IR2157 [INFINEON]

FULLY INTEGRATED BALLAST CONTROL IC; 完全集成的镇流器控制IC
IR2157
型号: IR2157
厂家: Infineon    Infineon
描述:

FULLY INTEGRATED BALLAST CONTROL IC
完全集成的镇流器控制IC

文件: 总20页 (文件大小:309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCED INFORMATION  
Data Sheet No. PD60108B  
IR2157  
FULLY INTEGRATED BALLAST CONTROL IC  
Features  
Thermal overload protection  
Programmable deadtime  
Programmable preheat time & frequency  
Programmable ignition ramp  
Protection from failure-to-strike  
Lamp filament sensing & protection  
Protection from operation below resonance  
Protection from low-line condition & automatic  
restart (mimics a magnetic ballast)  
Integrated 600V level-shifting gate driver  
Internal 15.6V zener clamp diode on VCC  
True micropower startup (150uA)  
Latch immunity protection on all leads  
ESD protection on all leads  
Packages  
Description  
The IR2157 is a fully integrated, fully protected 600V ballast control IC designed to  
drive virtually all types of rapid start fluorescent lamp ballasts. Externally program-  
mable features such as preheat time & frequency, ignition ramp characteristics, and  
running mode operating frequency provide a high degree of flexibility for the ballast  
design engineer. Comprehensive protection features such as protection from failure  
of a lamp to strike, filament failures, low dc bus conditions, thermal overload, or lamp  
failure during normal operation, as well as an automatic restart function, have been  
included in the design. The heart of this control IC is a variable frequency oscillator  
with externally programmmable deadtime. Precise control of a 50% duty cycle is  
accomplished using a T-flip-flop. The IR2157 is available in both 16 pin DIP and 16  
pin narrow body SOIC packages.  
16 Lead SOIC  
(narrow body)  
16 Lead PDIP  
Typical Connection  
+ Rectified AC Line  
+ VBUS  
R2  
R1  
C1  
RSupply  
VDC  
CPH  
RPH  
RT  
HO  
VS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
Q1  
RGHS  
CBLOCK  
LRES  
CPH  
CBS  
VB  
CSNUBBER  
CIGN  
RPH  
N/C  
VCC  
COM  
LO  
DBOOT  
RSNUBBER  
RT  
RRUN  
RUN  
CT  
CSTART RSTART  
CRES  
CVCC  
D1  
D2  
CT  
RDT  
DT  
Q2  
RGLS  
SD  
CS  
R4  
R5  
R3  
C2  
R CS  
VBUS return  
ADVANCEDINFORMATION  
IR2157  
Power Turned On  
UVLO Mode  
1/2-Bridge Off  
IQCC 150  
A
µ
C PH = 0V  
Oscillator Off  
(UV+)  
VCC < 9.5V  
(VCC Fault or Power Down)  
VCC > 11.4V  
SD > 2.0V  
(Lamp Removal)  
or  
VCC < 9.5V  
(Power Turned Off)  
and  
VDC > 5.1V  
and  
SD < 1.7V  
and  
(Bus OK)  
or  
VDC < 3.0V  
(dc Bus/ac Line Fault or Powe  
(Lamp OK)  
or  
(Tjmax  
)
SD > 2.0V  
TJ < 175C  
(Lamp Fault or Lamp Remova  
FAULT Mode  
TJ > 175C  
(Over-Temperature)  
PREHEAT Mode  
Fault Latch Set  
1/2-Bridge Off  
1/2-Bridge @ f PH  
C P H Charging @ I PH = 1  
RPH = 0V  
µ
A
IQCC 150  
µ
A
CPH = 0V  
VCC = 15.6V  
Oscillator Off  
RUN = Open Circuit  
CS Disabled  
CPH > 4.0V  
(End of PREHEAT Mode)  
CS > 1.0V  
(Failure to Strike Lamp  
or Hard Switching)  
or  
TJ > 175C  
(Over-Temperature)  
IGNITION RAMP Mode  
fPH ramps to f MIN  
C P H Charging @ I PH = 1  
RPH = Open Circuit  
RUN = Open Circuit  
µ
A
CS 1V Threshold Enabled  
CS > 1.0V  
(Over-Current or Hard Switching)  
CPH > 5.1V  
(End of IGNITION RAMP)  
or  
CS < 0.2V  
(No-Load or Below Resonance)  
or  
RUN Mode  
TJ > 175C  
(Over-Temperature)  
fMIN Ramps to f RUN  
C P H Charges to 7.6V Clamp  
RPH = Open Circuit  
RUN  
= 0V  
CS 0.2V Threshold Enabled  
2
ADVANCEDINFORMATION  
IR2157  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-  
eters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal resistance and  
power dissipation ratings are measured under board mounted and still air conditions.  
Symbol Definition  
Min.  
Max.  
