB3  
HO3  
VS3  
ITRIP 14  
15  
10  
11  
12  
10  
11  
12  
31  
30  
29  
VB3  
HO3  
VS3  
RCIN  
VSS  
RCIN  
VSS  
EN 16  
17  
RCIN  
13 COM  
14  
LO1 16  
15  
LO2  
13 COM  
14  
LO1 16  
15  
LO2  
18  
19  
20  
21  
22  
23  
24  
25  
LO3  
LO3  
28 Lead PDIP  
44 Lead PLCC w/o 12 leads  
28 lead SOIC (wide body)  
IR21363  
IR21363(J)  
IR21363(S)  
www.irf.com  
6
(
IR21363  
J&S)PbF  
HIN1,2,3  
HIN1,2,3  
LIN1,2,3  
EN  
ITRIP  
FAULT  
RCIN  
HO1,2,3  
LO1,2,3  
Figure 1. Input/Output Timing Diagram  
LIN1,2,3  
HIN1,2,3  
50%  
50%  
50%  
EN  
PWIN  
ten  
LIN1,2,3  
HIN1,2,3  
50%  
50%  
90%  
HO1,2,3  
LO1,2,3  
ton  
tr  
toff  
tf  
PWOUT  
90%  
90%  
HO1,2,3  
LO1,2,3  
10%  
10%  
Figure 3. Output Enable Timing Waveform  
Figure 2. Switching Time Waveforms  
www.irf.com  
7
(
IR21363  
J&S)PbF  
LIN1,2,3  
HIN1,2,3  
50%  
50%  
LIN1,2,3  
HIN1,2,3  
50%  
50%  
50%  
50%  
DT  
LO1,2,3  
HO1,2,3  
DT  
50%  
50%  
Figure 4. Internal Deadtime Timing Waveforms  
Vrcin,th+  
RCIN  
ITRIP  
50%  
tflt  
50%  
50%  
50%  
FAULT  
90%  
tfltclr  
Any  
output  
titrip  
Figure 5. ITRIP/RCIN Timing Waveforms  
tin,fil  
tin,fil  
U
HIN/LIN  
on  
on off  
low  
on off  
high  
off  
HO/LO  
Figure 5.5 Input Filter Function  
www.irf.com  
8
(
IR21363  
J&S)PbF  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
Max.  
Typ.  
Max.  
Typ.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 6A. Turn-on Rise Time vs. Temperature  
Figure 6B. Turn-on Rise Time vs. Supply Voltage  
200  
150  
100  
200  
150  
100  
50  
Max.  
Typ.  
Max.  
50  
Typ.  
0
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 7A. Turn-off Fall Time vs. Temperature  
Figure 7B. Turn-off Fall Time vs. Supply Voltage  
www.irf.com  
9
(
IR21363  
J&S)PbF  
1000  
800  
600  
400  
200  
0
1000  
800  
Max.  
Typ.  
Min.  
600  
Max.  
Typ.  
400  
Min.  
200  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 8A. EN to Output Shutdown Time  
vs. Temperature  
Figure 8B. EN to Output Shutdown Time  
vs. Supply Voltage  
1000  
1500  
800  
600  
400  
200  
0
1200  
900  
600  
300  
0
Max.  
Max.  
Typ.  
Typ.  
Min.  
Min.  
-50  
-25  
0
25  
50  
75  
100  
125  
3
3.5  
4
4.5  
5
Temperature (oC)  
EN Voltage (V)  
Figure 8C. EN to Output Shutdown Time  
vs. EN Voltage  
Figure 9A. ITRIP to Output Shutdown Time  
vs. Temperature  
www.irf.com  
10  
(
IR21363  
J&S)PbF  
1500  
1200  
900  
600  
300  
0
1200  
1000  
800  
600  
400  
200  
0
Max.  
Typ.  
Max.  
Typ.  
Min.  
Min.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 9B. ITRIP to Output Shutdown  
Time vs. Supply Voltage  
Figure 10A. ITRIP to FAULT Indication Time  
vs. Temperature  
1200  
1000  
800  
600  
400  
200  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max.  
Typ.  
Max.  
Typ.  
Min.  
Min.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 10B. ITRIP to FAULT Indication  
Time vs. Supply Voltage  
Figure 11A. FAULT Clear Time  
vs. Temperature  
www.irf.com  
11  
(
IR21363  
J&S)PbF  
3.0  
2.5  
600  
500  
400  
300  
200  
100  
0
