IR2136 [INFINEON]

3-PHASE BRIDGE DRIVER; 3相桥式驱动器
IR2136
型号: IR2136
厂家: Infineon    Infineon
描述:

3-PHASE BRIDGE DRIVER
3相桥式驱动器

驱动器 接口集成电路 光电二极管 信息通信管理
文件: 总36页 (文件大小:390K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60166 revS  
IR2136/IR21362/IR21363/IR21365/  
(
&
IR21366/IR21367/IR21368 J S) & (PbF)  
3-PHASE BRIDGE DRIVER  
Features  
Floating channel designed for bootstrap operation  
Fully operational to +600V  
Packages  
Tolerant to negative transient voltage - dV/dt immune  
Gate drive supply range from 10 to 20V (IR2136/IR21368),  
11.5 to 20V (IR21362) or 12 to 20V (IR21363/IR21365/  
IR21366/IR21367)  
Undervoltage lockout for all channels  
28-Lead SOIC  
Over-current shutdown turns off all six drivers  
Independent 3 half-bridge drivers  
Matched propagation delay for all channels  
Cross-conduction prevention logic  
Lowside outputs out of phase with inputs. High side  
outputs out of phase (IR2136/IR21363/IR21365/  
28-Lead PDIP  
44-Lead PLCC w/o 12 leads  
Feature Comparison: IR2136/IR21362/IR21363/  
IR21365/IR21366/IR21367/IR21368  
IR21366/IR21367/IR21368) or in phase  
(IR21362) with inputs.  
3.3V logic compatible  
Part  
Input Logic  
IR21365  
HIN, LIN  
400ns  
380ns  
2.7V  
IR21368  
HIN,LIN  
400ns  
380ns  
2.0V  
IR2136 IR21362 IR21363  
HIN, LIN HIN/LIN HIN, LIN  
IR21366 IR21367  
HIN, LIN HIN, LIN  
Lower di/dt gate driver for  
better noise immunity  
Externally programmable  
delay for automatic fault  
clear  
Ton (typ.)  
Toff (typ.)  
VIH (typ.)  
VIL (typ.)  
400ns  
380ns  
2.7V  
1.7V  
0.46V  
8.9V  
400ns  
380ns  
2.7V  
400ns  
380ns  
2.7V  
250ns  
180ns  
2.0V  
250ns  
180ns  
2.0V  
1.7V  
1.3V  
1.7V  
1.7V  
1.3V  
1.3V  
Also available LEAD-FREE  
Vitrip+  
4.3V  
11.2V  
11.0V  
4.3V  
8.9V  
8.2V  
0.46V  
10.4V  
9.4V  
0.46V  
11.2V  
11.0V  
0.46V  
11.2V  
11.0V  
4.3V  
11.2V  
11.0V  
UV CC/BS+  
UV CC/BS-  
8.2V  
Description  
TheIR2136/IR21362/IR21363/IR21365/IR21366/IR21367/IR21368(J&S)arehighvotage, highspeed power MOSFET  
and IGBT drivers with three independent high and low side referenced output channels for 3-phase applications.  
Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS  
or LSTTL outputs, down to 3.3V logic. A current trip function which terminates all six outputs can be derived from  
an external current sense resistor. An enable function is available to terminate all six outputs simultaneously. An  
open-drain FAULT signal is provided to indicate that an overcurrent or undervoltage shutdown has occurred.  
Overcurrent fault conditions are cleared automatically after a delay programmed externally via an RC network  
connected to the RCIN input. The output drivers feature a high pulse current buffer stage designed for minimum  
driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The  
floating channel can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which  
operates up to 600 volts.  
up to 600V  
Typical Connection  
VCC  
VCC  
HIN1,2,3 / HIN1,2,3  
HIN1,2,3  
LIN1,2,3  
FAULT  
EN  
/
HIN1,2,3  
VB1,2,3  
HO1,2,3  
VS1,2,3  
LIN1,2,3  
FAULT  
EN  
(Refer to Lead Assign-  
ments for correct pin con-  
figuration). This/These  
diagram(s) show electri-  
cal connections only.  
Please refer to our Appli-  
TO  
LOAD  
RCIN  
ITRIP  
VSS  
LO1,2,3  
COM  
cation  
Notes  
and  
DesignTips for proper cir-  
cuit board layout.  
IR2136(2)(3)(5)(6)(7)(8)  
GND  
www.irf.com  
1
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S) & (PbF  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters  
are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board  
mounted and still air conditions.  
Symbol  
Definition  
Min.  
Max.  
Units  
V
High side offset voltage  
V
- 25  
V
V
+ 0.3  
B1,2,3  
S
B1,2,3  
V
High side floating supply voltage  
High side floating output voltage  
Low side and logic fixed supply voltage  
Logic ground  
-0.3  
625  
+ 0.3  
B1,2,3  
BS  
HO  
CC  
V
V
V
- 0.3  
S1,2,3  
-0.3  
25  
V
V
- 25  
V
+ 0.3  
SS  
LO1,2,3  
CC  
CC  
V
V
Low side output voltage  
-0.3  
V
+ 0.3  
CC  
V
IN  
Input voltage LIN,HIN,ITRIP, EN, RCIN  
V
SS  
- 0.3  
lower of  
(V + 15) or  
SS  
V
+ 0.3)  
+ 0.3  
CC  
V
FLT  
FAULT output voltage  
V
SS  
- 0.3  
V
CC  
dV/dt  
Allowable offset voltage slew rate  
50  
V/ns  
W
P
Package power dissipation @ T +25°C (28 lead PDIP)  
-55  
1.5  
1.6  
2.0  
83  
D
A
(28 lead SOIC)  
(44leadPLCC)  
Rth  
Thermal resistance, junction to ambient  
(28 lead PDIP)  
(28 lead SOIC)  