Units  
V
High side floating supply voltage  
-0.3  
625  
B
S
V
High side floating supply offset voltage  
High side floating output voltage  
V
- 25  
V + 0.3  
B
B
S
V
V
HO  
V
- 0.3  
V + 0.3  
B
V
LO  
Low side output voltage  
-0.3  
V + 0.3  
CC  
I
Maximum allowable output current due to miller effect  
-500  
-5  
500  
OMAX  
mA  
I
RT  
R
pin current  
T
5
V
C pin voltage  
T
-0.3  
-5  
V
+ 0.3  
CC  
V
CT  
I
CPH pin current  
5
mA  
CPH  
V
RPH pin voltage  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
V
CC  
V
CC  
+ 0.3  
RPH  
V
RUN  
RUN pin voltage  
+ 0.3  
V
Deadtime pin voltage  
Current sense pin voltage  
Shutdown pin voltage  
Supply current (note 1)  
Allowable offset voltage slew rate  
5.5  
DT  
V
V
5.5  
5.5  
CS  
V
SD  
I
20  
mA  
CC  
dV/dt  
-50  
50  
V/ns  
P
Package power dissipation @ T +25°C (16 lead PDIP)  
1.60  
1.25  
75  
D
A
(16 lead SOIC)  
Rth  
Thermal resistance, junction to ambient  
(16 lead PDIP)  
(16 lead SOIC)  
JA  
°C/W  
100  
150  
150  
300  
T
Junction temperature  
-55  
-55  
J
T
Storage temperature  
°C  
S
L
T
Lead temperature (soldering, 10 seconds)  
Note 1:  
This IC contains a zener clamp structure between the chip V  
and COM which has a nominal breakdown  
CC  
voltage of 15.6V. Please note that this supply pin should not be driven by a DC, low impedance power source  
greater than the V  
specified in the Electrical Characteristics section.  
CLAMP  
3
ADVANCEDINFORMATION  
IR2157  
Recommended Operating Conditions  
For proper operation the device should be used within the recommended conditions.  
Symbol Definition  
Min.  
Max.  
Units  
V
High side floating supply voltage  
Steady state high side floating supply offset voltage  
Supply voltage  
V
- 0.7  
V
Bs  
CC  
CLAMP  
600  
V
V
-3.0  
S
V
CC  
V
V
CCUV+  
CLAMP  
I
Supply current  
note 2  
10  
mA  
V
CC  
V
V
DC  
lead voltage  
0
220  
1.0  
-500  
0
VCC  
DC  
C
C lead capacitance  
T
pF  
T
R
Deadtime resistance  
-50  
450  
450  
1
DT  
kΩ  
uA  
I
RT  
R
T
lead current (note 3)  
I
RPH lead current (note 3)  
RUN lead current (note 3)  
Shutdown lead current  
Current sense lead current  
Junction temperature  
uA  
uA  
RPH  
I
0
RUN  
I
-1  
mA  
mA  
oC  
SD  
I
-1  
1
CS  
T
-40  
125  
J
Electrical Characteristics  
V
CC  
= V = V  
= 15V +/- 0.25V, R = 40.0k, C = 470 pF, RPH and RUN leads no connection, V  
= 0.0V, R  
=
DT  
BS  
BIAS  
T
T
CPH  
6.1k, V = 0.5V, V = 0.0V, C = 1000pF, T = 25oC unless otherwise specified.  
CS  
SD  
L
A
Supply Characteristics  
Symbol Definition  
Min.  
Typ.  
Max. Units Test Conditions  
V
V
CC  
supply undervoltage positive going  
11.4  
V
rising from 0V  
CCUV+  
CC  
threshold  
V
CCUV-  
V
CC  
supply undervoltage positive going  
9.6  
V
falling from 15V  
V
CC  
threshold  
V
I
V
supply undervoltage lockout hysteresis  
1.8  
150  
200  
HYSTUV  
QCCUV  
CC  
UVLO mode quiescent current  
V
= 10V rising  
CC  
I
Fault-mode quiescent current (undervoltage  
lockout, shutdown, over-current, over-temp)  
µA  
QCCFLT  
I
Quiescent V supply current  
3.8  
R
no connection, C  
T T  
QCC  
CC  
connected to COM  
=36k, R  
mA  
V
I
V
CC  
supply current, f= 50kHz  
4.5  
R
=
DT  
QCC50K  
T
5.6k, C =220pF  
T
V
V
CC  
zener clamp voltage  
15.6  
I
= 10mA  
CC  
CLAMP  
Note 2: Enough current should be supplied into the VCC lead to keep the internal 15.6V zener clamp diode on this lead  
regulating its voltage.  
Note 3: Due to the fact that the RT input is a voltage-controlled current source, the total RT pin current is sum of all of  
the parallel current sources connected to that pin. For optimum oscillator current mirror performance, this total  
current should be kept between 50mA and 500mA. During the preheat mode, the total current flowing out of  
the RT pin consists of the RPH pin current plus the current due to the RT resistor. During the run mode, the  
total RT pin current consists of the RUN pin current plus the the current due to the RT resistor.  