Max.  
2.0  
Max.  
Typ.  
Min.  
Typ.  
1.5  
Min.  
1.0  
0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 11B. FAULT Clear Time  
vs. Supply Voltage  
Figure 12A. Dead Time  
vs. Temperature  
600  
500  
400  
300  
200  
100  
0
6
5
4
3
2
1
0
Max.  
Typ.  
Min.  
Max.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 12B. Dead Time vs. Supply Voltage  
Figure 13A. Logic “0” Input Threshold  
vs. Temperature  
www.irf.com  
12  
(
IR21363  
J&S)PbF  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Max.  
Min.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
Temperature (oC)  
Logic “1” Input Threshold  
vs. Temperature  
50  
75  
100  
125  
Supply Voltage (V)  
Figure 13B. Logic “0” Input Threshold  
vs. Supply Voltage  
Figure 14A.  
6
5
4
3
2
1
0
800  
700  
600  
500  
400  
300  
200  
Max.  
Typ.  
Min.  
Min.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Supply Voltage (V)  
Temperature (oC)  
Figure 14B. Logic “1” Input Threshold  
vs. Supply Voltage  
Figure 15A. ITRIP Positive Going Threshold  
vs. Temperature  
www.irf.com  
13  
(
IR21363  
J&S)PbF  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
800  
700  
600  
Max.  
500  
Typ.  
Max.  
Typ.  
Min.  
400  
300  
200  
10  
12  
14  
Supply Voltage (V)  
Figure 15B. ITRIP Positive Going  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Figure 16A. High Level Output  
vs. Temperature  
Threshold vs. Supply Voltage  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Max.  
Typ.  
Max.  
Typ.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
Temperature (oC)  
Figure 17A. Low Level Output  
vs. Temperature  
50  
75  
100  
125  
Supply Voltage (V)  
Figure 16B. High Level Output  
vs. Supply Voltage  
www.irf.com  
14  
(
IR21363  
J&S)PbF  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
13  
12  
11  
10  
Max.  
Typ.  
Max.  
Typ.  
Min.  
10  
12  
14  
16  
18  
20  
-50 -25  
0
25  
50  
75 100 125  
Supply Voltage (V)  
Temperature (oC)  
Figure 17B. Low Level Output  
vs. Supply Voltage  
Figure 18. VCC or VBS Undervoltage (+)  
vs. Temperature  
13  
12  
11  
10  
9
500  
400  
300  
200  
100  
0
Max.  
Typ.  
Min.  
Max.  
-50 -25  
0
25  
Temperature (oC)  
Figure 19. VCC or VBS Undervoltage (-)  
50  
75 100 125  
-50  
-25  
0
25  
Temperature (oC)  
Figure 20A. Offset Supply Leakage Current  
vs. Temperature  
50  
75  
100  
125  
vs. Temperature  
www.irf.com  
15  
(
IR21363  
J&S)PbF  
500  
400  
300  
200  
250  
200  
150  
100  
50  
Max.  
Typ.  
100  
Max.  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
100  
200  
300  
400  
500  
600  
Temperature (oC)  
V
B Boost Voltage (V)  
Figure 20B. Offset Supply Leakage Current  
vs. VB Boost Voltage  
Figure 21A. VB Supply Current  
vs. Temperature  
800  
600  
400  
200  
0
250  
200  
150  
100  
50  
Max.  
Typ.  
Max.  
Typ.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VBS Floating Supply Voltage (V)  
Figure 22A. Input Current vs. Temperature  
Figure 21B. VBS Supply Current  
vs. VBS Floating Supply Voltage  
www.irf.com  
16  
(
IR21363  