(44 lead PLCC)  
JA  
78  
°C/W  
°C  
63  
T
J
Junction temperature  
150  
150  
300  
T
Storage temperature  
S
T
L
Lead temperature (soldering, 10 seconds)  
Recommended Operating Conditions  
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recom-  
mended conditions. All voltage parameters are absolute referenced to COM. The V offset rating is tested with all supplies  
S
biased at 15V differential.  
Symbol  
Definition  
Min.  
Max.  
Units  
V
High side floating supply voltage  
IR2136(8)  
IR21362  
V
+10  
V
+20  
B1,2,3  
S1,2,3  
S1,2,3  
V
S1,2,3  
+11.5  
+12  
V
S1,2,3  
+20  
+20  
IR2136(3)(5)(6)(7)  
V
S1,2,3  
V
S1,2,3  
600  
V
S1,2,3  
High side floating supply offset voltage  
High side output voltage  
Note 1  
V
V
V
B1,2,3  
HO1,2,3  
S1,2,3  
0
V
Low side output voltage  
V
CC  
LO1,2,3  
V
V
Low side and logic fixed supply voltage  
IR2136(8)  
IR21362  
10  
20  
20  
20  
5
CC  
11.5  
12  
IR2136(3)(5)(6)(7)  
V
Logic ground  
-5  
SS  
V
FAULT output voltage  
RCIN input voltage  
V
V
V
FLT  
SS  
SS  
CC  
CC  
V
V
RCIN  
Note 1: Logic operational for V of COM -5V to COM +600V. Logic state held for V of COM -5V to COM -V  
.
S
S
BS  
(Please refer to the Design Tip DT97-3 for more details).  
Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.  
2
www.irf.com  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S)&(PbF  
Recommended Operating Conditions cont.  
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recom-  
mended conditions. All voltage parameters are absolute referenced to COM. The V offset rating is tested with all supplies  
S
biased at 15V differential.  
Symbol  
Definition  
Min.  
Max.  
Units  
V
ITRIP input voltage  
V
V
+5  
ITRIP  
SS  
SS  
V
V
IN  
Logic input voltage LIN, HIN (IR2136,IR21363(5)(6)(7)(8)),  
HIN(IR21362), EN  
V
V
+5  
SS  
SS  
T
A
Ambient temperature  
-40  
125  
oC  
Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.  
Static Electrical Characteristics  
V
(V , V 1,2,3) = 15V unless otherwise specified. The V , V and I parameters are referenced to V and  
BIAS CC BS IN TH IN SS  
are applicable to all six channels (H 1,2,3 and L 1,2,3). The V and I parameters are referenced to COM and V 1,2,3  
S
S
O
O
S
and are applicable to the respective output leads: H  
and L  
O1,2,3  
O1,2,3.  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
V
Logic “0” input voltage LIN1,2,3, HIN1,2,3  
IH  
IR2136(3)(5)  
IR21362  
3.0  
Logic “1” input voltage HIN1,2,3  
Logic “0” input voltage LIN1,2,3, HIN1,2,3  
IR21366(7)(8)  
Logic “1” input voltage LIN1,2,3, HIN1,2,3  
IR2136(3)(5)  
IR21362  
2.5  
V
IL  
0.8  
Logic “0” input voltage HIN1,2,3  
Logic “0” input voltage LIN1,2,3, HIN1,2,3  
IR21366(7)(8)  
0.8  
3
V
EN positive going threshold  
EN negative going threshold  
ITRIP positive going threshold  
EN,TH+  
V
V
0.8  
EN,TH-  
V
IT,TH+  
IR2136(2)(3)(6)  
IR21365(7)(8)  
0.37  
3.85  
0.46  
4.30  
0.55  
4.75  
V
ITRIP input hysteresis  
IT,HYS  
IR2136(2)(3)(6)  
IR21365(7)(8)  
0.07  
.15  
8
V
RCIN positive going threshold  
RCIN input hysteresis  
RCIN,TH+  
V
3
RCIN,HYS  
V
High level output voltage, V  
- V  
0.9  
0.4  
8.9  
10.4  
11.1  
1.4  
0.6  
9.8  
11.2  
11.6  
I
I
= 20 mA  
= 20 mA  
OH  
BIAS  
O
O
O
V
Low level output voltage, V  
OL  
O
V
V
and V supply undervoltage  
IR2136(8)  
IR21362  
8.0  
9.6  
10.6  
CCUV+  
CC  
BS  
V
positive going threshold  
BSUV+  
IR21363(5)(6)(7)  
www.irf.com  
3
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S) & (PbF  
Static Electrical Characteristics cont.  
V
(V , V 1,2,3) = 15V unless otherwise specified. The V , V and I parameters are referenced to V and  
BIAS CC BS IN TH IN SS  
are applicable to all six channels (H 1,2,3 and L 1,2,3). The V and I parameters are referenced to COM and V 1,2,3  
S
S
O
O
S
and are applicable to the respective output leads: H  
and L  
O1,2,3  
O1,2,3.  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
V
V
and V supply undervoltage  
IR2136(8)  
IR21362  
7.4  
8.2  
9.4  
10.9  
0.7  
1.0  
0.2  
9.0  
10.2  
11.4  
CCUV-  
CC  
BS  
V
negative going threshold  
8.6  
BSUV-  
IR21363(5)(6)(7) 10.4  
V
V
V
CC  
and V supply undervoltage  
IR2136  
IR21362  
0.3  
0.5  
CCUVH  
BS  
V
lockout hysteresis  
BSUVH  
IR21363(5)  
I
Offset supply leakage current  
50  
V
=V  
B1,2,3 S1,2,3=600V  
LK  
µA  
I
I
Quiescent V supply current  
70  
1.6  
5.2  
200  
0
120  
2.3  
5.5  
300  
1
QBS  
BS  
Quiescent V  
supply current  
mA  
V
V
IN  