4
ADVANCEDINFORMATION  
IR2157  
Electrical Characteristics (cont.)  
Floating Supply Characteristics  
Symbol Definition  
Min. Typ.  
Max. Units Test Conditions  
I
I
Quiescent V supply current  
BS  
Quiescent V supply current  
BS  
0
5
V
V
= V  
= V  
QBS0  
HO  
S
B
µA  
30  
4
QBS1  
HO  
VBSMIN Minimum required VBS voltage for proper  
HO functionality  
V
µA  
I
Offset supply leakage current  
50  
V = V = 600V  
B S  
LK  
Oscillator I/O Characteristics  
Symbol Definition  
Min.  
Typ.  
Max. Units Test Conditions  
f
Oscillator frequency  
30  
R
T
= 32k, R  
=
osc  
DT  
6.1k, C =470pF  
T
kHz  
R = 6.1k, R  
=
100  
T
DT  
6.1k, C =470pF  
T
df/dV  
df/dT  
d
Oscillator frequency voltage stability  
Oscillator frequency temperature stability  
Oscillator duty cycle  
0.5  
0.02  
50  
%/V  
%/C  
%
V
CCUV  
+ < V  
< 15V  
CC  
-40oC < Tj < 125oC  
V
CT+  
Upper C ramp voltage threshold  
4.0  
2.0  
T
V
V
CT-  
Lower C ramp voltage threshold  
T
mV  
SD = 5V, CS = 2V,  
or Tj > TSD  
V
Fault-mode C pin voltage  
0
CTFLT  
T
2.0  
0
V
V
R pin voltage  
T
Fault-mode R pin voltage  
T
RT  
SD = 5V, CS = 2V,  
or Tj > TSD  
V
RTFLT  
mV  
2.0  
2.0  
0.5  
0.02  
tdlo  
LO output deadtime  
µsec  
toho  
HO output deadtime  
dtd/dV  
dtd/dT  
Deadtime voltage stability  
Deadtime temperature stability  
%/V  
%/C  
V
CCUV  
+ < V  
< 15V  
CC  
-40oC < Tj < 125oC  
Preheat Characteristics  
Symbol Definition  
Min.  
Typ.  
Max. Units Test Conditions  
I
CPH pin charging current  
1.0  
4.0  
µA  
V
= 0V  
CPH  
CPH  
V
V
V
V
CPH pin lgnition mode threshold voltage  
CPH pin run mode threshold voltage  
CPHIGN  
CPHRUN  
CPHCLMP  
CPHFLT  
V
5.15  
7.6  
0
I
= 1mA  
CPH pin clamp voltage  
Fault-mode CPH pin voltage  
CPH  
mV  
SD = 5V, CS = 2V,  
or Tj > TSD  
5
ADVANCEDINFORMATION  
IR2157  
Electrical Characteristics (cont.)  
RPH Characteristics  
Symbol Definition  
Min.  
Typ.  
Max. Units Test Conditions  
I
V
Open circuit RPH pin leakage current  
Fault-mode RPH pin voltage  
0.1  
0
µA  
mV  
V
= 5V,V  
SD = 5V, CS = 2V,  
or Tj > TSD  
= 5V  
RPH  
RPHLK  
RPH  
RPHFLT  
RUN Characteristics  
Symbol Definition  
Min.  
Typ.  
Max. Units Test Conditions  
I
Open circuit RUN pin leakage current  
Fault-mode RUN pin voltage  
0.1  
0
µA  
V
= 5V  
RUNLK  
RUN  
V
mV  
SD = 5V, CS = 2V,  
or Tj > TSD  
RUNFLT  
Protection Circuitry Characteristics  
Symbol Definition  
Min.  
Typ.  
Max. Units Test Conditions  
V
Rising shutdown pin threshold voltage  
Shutdown pin threshold hysteresis  
Over-current sense threshold voltage  
Under-current sense threshold voltage  
Over-current sense propogation delay  
2.0  
150  
1.0  
0.2  
160  
V
SDTH+  
V
mV  
SDHYS  
V
CSTH+  
V
V
CSTH-  
CS  
T
nsec Delay from CS to LO  
or HO  
V
V
Low V  
Low V  
/rectified line input upper threshold  
/rectified line input lower threshold  
5.15  
3.0  
DC+  
BUS  
V
DC-  
BUS  
T
Thermal shutdown junction temperature  
175  
oC  
SD  
Gate Driver Output Characteristics  
Symbol Definition  
Min.  
Typ.  
Max. Units Test Conditions  
VOL  
Low-level output voltage  
High level output voltage  
Turn-on rise time  
0
100  
100  
150  
100  
I
= 0  
o
mV  
V
0
85  
45  
V
- V I = 0  
O, o  
OH  
BIAS  
t
r
f
nsec  
t
Turn-off fall time  
Note 4: When the IC senses an overtemperature condition (Tj > 175ºC), the IC is latched off. In order to reset this Fault  
Latch, the SD pin must be cycled high and then low, or the VCC supply to the IC must be cycled below the  
falling undervoltage lockout threshold (VCCUV-).  