J&S)PbF  
800  
600  
400  
200  
0
600  
500  
400  
300  
200  
100  
0
Max.  
Typ.  
Max.  
Typ.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Supply Voltage (V)  
Temperature (oC)  
Figure 22B. Logic “1” Input Current  
vs. Supply Voltage  
Figure 23A. Logic “0” Input Current  
vs. Temperature  
250  
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
0
Max.  
Typ.  
Max.  
Typ.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
Supply Voltage (V)  
Figure 23B. Logic “0” Input Current  
vs. Supply Voltage  
16  
18  
20  
Temperature (oC)  
Figure 24A. High ITRIP Current  
vs. Temperature  
www.irf.com  
17  
(
IR21363  
J&S)PbF  
250  
200  
150  
4
3
2
1
0
Max.  
100  
Max.  
Typ.  
50  
0
Typ.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 24B. “High” ITRIP Current  
vs. Supply Voltage  
Figure 25A. “Low” ITRIP Current  
vs. Temperature  
200  
150  
100  
50  
4
3
2
1
0
Max.  
Max.  
Typ.  
Typ.  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 25B. ITRIP Current  
vs. Supply Voltage  
Figure 26A. “High” IEN Current  
vs. Temperature  
www.irf.com  
18  
(
IR21363  
J&S)PbF  
250  
200  
150  
100  
50  
4
3
2
1
0
Max.  
Typ.  
Max.  
Typ.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 26B. “High” IEN Current  
vs. Supply Voltage  
Figure 27A. “Low” IEN Current  
vs. Temperature  
4
3
2
1
0
4
3
2
1
0
Max.  
Typ.  
M ax.  
Typ.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 27B. IEN Current  
vs. Supply Voltage  
Figure 28A. RCIN Input Bias Current  
vs. Temperature  
www.irf.com  
19  
(
IR21363  
J&S)PbF  
4
3
2
400  
300  
200  
100  
0
Typ.  
Min.  
Max.  
1
Typ.  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 28B. RCIN Input Bias Current  
vs. Supply Voltage  
Figure 29A. Output Source Current  
vs. Temperature  
500  
500  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
Typ.  
Min.  
Typ.  
Min.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 29B. Output Source Current  
vs. Supply Voltage  
Figure 30A. Output Sink Current  
vs. Temperature  
www.irf.com  
20  
(
IR21363  
J&S)PbF  
600  
500  
400  
300  
200  
100  
0
250  
200  
150  
100  
50  
Typ.  
Min.  
Max.  
Typ.  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 30B. Output Sink Current  
vs. Supply Voltage  
Figure 31A. RCIN Low On-resistance  
vs. Temperature  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
Max.  
Max.  
Typ.  
Typ.  
0
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
Temperature (oC)  
Figure 32A. FAULT Low On-resistance  
vs. Temperature  
50  
75  
100  
125  
Supply Voltage (V)  
Figure 31B. RCIN Low On-resistance  
vs. Supply Voltage  
www.irf.com  
21  
(
IR21363  
J&S)PbF  
0
-3  
250  
200  
Typ.  
150  
-6  
Max.  
100  
-9  
Typ.  
50  
-12  
-15  
0
10  
12  
14  
16  
18  
20  
10  
12  
14  
16  
18  
20  
Supply Voltage (V)  
Supply Voltage (V)  
Figure 32B. FAULT Low On-resistance  
vs. Supply Voltage  
Figure 33. Maximum VS Negative Offset  
vs. VBS Supply Voltage  
www.irf.com  
22  
(
IR21363  
J&S)PbF  
120  
100  
80  
120  
100  
80  
60  
60  
300V  
200V  