= 0V or 5V  
QCC  
CC  
V
4.9  
I
IN =100µA  
IN, CLAMP Input clamp voltage (HIN, LIN, ITRIP and EN)  
I
Input bias current (LOUT = HI)  
Input bias current (LOUT = LO)  
Input bias current (HOUT = HI)  
IR2136(2)(3)(5)  
V
LIN+  
LIN = 5V  
LIN = 0V  
HIN = 5V  
IR21366(7)(8)  
I
IR2136(2)(3)(5)  
100  
0
220  
1
V
LIN-  
IR21366(7)(8)  
IR2136(3)(5)  
I
200  
30  
0
300  
100  
1
V
V
HIN+  
IR21362  
µA  
IR21366(7)(8)  
IR2136(3)(5)  
I
Input bias current (HOUT = LO)  
100  
0
220  
1
HIN-  
HIN = 0V  
IR21362(6)(7)(8)  
I
“high” ITRIP input bias current  
“low” ITRIP input bias current  
“high” ENABLE input bias current  
“low” ENABLE input bias current  
RCIN input bias current  
30  
0
100  
1
V
= 5V  
= 0V  
ITRIP+  
ITRIP  
I
V
ITRIP  
ITRIP-  
I
30  
0
100  
1
V
= 5V  
= 0V  
EN+  
ENABLE  
I
V
ENABLE  
EN-  
I
0
1
V
= 0V or 15V  
RCIN  
RCIN  
I
Output high short circuit pulsed current  
Output low short circuit pulsed current  
RCIN low on resistance  
120  
250  
200  
350  
50  
50  
V =0V, PW 10 µs  
O
O+  
mA  
I
V =15V, PW 10 µs  
O
O-  
R
100  
100  
ON,RCIN  
R
FAULT low on resistance  
ON,FLT  
4
www.irf.com  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S)&(PbF  
Dynamic Electrical Characteristics  
V
= V = V  
= 15V, V  
= V = COM, TA = 25oC and C = 1000 pF unless otherwise specified.  
L
S1,2,3 SS  
CC  
BS  
BIAS  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
t
Turn-on propagation delay  
IR2136(2)(3)(5)(8)  
IR21366(7)  
300  
425  
250  
400  
180  
125  
50  
550  
on  
V
IN  
= 0 & 5V  
t
Turn-off propagation delay  
IR2136(2)(3)(5)(8)  
IR21366(7)  
250  
550  
off  
t
Turn-on rise time  
190  
75  
r
t
Turn-off fall time  
f
t
ENABLE low to output  
shutdown propagation delay  
IR2136(2)(3)(5)(8)  
IR21366(7)  
300  
100  
500  
100  
450  
250  
750  
150  
600  
400  
1000  
V
V
= 0V or 5V  
EN  
IN, EN  
nS  
t
t
ITRIP to output shutdown propagation delay  
ITRIP blanking time  
V
ITRIP  
= 5V  
ITRIP  
t
bl  
V
= 0V or 5V  
IN  
V
ITRIP  
= 5V  
t
ITRIP to FAULT propagation delay  
400  
100  
1.3  
600  
200  
1.65  
800  
2
V
= 0V or 5V  
FLT  
IN  
V
ITRIP  
= 5V  
Input filter time (HIN, LIN, EN)  
(IR2136(2)(3)(5)(8) only)  
V
= 0 & 5V  
IN  
FILIN  
t
FAULT clear time RCIN: R=2meg, C=1nF  
mS  
nS  
V
= 0V or 5V  
FLTCLR  
IN  
V
ITRIP  
= 0V  
DT  
MT  
Deadtime  
220  
290  
40  
360  
75  
V
= 0 & 5V  
IN  
Matching delay ON and OFF  
External dead  
time  
MDT  
Matching delay, max (t ,t ) - min (t ,t ),  
on off on off  
25  
70  
(ton,toff are applicable to all 3 channels)  
>400nsec  
PM  
Output pulse width matching, PWin -PWout (fig.2)  
40  
75  
NOTE: For high side PWM, HIN pulse width must be ≥ 1µsec  
VCC  
<UVCC  
15V  
VBS  
X
ITRIP  
X
ENABLE  
FAULT  
LO1,2,3  
HO1,2,3  
X
0 (note 1)  
high imp  
high imp  
0 (note 2)  
high imp  
0
LIN1,2,3  
LIN1,2,3  
0
0
<UVBS  
15V  
0V  
5V  
5V  
5V  
0V  
0
15V  
0V  
HIN1,2,3  
15V  
15V  
>V  
0
0
ITRIP  
15V  
15V  
0V  
0
Note: A shoot-through prevention logic prevents LO1,2,3 and HO1,2,3 for each channel from turning on simultaneously.  
Note 1: UVCC is not latched, when VCC>UVCC, FAULT returns to high impedance.  
Note 2: When ITRIP <V , FAULT returns to high-impedance after RCIN pin becomes greater than 8V (@ VCC = 15V)  
ITRIP  
www.irf.com  
5
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S) & (PbF  
Functional Block Diagram  
VB1  
HO1  
IR2136/21363/21365  
INPUT  
NOISE  
FILTER  
HIN1  
SET  
LATCH  
VSS/COM  
LEVEL  
HV  
DEADTIME  
&
DRIVER  
DRIVER  
DRIVER  
LEVEL  
SHIFTER  
RESET  
SHOOT-THROUGH  
PREVENTION  
UV  
DETECT  
SHIFTER  
INPUT  
NOISE  
FILTER  
LIN1  
VS1  
VB2  
INPUT  
NOISE  
FILTER  
HIN2  
LIN2  
SET  
LATCH  
VSS/COM  
LEVEL  
SHIFTER  
HV  
LEVEL  
SHIFTER  
DEADTIME  
&
HO2  
RESET  
SHOOT-THROUGH  
PREVENTION  
UV  
DETECT  
INPUT  
NOISE  
FILTER  
VS2  
VB3  
INPUT  
NOISE  
FILTER  
HIN3  
LIN3  
VSS  
SET  
LATCH  
VSS/COM  
LEVEL  
SHIFTER  
HV  
LEVEL  
SHIFTER  
DEADTIME  
&
HO3  
VS3  
RESET  
SHOOT-THROUGH  
PREVENTION  
UV  
DETECT  
INPUT  
NOISE  
FILTER  
VCC  
LO1  
UV  
INPUT  
NOISE  
FILTER  
VSS/COM  
LEVEL  
DETECT  
EN  
DRIVER  
DRIVER  
DRIVER  
DELAY  
DELAY  
DELAY  
SHIFTER  
INPUT  
NOISE  
FILTER  
+
-
ITRIP  
VSS/COM  
LEVEL  
0.5V  
S
R
Q
LO2  
SET  
SHIFTER  
DOMINANT  
LATCH  
RCIN  
VSS/COM  
LEVEL  
SHIFTER  
LO3  
FAULT  
COM  
6
www.irf.com  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S)&(PbF  
Functional Block Diagram  
VB1  
IR21362  