6
ADVANCEDINFORMATION  
IR2157  
Lead Assignments & Definitions  
Lead # Symbol Description  
1
V
DC bus sensing input  
DC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V D C  
C P H  
R P H  
R T  
H O  
VS  
2
C
R
Preheat timing capacitor  
Preheat frequency resistor & ignition capacitor  
Oscillator timing resistor  
Run frequency resistor  
PH  
PH  
T
3
4
R
5
RUN  
VB  
6
C
Oscillator timing capacitor  
Deadtime programming  
Shutdown input  
T
N/C  
V C C  
C O M  
LO  
7
D
T
SD  
8
R U N  
C T  
9
CS  
Current sensing input  
10  
11  
12  
13  
14  
15  
16  
LO  
Low-side gate driver output  
IC Power & signal ground  
Logic & low-side gate driver supply  
Unused  
COM  
V
CC  
N/C  
D T  
V
B
V
S
HO  
High-side gate driver floating supply  
High voltage floating return  
High-side gate driver output  
S D  
C S  
Functional Block Diagram  
3.0V  
1 4  
VB  
HO  
VS  
1
VDC  
S
R
Q
Q
P U L S E  
L E V E L  
SHIFT  
FILTER  
LATCH  
&
1 6  
1 5  
5.1V  
1.0uA  
CPH  
2
7.6V  
5.1V  
4.0V  
T
S
Q
Q
Q
Q
4.0V  
2.0V  
1 2  
1 0  
VCC  
LO  
R1  
R2  
R
3
4
5
RPH  
RT  
IRT  
15.6V  
2.0V  
1 1  
COM  
RUN  
0.2V  
Q
Q
D
CLK  
R
ICT = I RT  
9
CS  
6
7
CT  
DT  
SD  
Q
Q
S
R
1.0V  
8
UNDER-  
VOLTAGE  
DETECT  
OVER-  
T E M P  
DETECT  
2.0V  
7
ADVANCEDINFORMATION  
IR2157  
16 Lead SOIC (narrow body)  
01-3064 00  
16 Lead PDIP  
01-3065 00  
8
ADVANCEDINFORMATION  
IR2157  
Description of Operation & Component Selection Tips  
Supply Bypassing and PC Board Layout  
Rules  
Connecting the IC Ground (COM) to the  
Power Ground  
Component selection and placement on the pc  
board is extremely important when using power  
control ICs VCC should be bypassed to COM as close  
to the IC terminals as possible with a low ESR/ESL  
capacitor, as shown in Figure 1 below.  
Both the low power control circuitry and low side  
gate driver output stage grounds return to this pin  
within the IC. The COM pin should be connected to  
the bottom terminal of the current sense resistor in  
the source of the low side power MOSFET using an  
individual pc board trace, as shown in Figure 2. In  
addition, the ground return path of the timing  
components and VCC decoupling capacitor should  
be connected directly to the IC COM pin, and not via  
separate traces or jumpers to other ground traces on  
the board.  
pin 1  
CBOOT (surface mount)  
DBoot (surface mount)  
IR2157 pin  
1
CVCC (through hole)  
CVCC (surface mount)  
CVCC (surface mount)  
Figure 1: Supply bypassing PCB layout example  
timing  
components  
CVCC (through hole)  
RC S (through hole)  
A rule of thumb for the value of this bypass capacitor  
is to keep its minimum value at least 2500 times the  
value of the total input capacitance (Ciss) of the  
power transistors being driven. This decoupling  
capacitor can be split between a higher valued  
electrolytic type and a lower valued ceramic type  
connected in parallel, although a good quality  
electrolytic (e.g., 10mF) placed immediately adjacent  
to the VCC and COM terminals will work well.  
VBUS return  
Figure 2: COM pin connection PCB layout example  
These connection technique prevents high current  
ground loops from interfering with sensitive timing  
component operation, and allows the entire control  
circuit to reject common-mode noise due to output  
switching.  
In a typical application circuit, the supply voltage to  
the IC is normally derived by means of a high value  
startup resistor (1/4W) from the rectified line voltage,  
in combination with a charge pump from the output  
of the half-bridge. With this type of supply  
arrangement, the internal 15.6V zener clamp diode  
from VCC to COM will determine the steady state IC  
supply voltage.  
9
ADVANCEDINFORMATION  
IR2157  
The heart of this controller is an oscillator which  
resembles those found in many popular PWM voltage  
regulator ICs. In its simplest form, this oscillator  
consists of a timing resistor and capacitor connected  
to ground. The voltage across the timing capacitor  
CT is a sawtooth, where the rising portion of the ramp  
is determined by the current in the RT pin, and the  
falling portion of the ramp is determined by an external  
deadtime resistor RDT. The oscillograph in Figure 4  
illustrates the relationship between the oscillator  
capacitor waveform and the gate driver outputs.  