100  
300V  
200V  
40  
40  
100V  
V
0V  
0V  
20  
20  
0.1  
1
10  
Frequency (KHz)  
Figure 34. IR21363 vs.  
Frequency (IRG4BC20W), R e=33, Vcc=15V  
100  
0.1  
1
10  
Frequency (KHz)  
100  
Figure 35. IR21363 vs.  
Frequency (IRG4BC30W), R  
=15, Vcc=15V  
gat  
gate  
120  
120  
100  
80  
100  
80  
300V  
200V  
60  
60  
100  
300V  
200V  
100  
V
0V  
40  
40  
0V  
V
20  
20  
0.1  
1
10  
Frequency (KHz)  
100  
0.1  
1
10  
100  
Frequency (KHz)  
Figure 36. IR21363 vs.  
Frequency (IRG4BC40W), R e=10, Vcc=15V  
Figure 37. IR21363 vs.  
Frequency (IRG4PC50W), R  
=5, Vcc=15V  
gat  
gate  
www.irf.com  
23  
(
IR21363  
J&S)PbF  
120  
100  
80  
120  
100  
80  
60  
60  
300V  
200V  
100V  
0V  
300V  
200V  
100V  
0V  
40  
40  
20  
20  
0.1  
1
10  
Frequency (KHz)  
100  
0.1  
1
10  
Frequency (KHz)  
100  
Figure 38. IR21363 (J) vs.  
Frequency (IRG4BC20W), R e=33, Vcc=15V  
Figure 39. IR21363 (J) vs.  
gat  
Frequency (IRG4BC30W), R =15, Vcc=15V  
gate  
120  
100  
80  
120  
100  
80  
60  
40  
20  
60  
300V  
200V  
300V  
200V  
100V  
0V  
40  
100V  
0V  
20  
0.1  
1
10  
Frequency (KHz)  
100  
0.1  
1
10  
Frequency (KHz)  
100  
Figure 40. IR21363 (J) vs.  
Frequency (IRG4BC40W), R e=10, Vcc=15V  
Figure 41. IR21363 (J) vs.  
Frequency (IRG4PC50W), R  
=5, Vcc=15V  
gat  
gate  
www.irf.com  
24  
(
IR21363  
J&S)PbF  
120  
100  
80  
120  
100  
80  
60  
60  
300V  
300V  
200V  
100  
200V  
100  
0V  
V
40  
40  
V
0V  
20  
20  
0.1  
1
10  
Frequency (KHz)  
100  
0.1  
1
10  
100  
Frequency (KHz)  
Figure 42. IR21363 (S) vs.  
Figure 43. IR21363 (S) vs.  
vs. Frequency (IRG4BC20W), R e=33, Vcc=15V  
gat  
vs. Frequency (IRG4BC30W), R =15, Vcc=15V  
gate  
120  
100  
80  
120  
100  
80  
300V  
200V  
100  
V
60  
60  
300V  
0V  
200V  
100  
V
0V  
40  
40  
20  
20  
0.1  
1
10  
100  
0.1  
1
10  
Frequency (KHz)  
100  
Frequency (KHz)  
Figure 44. IR21363 (S) vs.  
vs. Frequency (IRG4BC40W), R e=10, Vcc=15V  
Figure 45. IR21363 (S) vs.  
vs. Frequency (IRG4PC50W), R  
=5, Vcc=15V  
gat  
gate  
www.irf.com  
25  
(
IR21363  
J&S)PbF  
Case outlines  
01-6011  
28-Lead PDIP (wide body)  
01-3024 02 (MS-011AB)  
01-6013  
28-Lead SOIC (wide body)  
01-3040 02 (MS-013AE)  
www.irf.com  
26  
(
IR21363  
J&S)PbF  
NOTES  
01-600900  
01-3004 02(mod.) (MS-018AC)  
44-Lead PLCC w/o 12 leads  
WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105  
http://www.irf.com/ Data and specifications subject to change without notice.  
11/3/2005  
www.irf.com  
27  

相关型号:

IR21364JPBF

3-PHASE BRIDGE DRIVER
INFINEON

IR21364JTRPBF

3-PHASE BRIDGE DRIVER
INFINEON

IR21364PBF

3-PHASE BRIDGE DRIVER
INFINEON

IR21364PBF_15

3-PHASE BRIDGE DRIVER
INFINEON

IR21364SPBF

3-PHASE BRIDGE DRIVER
INFINEON

IR21364STRPBF

3-PHASE BRIDGE DRIVER
INFINEON

IR21365

3-PHASE BRIDGE DRIVER
INFINEON

IR21365C

MOSFET Driver, CMOS
INFINEON

IR21365J

3-PHASE BRIDGE DRIVER
INFINEON

IR21365JPBF

3-PHASE BRIDGE DRIVER
INFINEON

IR21365PBF

3-PHASE BRIDGE DRIVER
INFINEON

IR21365S

3-PHASE BRIDGE DRIVER
INFINEON