INPUT  
NOISE  
FILTER  
HIN1  
SET  
LATCH  
VSS/COM  
LEVEL  
SHIFTER  
HV  
LEVEL  
SHIFTER  
DEADTIME  
SHOOT-THROUGH  
PREVENTION  
&
DRIVER  
HO1  
RESET  
UV  
DETECT  
INPUT  
NOISE  
FILTER  
LIN1  
VS1  
VB2  
INPUT  
NOISE  
FILTER  
HIN2  
LIN2  
SET  
LATCH  
VSS/COM  
LEVEL  
SHIFTER  
HV  
LEVEL  
SHIFTER  
DEADTIME  
SHOOT-THROUGH  
PREVENTION  
&
DRIVER  
HO2  
RESET  
UV  
DETECT  
INPUT  
NOISE  
FILTER  
VS2  
VB3  
INPUT  
NOISE  
FILTER  
HIN3  
LIN3  
VSS  
SET  
LATCH  
VSS/COM  
LEVEL  
SHIFTER  
HV  
LEVEL  
SHIFTER  
DEADTIME  
SHOOT-THROUGH  
PREVENTION  
&
DRIVER  
HO3  
RESET  
UV  
DETECT  
INPUT  
NOISE  
FILTER  
VS3  
VCC  
UV  
DETECT  
INPUT  
NOISE  
FILTER  
VSS/COM  
LEVEL  
SHIFTER  
EN  
DRIVER  
DELAY  
DELAY  
DELAY  
LO1  
INPUT  
NOISE  
FILTER  
+
-
ITRIP  
VSS/COM  
LEVEL  
SHIFTER  
0.5V  
S
R
Q
DRIVER  
LO2  
SET  
DOMINANT  
LATCH  
RCIN  
VSS/COM  
LEVEL  
SHIFTER  
DRIVER  
LO3  
FAULT  
COM  
www.irf.com  
7
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S) & (PbF  
Functional Black Diagram  
VB1  
HO1  
IR21366/IR21367/IR21368  
HIN1  
LIN1  
SET  
LATCH  
VSS/COM  
HV  
LEVEL  
SHIFTER  
DEADTIME  
&
DRIVER  
DRIVER  
DRIVER  
LEVEL  
SHIFTER  
RESET  
SHOOT-THROUGH  
PREVENTION  
UV  
DETECT  
VS1  
VB2  
HIN2  
LIN2  
SET  
LATCH  
VSS/COM  
LEVEL  
SHIFTER  
HV  
LEVEL  
SHIFTER  
DEADTIME  
SHOOT-THROUGH  
PREVENTION  
&
HO2  
RESET  
UV  
DETECT  
VS2  
VB3  
HIN3  
LIN3  
VSS  
SET  
LATCH  
VSS/COM  
LEVEL  
SHIFTER  
HV  
LEVEL  
SHIFTER  
DEADTIME  
SHOOT-THROUGH  
PREVENTION  
&
HO3  
VS3  
RESET  
UV  
DETECT  
VCC  
LO1  
UV  
DETECT  
INPUT  
NOISE  
FILTER  
VSS/COM  
LEVEL  
EN  
DRIVER  
DRIVER  
DRIVER  
DELAY  
DELAY  
DELAY  
SHIFTER  
INPUT  
NOISE  
FILTER  
+
-
ITRIP  
VSS/COM  
LEVEL  
SHIFTER  
S
R
Q
LO2  
SET  
DOMINANT  
LATCH  
RCIN  
VSS/COM  
LEVEL  
SHIFTER  
LO3  
FAULT  
COM  
8
www.irf.com  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S)&(PbF  
Lead Definitions  
Symbol Description  
V
CC  
Low side and logic fixed supply  
VSS  
Logic Ground  
HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), out of phase (IR2136/IR21363(5)(6)(7)(8)  
HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), in phase (IR21362)  
LIN1,2,3 Logic inputs for low side gate driver outputs (LO1,2,3), out of phase  
FAULT  
Indicates over-current (ITRIP) or low-side undervoltage lockout has occured. Negative logic,  
open-drain output  
EN  
Logic input to enable I/O functionality. Positive logic, i.e. I/O logic functions when ENABLE is  
high. No effect on FAULT and not latched  
ITRIP  
Analog input for overcurrent shutdown. When active, ITRIP shuts down outputs and activates  
FAULT and RCIN low. When ITRIP becomes inactive, FAULT stays active low for an externally  
set time TFLTCLR, then automatically becomes inactive (open-drain high impedance).  
External RC network input used to define FAULT CLEAR delay, TFLTCLR, approximately equal  
to R*C. When RCIN>8V, the FAULT pin goes back into open-drain high-impedance  
Low side gate driver return  
RCIN  
COM  
V 1,2,3 High side floating supply  
B
HO1,2,3 High side gate driver outputs  
V
S1,2,3  
High voltage floating supply returns  
LO1,2,3 Low side gate driver output  
Note: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.  
www.irf.com  
9
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S) & (PbF  
Lead Assignments  
1
2
28  
27  
26  
25  
VCC  
HIN1  
HIN2  
HIN3  
LIN1  
LIN2  
LIN3  
FAULT  
ITRIP  
EN  
VB1  
HO1  
VS1  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VCC  
HIN1  
HIN2  
HIN3  
LIN1  
LIN2  
LIN3  
FAULT  
ITRIP  
EN  
VB1  
HO1  
VS1  
2
3
3
4
6
5
4
3
43  
42  
41  
4
7
8
LIN1  
LIN2  
LIN3  
5
VB2 24  
5
VB2  
HO2  
VS2  
9
37  
36  
35  
VB2  
HO2  
VS2  
6
23  
22  
21  
20  
19  
18  
17  
HO2  
VS2  
6
10  
11  
12  
13  
7
7
8
8
FAULT  
9
VB3  
HO3  
VS3  
9
VB3  
HO3  
VS3  
ITRIP 14  
15  
10  
11  
12  
10  
11  
12  
31  
30  
29  
VB3  
HO3  
VS3  
RCIN  
VSS  
RCIN  
VSS  
EN 16  
17  
RCIN  
13 COM  
14  
LO1 16  
15  
LO2  
13 COM  
14  
LO1 16  
15  
LO2  
18  
19  
20  
21  
22  
23  
24  
25  
LO3  
LO3  
28 Lead PDIP  
44 Lead PLCC w/o 12 leads  
28 lead SOIC (wide body)  
IR2136/IR21363(5)(6)(7)(8)  
IR2136/IR21363(5)(6)(7)(8) (J)  
IR2136/IR21363(5)(6)(7)(8) (S)  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VCC  
HIN1  
HIN2  
HIN3  
LIN1  
LIN2  
LIN3  
FAULT  
ITRIP  
EN  
VB1  
HO1  
VS1  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VCC  