The Control Sequence & Timing  
Component Selection  
The IR2157 uses the following control sequence  
(Figure 3) to drive rapid start fluorescent lamps.  
fStart  
fPH  
fRun  
fmin  
t
5V  
VCPH  
2V  
VRPH  
2V  
VRUN  
Ignition  
R a m p  
m o d e  
Preheat mode  
Run mode  
Figure 3: IR2157 control sequence  
Figure 4  
The control sequence used in the IR2157 allows  
the Run Mode operating frequency of the ballast to  
be higher than the ignition frequency (i.e., fstart >  
fph > frun > fign). This control sequence is  
recommended for lamp types where the ignition  
frequency is too close to the run frequency to ensure  
proper lamp striking for all production resonant LC  
component tolerances (please note that it is possible  
to use the IR2157 in systems where fstart > fph >  
fign > frun, simply by leaving the RUN pin open).  
The deadtime can be programmed by means of the  
external RDT resistor, given a certain range of CT  
capacitor values, using the graph shown in Figure 5.  
The RT input is a voltage-controlled current source,  
where the voltage is regulated to be approximately  
2.0V. In order to maintain proper linearity between  
the RT pin current and the CT capacitor charging  
current, the value of the RT pin current should be  
kept between 50µA and 500µA. The RT pin can  
also be used as a feedback point for closed loop  
control.  
Six pins in the IC are used to control the Startup,  
Preheat, Ignition Ramp, and Run modes of  
operation, and to allow ballast and lamp engineers  
the flexibility to optimize their designs for virtually  
any lamp type.  
10  
ADVANCEDINFORMATION  
IR2157  
During the Startup Mode, the operating frequency is  
determined by the parallel combination of RPH,  
RSTART , and RT , combined with the values of  
CSTART, CT and RDT , as shown in Figure 6. This  
frequency is normally chosen to ensure that the  
instantaneous voltage across the lamp during the  
first few cycles of operation does not exceed the  
strike potential of the lamp. As the voltage across  
CSTART charges up to the RT pin voltage, the output  
frequency exponentially decays to the preheat  
frequency.  
10  
tDEAD  
(usec)  
CT = 220 pF  
CT = 470 pF  
CT = 1 nF  
1
During the Preheat Mode, the operating frequency  
is determined by the parallel combination of RPH  
and RT , combined with the value of CT and RDT .  
This frequency, along with the Preheat Time, is  
normally chosen to ensure that adequate heating of  
the lamp filaments occurs. Typically, a 4.5:1 ratio of  
0.1  
1
10  
100  
RDT (Kohms)  
Figure 5: Deadtime versus R  
DT  
1.0uA  
CPH  
2
7.6V  
CPH  
5.1V  
S
Q
Q
4.0V  
2.0V  
4.0V  
R 1  
R 2  
RPH  
RT  
3
4
5
CIGN  
RPH  
IRT  
2.0V  
RT  
R RUN  
RUN  
CSTART RSTART  
ICT  
= IRT  
CT  
DT  
6
7
CT  
RDT  
UNDER-  
VOLTAGE  
DETECT  
Figure 6: Oscillator section block diagram with external component connection  
11  
ADVANCEDINFORMATION  
IR2157  
The following graphs, Figures 8 and 9, illustrate the  
relationship between the effective RT resistance (i.e.,  
the parallel combination of resistors which programs  
the CT capacitor charging current) and the operating  
frequency.  
the hot filament-to-cold filament resistance is desired  
for maximum lamp life, as shown in Figure 7  
150  
FREQ  
(KHz)  
CT=220pF,RDT=11K  
CT=470pF,RDT=6.2K  
CT=1nF,RDT=3K  
100  
50  
0
Figure 7: Lamp filament voltage during the  
preheat, ignition ramp and run modes.  
0
5
10  
15  
20  
25  
30  
35  
40  
RT (K ohms)  
The Preheat Time is programmed by means of the  
preheat capacitor, CPH, an internal 1mA current  
source, and an internal threshold on the CPH pin of  
4.0V, according to the following formula:  
Figure 8: fosc versus effective RT (tDEAD = 2.0 usec)  
t
C
PH = 4E6 CPH  
PH = 250E-9 tPH  
,
or  
250  
200  
At the end of the Preheat Time, the internal, open-  
drain transistor holding the RPH pin to ground turns  
off, and the voltage on this pin charges exponentially  
up to the RT pin potential. During this Ignition Ramp  
Mode, the output frequency exponentially decays to  
a minimum value. The rate of decay of this frequency  
is a function of the RPH * CPH time constant. Because  
the Ignition Ramp Mode ends when the voltage on  
the CPH pin reaches 5.15V, the ignition ramp is  
always 1/4th as long as the preheat time.  
When the CPH pin reaches 5.15V, an open-drain  
transistor on the RUN pin turns on, and the external  
RRUN resistor is then in parallel with the RT resistor.  