HIN1  
HIN2  
HIN3  
LIN1  
LIN2  
LIN3  
FAULT  
ITRIP  
EN  
VB1  
HO1  
VS1  
6
5
4
3
43  
42  
41  
2
7
3
4
3
8
LIN1  
LIN2  
LIN3  
4
9
37  
36  
35  
VB2  
HO2  
VS2  
5
5
VB2  
HO2  
VS2  
VB2  
HO2  
VS2  
10  
11  
12  
13  
14  
15  
6
6
7
7
FAULT  
ITRIP  
8
8
9
9
VB3  
HO3  
VS3  
VB3  
HO3  
VS3  
10  
11  
12  
13  
14  
10  
11  
12  
13  
14  
31  
30  
29  
VB3  
HO3  
VS3  
RCIN  
VSS  
RCIN  
VSS  
COM  
LO3  
EN 16  
RCIN 17  
COM  
LO3  
LO1  
LO2  
LO1  
LO2  
18  
19  
20  
21  
22  
23  
24  
25  
28 Lead PDIP  
44 Lead PLCC w/o 12 leads  
28 lead SOIC (wide body)  
IR21362  
IR21362J  
IR21362S  
10  
www.irf.com  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S)&(PbF  
HIN1,2,3  
HIN1,2,3  
LIN1,2,3  
EN  
ITRIP  
FAULT  
RCIN  
HO1,2,3  
LO1,2,3  
Figure 1. Input/Output Timing Diagram  
LIN1,2,3  
HIN1,2,3  
50%  
50%  
50%  
EN  
PWIN  
ten  
LIN1,2,3  
HIN1,2,3  
50%  
50%  
90%  
HO1,2,3  
LO1,2,3  
ton  
tr  
toff  
tf  
PWOUT  
90%  
90%  
HO1,2,3  
LO1,2,3  
10%  
10%  
Figure 3. Output Enable Timing Waveform  
Figure 2. Switching Time Waveforms  
www.irf.com  
11  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S) & (PbF  
LIN1,2,3  
HIN1,2,3  
50%  
50%  
LIN1,2,3  
HIN1,2,3  
50%  
50%  
50%  
50%  
DT  
LO1,2,3  
HO1,2,3  
DT  
50%  
50%  
Figure 4. Internal Deadtime Timing Waveforms  
Vrcin,th+  
RCIN  
ITRIP  
50%  
tflt  
50%  
50%  
50%  
FAULT  
90%  
tfltclr  
Any  
output  
titrip  
Figure 5. ITRIP/RCIN Timing Waveforms  
tin,fil  
tin,fil  
U
HIN/LIN  
on  
on off  
low  
on off  
high  
off  
HO/LO  
Figure 5.5 Input Filter Function  
12  
www.irf.com  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S)&(PbF  
1000  
800  
1000  
800  
600  
400  
200  
0
Max.  
600  
Max.  
Typ.  
Typ.  
Min.  
400  
Min.  
200  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 6A. Turn-on Propagation Delay vs.  
Temperature  
Figure 6B. Turn-on Propagation Delay vs.  
Supply Voltage  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
Max.  
Max.  
Typ.  
Typ.  
Min.  
Min.  
-50  
-25  
0
25  
50  
75  
100  
125  
3
3.5  
4
4.5  
5
Temperature (oC)  
Input Voltage (V)  
Figure 7A. Turn-off Propagation Delay vs.  
Temperature  
Figure 6C. Turn-on Propagation Delay vs.  
Input Voltage  
www.irf.com  
13  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S) & (PbF  
1000  
800  
1000  
800  
600  
400  
200  
0
Max.  
Max.  
Typ.  
Min.  
600  
Typ.  
400  
Min.  
200  
0
3
3.5  
4
4.5  
5
10  
12  
14  
16  
18  
20  
Input Voltage (V)  
Supply Voltage (V)  
Figure 7B. Turn-off Propagation Delay vs.  
Supply Voltage  
Figure 7C. Turn-off Propagation Delay vs.  
Input Voltage  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
Max.  
Typ.  
Max.  
Typ.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 8A. Turn-on Rise Time vs. Temperature  
Figure 8B. Turn-on Rise Time vs. Supply Voltage  
14  
www.irf.com  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S)&(PbF  
200  
150  
100  
50  
200  
150  
100  
50  
0
Max.  
Typ.  
Max.  
Typ.  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 9B. Turn-off Fall Time vs. Supply Voltage  
Figure 9A. Turn-off Fall Time vs. Temperature  
1000  
1000  
800  
600  
400  
200  
0
800  
600  
400  
200  
0
Max.  
Typ.  
Min.  
Max.  
Typ.  
Min.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 10A. EN to Output Shutdown Time  
vs. Temperature  
Figure 10B. EN to Output Shutdown Time vs.  
Supply Voltage  
www.irf.com  
15  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S) & (PbF  
1000  
800  
1500  
1200  
900  
600  
300  
0
Max.  
Max.  
600  
Typ.  
Typ.  
Min.  
400  
Min.  
200  
0
3
3.5  
4
4.5  
5
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
EN Voltage (V)  
Figure 11A. ITRIP to Output Shutdown Time vs.  
Temperature  
Figure 10C. EN to Output Shutdown Time  
vs. EN Voltage  
1500  
1200  
1000  
800  
600  
400  
200  
0
1200  
900  
600  
300  
0
Max.  
Typ.  
Max.  
Typ.  
Min.  
Min.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 11B. ITRIP to Output Shutdown  
Time vs. Supply Voltage  
Figure 12A. ITRIP to FAULT Indication Time vs.  
Temperature  
16  
www.irf.com  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S)&(PbF  
1200  
1000  
800  
600  
400  
200  
0
3.0  
2.5  
Max.  
Typ.  
Max.  
2.0  
Typ.  
1.5  
Min.  
Min.  
1.0  
0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 12B. ITRIP to FAULT Indication Time vs.  
Supply Voltage  