The Run Mode operating frequency is therefore a  
function of the parallel combination of RRUN and  
RT , and this means that the operating power of the  
lamp can be programmed by means of RRUN .  
CT=220pF, RDT=5.6K  
CT=470pF, RDT=2.7K  
CT=1nF, RDT=1.2K  
150  
FREQ  
(KHz)  
100  
50  
0
0
5
10  
15  
20  
25  
30  
35  
40  
RT (K ohms)  
Figure 9: fosc versus effective RT (tDEAD = 1.0 usec)  
12  
ADVANCEDINFORMATION  
IR2157  
Lamp Protection & Automatic Restart Circuitry Operation  
Three pins on the IR2157 are used for protection, as shown in Figure 10 below. These are VDC (dc bus  
monitor), SD (unlatched shutdown), and CS (latched shutdown).  
+ V BUS  
3.0V  
V D C  
R2  
1
S
R
Q
Q
5.1V  
R1  
C1  
from oscillator  
section  
1.0uA  
T
Q
Q
C P H  
2
R
7.6V  
Q2  
5.1V  
4.0V  
Q
Q
D
0.2V  
C S  
R4  
CLK  
R
9
DT  
S D  
S
R
Q
Q
from lamp  
lower cathode  
R3  
7
8
R5  
C2  
RCS  
1.0V  
UNDER-  
OVER-  
TEMP  
DETECT  
2.0V  
VOLTAGE  
DETECT  
Figure 10: Lamp protection & automatic restart circuitry block diagram with external component connection.  
Sensing the DC Bus Voltage  
pump off of the output of the half-bridge). In this  
case, the voltage on the VDC pin will shut the oscillator  
off, thereby protecting the power transistors from  
potentially hazardous hard switching. Approximately  
2V of hysteresis has been designed into the internal  
comparator sensing the VDC pin, in order to account  
for variations in the dc bus voltage under varying  
load conditions. When the dc bus recovers, the chip  
restarts from the beginning of the control sequence,  
as shown in timing diagram 11 below.  
The first of these protection pins senses the voltage  
on the DC bus by means of an external resistor  
divider and an internal comparator with hysteresis.  
When power is first supplied to the IC at system  
startup, 3 conditions are required before oscillation  
is initiated: 1.) the voltage on the VCC pin must  
exceed the rising undervoltage lockout threshold  
(11.5V), 2.) the voltage at the VDC pin must exceed  
5.1V, and 3.) the voltage on the SD pin must be below  
approximately 1.85V. If a low dc bus condition occurs  
during normal operation, or if power to the ballast is  
shut off, the dc bus will collapse prior to the VCC of  
the chip (assuming the VCC is derived from a charge  
13  
ADVANCEDINFORMATION  
IR2157  
rectified  
AC line  
+VB  
U
S
V
C
R
D
P
P
R
U
C
D
C
H
H
T
H O  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
Q1  
R G  
5
H
S
V S  
V B  
C B  
LR  
E S  
V D C  
L
O
B
C
B
K
E
3
R S  
C B O O T  
U
P P L Y  
R S  
N
U
R
N / C  
D B O O T  
D 1  
C
CS  
N U  
B B E R  
R
N
T
V
C
L
C
O
O
C
4
C R  
E S  
M
CV  
C
D 2  
CT  
T
Q2  
R C  
R G  
L
S
S
D
C S  
R3  
R 4  
R 5  
8
C 2  
S
C P H  
VB S return  
U
15  
L O  
Figure 12: Lamp presence detection circuit  
connection (shaded area)  
15  
H O - V S  
2
S D  
Restart  
RUN mode  
Low VDC  
4
8
Figure 11: VDC pin fault and auto restart  
CT  
C P H  
Lamp Presence Detection and  
Automatic Restart  
15  
The second protection pin, SD, is used for both  
unlatched shutdown and automatic restart functions.  
The SD pin would normally be connected to an  
external circuit which senses the presence of the  
lamp (or lamps), as shown in Figure 12.  
L O  
15  
H O - V S  
When the SD pin exceeds 2.0V (approximately  
150mV of hysteresis is included to increase noise  
immunity), signaling either a lamp fault or lamp  
removal, the oscillator is disabled, both gate driver  
outputs are pulled low, and the chip is put into the  
micropower mode. Since a lamp fault would normally  
lead to a lamp exchange, when a new lamp is  
inserted into the fixture, the SD pin would be pulled  
back to near the ground potential. Under these  
Restart  
RUN mode  
SD mode  
Figure 13: SD pin fault and auto restart  
conditions a reset signal would restart the chip from  
the beginning of the control sequence, as shown in  
the timing diagram in Figure 13.  
14  
ADVANCEDINFORMATION  
IR2157  
and under-resonance conditions, there is a negative-  
going threshold of 0.2V which is enabled at the onset  
of the run mode. The sensing of this 0.2V threshold  
is synchronized with the falling edge of the LO output.  