Fig13A. FAULT Clear Time vs. Temperature  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
600  
500  
400  
300  
200  
100  
0
Max.  
Typ.  
Max.  
Typ.  
Min.  
Min.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 14A. Dead Time vs. Temperature  
Figure 13B. FAULT Clear Time vs. Supply Voltage  
www.irf.com  
17  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S) & (PbF  
600  
6
5
4
500  
Max.  
400  
Typ.  
Max.  
300  
3
2
1
0
Min.  
200  
100  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 15A. Logic "0" Input Threshold vs.  
Temperature  
Figure 14B. Dead Time Time vs. Supply Voltage  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Max.  
Min.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 15B. Logic "0" Input Threshold vs.  
Supply Voltage  
Figure 16A. Logic "1" Input Threshold vs.  
Temperature  
18  
www.irf.com  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S)&(PbF  
6
5
4
3
2
1
0
800  
700  
600  
Max.  
500  
Typ.  
Min.  
400  
Min.  
300  
200  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Supply Voltage (V)  
Temperature (oC)  
Figure 16B. Logic "1" Input Threshold vs.  
Supply Voltage  
Figure 17A. ITRIP Positive Going Threshold vs.  
Temperature (IR2136/21362/21363/IR21366 Only)  
800  
700  
600  
500  
400  
300  
200  
5.5  
5.0  
M ax.  
Max.  
Typ.  
Min.  
4.5  
Typ.  
4.0  
Min.  
3.5  
3.0  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 17C. ITRIP Positive Going Threshold vs.  
Temperature (IR21365/IR21367/IR21368 Only)  
Figure 17B. ITRIP Positive Going Threshold vs.  
Supply Voltage (IR2136/21362/21363/IR21366 Only)  
www.irf.com  
19  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S) & (PbF  
3.0  
2.5  
2.0  
1.5  
5.5  
5.0  
Max.  
4.5  
Typ.  
Max.  
Typ.  
Min.  
4.0  
1.0  
0.5  
0.0  
3.5  
3.0  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 18A. High Level Output vs. Temperature  
Figure 17D. ITRIP Positive Going Threshold vs.  
Supply Voltage (IR21365/IR21367/IR21368 Only)  
3.0  
1.2  
1.0  
0.8  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Max.  
Typ.  
0.6  
Max.  
0.4  
Typ.  
0.2  
0.0  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Supply Voltage (V)  
Temperature (oC)  
Figure 18B. High Level Output vs. Supply Voltage  
Figure 19A. Low Level Output vs. Temperature  
20  
www.irf.com  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S)&(PbF  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
12  
11  
Max.  
Typ.  
Max.  
10  
Typ.  
9
Min.  
8
7
10  
12  
14  
16  
18  
20  
-50 -25  
0
25  
50  
75 100 125  
Supply Voltage (V)  
Temperature (oC)  
Figure 19B. Low Level Output vs. Supply Voltage  
Figure 20. VCC or VBS Undervoltage (+)  
vs. Temperature (IR2136/IR21368 Only)  
13  
12  
11  
10  
9
11  
10  
Max.  
Typ.  
Min.  
Max.  
9
Typ.  
8
Min.  
7
6
8
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Figure 21. VCC or VBS Undervoltage (-)  
vs. Temperature (IR2136/IR21368 Only)  
Figure 22. VCC or VBS Undervoltage (+) vs.  
Temperature (IR21362 Only)  
www.irf.com  
21  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S) & (PbF  
12  
11  
13  
12  
11  
10  
Max.  
10  
Max.  
Typ.  
Min.  
Typ.  
9
Min.  
8
7
-50 -25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Figure 24. VCC or VBS Undervoltage (+) vs.  
Temperature (IR21363/21365/IR21366/IR21367 Only)  
Figure 23. VCC or VBS Undervoltage (-) vs.  
Temperature (IR21362 Only)  
13  
500  
400  
300  
200  
12  
11  
10  
9
Max.  
Typ.  
Min.  
100  
Max.  
0
-50 -25  
0
25  
50  
75 100 125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Figure 25. VCC or VBS Undervoltage (-) vs.  
Temperature (IR21363/21365/IR21366/IR21367 Only)  
Figure 26A. Offset Supply Leakage Current vs.  
Temperature  
22  
www.irf.com  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S)&(PbF  
500  
400  
300  
200  
100  
0
250  
200  
150  
Max.  
100  
50  
Typ.  
Max.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
100  
200  
300  
400  
500  
600  
Temperature (oC)  
V
B Boost Voltage (V)  
Figure 26B. Offset Supply Leakage Current vs.  
VB Boost Voltage  
Figure 27A. VBS Supply Current vs. Temperature  
250  
5
200  
150  
100  
50  
4
3
2
1
0
Max.  
Typ.  
Max.  
Typ.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VBS Floating Supply Voltage (V)  
Figure 27B. VBS Supply Current vs.  
BS Floating Supply Voltage  
Figure 28A. VCC Supply Current vs. Temperature  
V
www.irf.com  
23  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S) & (PbF  
5
4
3
800  
600  