Thus, for a lamp removal and replacement, the ballast  
automatically restarts the lamp in the proper manner,  
maximizing lamp life and minimizing stress on the  
power MOSFETs or IGBTs. The SD pin contains an  
internal 7.5V zener diode clamp, thereby reducing  
the number of external components required.  
Figures 15, 16 and 17 are oscillographs of fault  
conditions. Figure 15 shows a failure of the lamp to  
strike, Figure 16 shows a hard switching condition  
and Figure 17 shows an under-current condition.  
Half-Bridge Current Sensing and  
Protection  
The third pin used for protection is the CS pin, which  
is normally connected to a resistor in the source of  
the lower power MOSFET, as shown in Figure 14.  
The CS pin is used to sense fault conditions such a  
failure of a lamp to strike, over-current during normal  
operation, hard switching, no load, and operation  
below resonance. If any one of these conditions is  
sensed, the fault latch is set, the oscillator is disabled,  
the gate driver outputs go low, and the chip is put  
into the micropower mode. The CS pin performs its  
sensing functions on a cycle-by-cycle basis in order  
to maximize ballast reliability. failure-to-strike, and  
For the over-current, hard switching fault conditions,  
the 1V, positive-going CS threshold is enabled at  
the end of the preheat time. For the under-current  
Figure 15: Lamp failure to strike  
rectified  
AC line  
+V BUS  
V D C  
C P H  
RPH  
RT  
HO  
V S  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
Q1  
RGHS  
1
/
Bridge output  
2
V B  
RSUPPLY  
CB O O T  
RSNUBBER  
N/C  
V C C  
C O M  
LO  
DB O O T  
D1  
CSNUBBER  
RUN  
CT  
CV C C  
D2  
DT  
Q2  
RG L S  
S D  
C S  
R3  
RC S  
VBUS return  
Figure 14: Half-bridge current sensing circuit  
connection (shaded area)  
Figure 16: Hard switching condition  
15  
ADVANCEDINFORMATION  
IR2157  
Recovery from such a fault condition is accomplished  
by cycling either SD pin or the VCC pin. When a  
lamp is removed, the SD pin goes high, the fault  
latch is reset, and the chip is held off in an unlatched  
state. Lamp replacement causes the SD pin to go  
low again, reinitiating the startup sequence. The  
fault latch can also be reset by the undervoltage  
lockout signal, if VCC falls below the lower  
undervoltage threshold.  
Bootstrap Supply Considerations  
Power is normally supplied to the high-side circuitry  
by means of a simple charge pump from VCC, as  
shown in Figure 19 below.  
rectified  
AC line  
+V BUS  
V D C  
C P H  
RPH  
RT  
HO  
V S  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
Q1  
Figure 17: Operation below resonance  
RGHS  
1
/
Bridge output  
2
V B  
RSUPPLY  
CB O O T  
RSNUBBER  
N/C  
V C C  
C O M  
LO  
DB O O T  
D1  
CSNUBBER  
RUN  
CT  
CV C C  
D2  
DT  
Q2  
RG L S  
S D  
C S  
R3  
RC S  
VBUS return  
Figure 19: Typical bootstrap supply connection  
with VCC charge pump from half-bridge output  
(shaded area)  
A high voltage, fast recovery diode DBOOT (the so-  
called bootstrap diode) is connected between VCC  
(anode) and VB (cathode), and a capacitor CBOOT  
(the so-called bootstrap capacitor) is connected  
between the VB and VS pins. During half-bridge  
switching, when MOSFET Q2 is on and Q1 is off, the  
bootstrap capacitor CBOOT is charged from the VCC  
decoupling capacitor, through the bootstrap diode  
DBOOT, and through Q2. Alternately, when Q2 is off  
and Q1 is on, the bootstrap diode is reverse-biased,  
Figure 18: Auto restart for lamp replacement  
16  
ADVANCEDINFORMATION  
IR2157  
and the bootstrap capacitor (which ‘floats’ on the  
source of the upper power MOSFET) serves as the  
power supply to the upper gate driver CMOS circuitry.  
Since the quiescent current in this CMOS circuitry is  
very low (typically 45mA in the on-state), the majority  
of the drop in the VBS voltage when Q1 is on occurs  
due to the transfer of charge from the bootstrap  
capacitor to the gate of the power MOSFET.  
pin  
1
C BOOT (surface mount)  
D Boot (surface mount)  
C VCC (through hole)  
CVCC (surface mount)  
VB should be bypassed to VS as close as possible  
to the pins of the IC with a low ESR/ESL capacitor. A  
PCB layout example is shown in figure 20. A rule of  
thumb for the value of this capacitor is to keep its  
minimum value at least 50 times the value of the total  
input capacitance (Ciss) of the MOSFET or IGBT being  
driven. In addition, the VS pin should be connected  
directly to the high side power MOSFET source.  