400  
2
Max.  
Max.  
Typ.  
200  
0
1
Typ.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 28B. VCC Supply Current vs.  
CC Supply Voltage  
Figure 29A. Logic "1" Input Current vs. Temperature  
(IR2136/21363/21365 and IR21362 Low Side Only)  
V
300  
250  
200  
150  
800  
600  
400  
200  
0
Max.  
100  
Max.  
Typ.  
50  
Typ.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 29B. Logic "1" Input Current vs. Supply Voltage  
(IR2136/21363/21365 and IR21362 Low Side Only)  
Figure 29C. Logic "1" Input Current vs.  
Temperature (IR21362 High Side Only)  
24  
www.irf.com  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S)&(PbF  
300  
250  
200  
150  
100  
50  
600  
500  
400  
300  
200  
Max.  
Typ.  
Max.  
100  
Typ.  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 29D. Logic "1" Input Current vs.  
Supply Voltage (IR21362 High Side Only)  
Figure 30A. Logic "0" Input Current vs. Temperature  
(IR2136/21363/21365 and IR21362 Low Side Only)  
600  
500  
400  
300  
200  
100  
0
4
3
2
Max.  
Max.  
1
Typ.  
Typ.  
0
10  
12  
14  
Supply Voltage (V)  
Figure 30B. Logic "0" Input Current vs. Supply  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Figure 30C. Logic "0" Input Current vs.  
Temperature (IR21362 High Side Only)  
Voltage (IR2136/21363/21365 and IR21362 Low Side Only)  
www.irf.com  
25  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S) & (PbF  
250  
200  
150  
100  
50  
4
3
2
Max.  
Typ.  
Max.  
1
Typ.  
0
0
-50  
20  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
Temperature (oC)  
Supply Voltage (V)  
Figure 31A. "High" ITRIP Current vs. Temperature  
Figure 30D. Logic "0" Input Current vs.  
Supply Voltage (IR21362 High Side Only)  
250  
200  
150  
100  
50  
4
3
2
Max.  
Typ.  
Max.  
1
Typ.  
0
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 32A. "Low" ITRIP Current vs. Temperature  
Figure 31B. "High" ITRIP Current vs. Supply Voltage  
26  
www.irf.com  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S)&(PbF  
200  
150  
4
3
2
1
0
Max.  
100  
Max.  
Typ.  
50  
Typ.  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 32B. "Low" ITRIP Current vs. Supply Voltage  
Figure 33A. "High" IEN Current vs. Temperature  
250  
200  
150  
4
3
2
1
0
Max.  
100  
Max.  
Typ.  
50  
0
Typ.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 33B. "High" IEN Current vs. Supply Voltage  
Figure 34A. "Low" IEN Current vs. Temperature  
www.irf.com  
27  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S) & (PbF  
4
3
2
4
3
2
Max.  
Typ.  
M ax.  
1
1
0
Typ.  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 34B. "Low" IEN Current vs. Supply Voltage  
Figure 35A. RCIN Input Bias Current  
vs. Temperature  
Figure 34B. “Low” IEN Current vs. Supply Voltage  
4
400  
300  
200  
100  
0
3
2
Typ.  
Min.  
Max.  
1
Typ.  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 35B. RCIN Input Bias Current vs.  
Supply Voltage  
Figure 36A. Output Source Current vs.  
Temperature  
28  
www.irf.com  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S)&(PbF  
500  
400  
300  
200  
100  
0
500  
400  
Typ.  
300  
Min.  
200  
100  
Typ.  
Min.  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 36B. Output Source Current vs.  
Supply Voltage  
Figure 37A. Output Sink Current vs.  
Temperature  
600  
500  
400  
300  
200  
100  
0
250  
200  
150  
100  
50  
Typ.  
Min.  
Max.  
Typ.  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 37B. Output Sink Current vs.  
Supply Voltage  
Figure 38A. RCIN Low On-resistance vs.  
Temperature  
www.irf.com  
29  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S) & (PbF  
250  
200  
250  
200  
150  
100  
150  
Max.  
100  
Typ.  
50  
Max.  
Typ.  
50  
0
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 38B. RCIN Low On-resistance vs.  
Supply Voltage  
Figure 39A. FAULT Low On-resistance vs.  
Temperature  
0
-3  
-6  
-9  
250  
200  
150  
100  
50  
Typ.  
Max.  
Typ.  
-12  
0
-15  
10  
12  
14  
16  
18  
20  
10  
12  
14  
16  
18  
20  
Supply Voltage (V)  
Supply Voltage (V)  
Figure 39B. FAULT Low On-resistance vs.  
Supply Voltage  
Figure 40. Maximum VS Negative Offset vs. VBS  
Supply Voltage  
30  
www.irf.com  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S)&(PbF  
120  
100  
80  
120  
100  
80  
60  
60  
300V  
200V  
100  
300V  
200V  
40  
40  
20  
100V  
V
0V  
0V  
20  
0.1  
1
10  
Frequency (KHz)  
Figure 41. IR2136/IR21362(3)(5)(6)(7)(8)  
100  
0.1  
1
10  
Frequency (KHz)  
100  
Figure 42. IR2136/IR21362(3)(5)(6)(7)(8)  
vs. Frequency (IRG4BC20W), R e=33, Vcc=15V  
gat  
vs. Frequency (IRG4BC30W), R =15, Vcc=15V  
gate  
120  
100  
80  
120  
100  
80  
300V  
200V  
60  
60  
100  
300V  
200V  
V
0V  
100  
40  
40  
0V  
V
20  
20  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (KHz)  
Frequency (KHz)  
Figure 43. IR2136/IR21362(3)(5)(6)(7)(8)  
Figure 44. IR2136/IR21362(3)(5)(6)(7)(8)  
vs. Frequency (IRG4PC50W), R =5, Vcc=15V  
vs. Frequency (IRG4BC40W), R e=10, Vcc=15V  
gat  
gate  
www.irf.com  
31  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S) & (PbF  
120  
100  
80  
120  
100  
80  
60  
60  
300V  
300V  
200V  
100V  
0V  
40  
40  
20  
200V  
100V  
0V  
20  
0.1  
1
10  
Frequency (KHz)  
100  
0.1  
1
10  
Frequency (KHz)  
100  
Figure 45. IR2136/IR21362(3)(5)(6)(7)(8) (J)  
Figure 46. IR2136/IR21362(3)(5)(6)(7)(8) (J)  
vs. Frequency (IRG4BC20W), R e=33, Vcc=15V  
gat  
vs. Frequency (IRG4BC30W), R =15, Vcc=15V  
gate  
120  
100  
80  
120  
100  
80  
60  
60  
300V  
200V  
300V  
200V  
100V  
0V  
40  
40  
20  
100V  
0V  
20  
0.1  
1
10  
100  
0.1  
1
10  
Frequency (KHz)  
100  
Frequency (KHz)  
Figure 47. IR2136/IR21362(3)(5)(6)(7)(8) (J)  
Figure 48. IR2136/IR21362(3)(5)(6)(7)(8) (J)  
vs. Frequency (IRG4PC50W), R =5, Vcc=15V  
vs. Frequency (IRG4BC40W), R e=10, Vcc=15V  
gat  
gate  
32  
www.irf.com  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S)&(PbF  
120  
100  
80  
120  
100  
80  
60  
60  
300V  
300V  
40  
100  
200V  
100  
0V  
V
40  
200V  
V
0V  
20  
20  
0.1  
1
10  
Frequency (KHz)  
100  
0.1  
1
10  
100  
Frequency (KHz)  
Figure 49. IR2136/IR21362(3)(5)(6)(7)(8) (S)  
Figure 50. IR2136/IR21362(3)(5)(6)(7)(8) (S)  
vs. Frequency (IRG4BC20W), R e=33, Vcc=15V  
gat  
vs. Frequency (IRG4BC30W), R =15, Vcc=15V  
gate  
120  
100  
80  
120  
100  
80  
300V  
200V  
100  
V
60  
60  
300V  
0V  
200V  
100  
V
0V  
40  
40  
20  
20  
0.1  
1
10  
100  
0.1  
1
10  
Frequency (KHz)  
100  
Frequency (KHz)  
Figure 51. IR2136/IR21362(3)(5)(6)(7)(8) (S)  
Figure 52. IR2136/IR21362(3)(5)(6)(7)(8) (S)  
vs. Frequency (IRG4PC50W), R =5, Vcc=15V  
vs. Frequency (IRG4BC40W), R e=10, Vcc=15V  
gat  
gate  
www.irf.com  
33  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S) & (PbF  
Case outlines  
01-6011  
01-3024 02 (MS-011AB)  
28-Lead PDIP (wide body)  
01-6013  
01-3040 02 (MS-013AE)  
28-Lead SOIC (wide body)  
34  
www.irf.com  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S)&(PbF  
NOTES  
01-6009 00  
01-3004 02(mod.) (MS-018AC)  
44-Lead PLCC w/o 12 leads  
www.irf.com  
35  
(
)
IR2136(2)(3)(5)(6)(7)(8)  
J&S) & (PbF  
LEADFREE PART MARKING INFORMATION  
Part number  
IRxxxxxx  
Date code  
IR logo  
YWW?  
?XXXX  
Pin 1  
Identifier  
Lot Code  
(Prod mode - 4 digit SPN code)  
?
MARKING CODE  
P
Lead Free Released  
Non-Lead Free  
Released  
Assembly site code  
Per SCOP 200-002  
ORDER INFORMATION  
Basic Part  
28-Lead PDIP IR2136/IR21363(5)(6)(7)(8)  
order IR2136/IR21363(5)(6)(7)(8)  
28-Lead SOIC IR2136/IR21363(5)(6)(7)(8) (S) order IR2136/IR21363(5)(6)(7)(8) (S)  
44-Lead PLCC IR2136/IR21363(5)(6)(7)(8) (J)) order IR2136/IR21363(5)(6)(7)(8) (J)  
28-Lead PDIP IR21362  
28-Lead SOIC IR21362S  
44-Lead PLCC IR21362J  
order IR21362  
order IR21362S  
order IR21362J  
Leadfree Part  
28-Lead PDIP IR2136/IR21363(5)(6)(7)(8)  
order IR2136/IR21363(5)(6)(7)(8)PbF  
28-Lead SOIC IR2136/IR21363(5)(6)(7)(8) (S) order IR2136/IR21363(5)(6)(7)(8) (S)PbF  
44-Lead PLCC IR2136/IR21363(5)(6)(7)(8) (J)) order IR2136/IR21363(5)(6)(7)(8) (J)PbF  
28-Lead PDIP IR21362  
28-Lead SOIC IR21362S  
44-Lead PLCC IR21362J  
order IR21362PbF  
order IR21362SPbF  
order IR21362JPbF  
WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105  
This product has been qualified per industrial level  
http://www.irf.com/ Data and specifications subject to change without notice.  
4/13/2004  
36  
www.irf.com  

相关型号:

IR21362

3-PHASE BRIDGE DRIVER
INFINEON

IR21362C

MOSFET Driver, CMOS,
INFINEON

IR21362J

3-PHASE BRIDGE DRIVER
INFINEON

IR21362JPBF

3-PHASE BRIDGE DRIVER
INFINEON

IR21362JTRPBF

MOSFET Driver, CMOS, PQCC44
INFINEON

IR21362PBF

3-PHASE BRIDGE DRIVER
INFINEON

IR21362S

3-PHASE BRIDGE DRIVER
INFINEON

IR21362SPBF

3-PHASE BRIDGE DRIVER
INFINEON

IR21362STR

MOSFET Driver, PDSO28
INFINEON

IR21363

3-PHASE BRIDGE DRIVER
INFINEON

IR213632C

MOSFET Driver, CMOS,
INFINEON

IR21363C

MOSFET Driver, CMOS,
INFINEON