Figure 20: Supply bypassing PCB layout example  
Characteristic Curves  
0.15  
100  
10  
1
T = -25  
0.125  
T = 25C  
T = 75C  
T = 125C  
0.1  
Iqcc  
(mA)  
0.075  
Iqcc  
(mA)  
0.1  
0.05  
0.025  
0
0.01  
0.001  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
14  
16  
VCC (volts)  
VCC (volts)  
Figure 22: I  
versus V  
(V < V  
CC  
and temperature  
)
CC+  
QCC  
CC  
Figure 21: I  
versus V  
QCC  
CC  
4
30  
25  
20  
15  
10  
5
T = -25  
T = 25C  
T = 75C  
T = 125C  
3.5  
Iqcc  
(mA)  
Iqcc  
(mA)  
3
T = -25  
T = 25C  
T = 75C  
T = 125C  
2.5  
11.5  
0
12.5  
13.5  
14.5  
14.5  
15  
15.5  
VCC (volts)  
16  
16.5  
VCC (volts)  
Figure 24: V  
versus I  
and temperature  
QCC  
Figure 23: I  
versus V  
and temperature  
)
CLAMP  
QCC  
CC  
(V > V  
CC  
CC+  
17  
ADVANCEDINFORMATION  
IR2157  
80  
70  
60  
50  
12  
11.5  
11  
T = -25C  
T = 25C  
T = 75C  
T = 125C  
Vccuv+  
Vccuv-  
Vccuv  
(V)  
Iqbs1  
40  
10.5  
10  
(uA)  
30  
20  
10  
0
9.5  
9
0
2
4
6
8
10  
12  
14  
16  
18  
20  
-25  
0
25  
50  
Temperature (C)  
75  
100  
125  
VBS (volts)  
Figure 26: I  
versus V  
BS  
Figure 25: V  
and V  
versus temperature  
QBS1  
CCUV+  
CCUV-  
54  
53.75  
53.5  
210  
207.5  
205  
T = -25C  
T = 25C  
T = 75C  
T = 125C  
53.25  
202.5  
200  
fOSC  
(KHz)  
fOSC  
(KHz)  
53  
52.75  
52.5  
52.25  
52  
197.5  
195  
T = -25C  
T = 25C  
T = 75C  
T = 125C  
192.5  
190  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
11  
11.5  
12  
12.5  
13  
VCC (volts)  
13.5  
14  
14.5  
15  
VCC (volts)  
Figure 27: f  
versus V and temperature  
Figure 28: f versus V and temperature  
OSC CC  
OSC  
CC  
(RT=330k, CT=300pF)  
(RT=6.2k, CT=300pF)  
1000  
990  
980  
970  
960  
950  
940  
930  
920  
910  
900  
80  
T = -25C  
T = 25C  
T = 75C  
T = -25C  
T = 25C  
T = 75C  
T = 125C  
70  
60  
50  
40  
30  
20  
T = 125C  
tDEAD  
(nsec)  
tfall  
(nsec)  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
VCC (volts)  
VCC (volts)  
Figure 29: t  
versus V and temperature  
Figure 30: t  
versus V and temperature  
fall CC  
DEAD  
CC  
18  
ADVANCEDINFORMATION  
IR2157  
1.1  
160  
140  
120  
100  
80  
T = -25C  
T = 25C  
T = 75C  
T = -25C  
T = 25C  
T = 75C  
T = 125C  
1.08  
T = 125C  
1.06  
CS+  
(volts)  
trise  
(nsec)  
1.04  
1.02  
1
60  
40  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
VCC (volts)  
VCC (volts)  
Figure 32: CS+ threshold versus V  
and temperature  
Figure 31: t  
versus V  
and temperature  
CC  
CC  
rise  
0.235  
2.15  
2.125  
2.1  
T = -25C  
T = 25C  
T = 75C  
T = 125C  
T = -25C  
T = 25C  
T = 75C  
T = 125C  
0.23  
0.225  
0.22  
SD+  
(volts)  
CS-  
(volts)  
2.075  
2.05  
2.025  
2
0.215  
0.21  
0.205  
0.2  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
VCC (volts)  
VCC (volts)  
Figure 33: CS- threshold versus V  
and temperature  
Figure 34: SD+ threshold versus V  
and temperature  
CC  
CC  
0.25  
5.4  
5.35  
5.3  
T = -25C  
T = 25C  
T = 75C  
T = 125C  
T = -25C  
T = 25C  
T = 75C  
T = 125C  
0.225  
0.2  
SD  
5.25  
hysterisis  
VDC+  
(volts)  
(volts)  
0.175  
5.2  
5.15  
5.1  
5.05  
5
0.15  
0.125  
0.1  
11  
11.5  
12  
12.5  
13  
VCC (volts)  
13.5  
14  
14.5  
15  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
VCC (volts)  
Figure 35: SD hysterisis versus V and temperature  
Figure 36: VDC+ threshold versus V and temperature  
CC  
CC  
19  
ADVANCEDINFORMATION  
IR2157  
3.3  
3.25  
3.2  
4.15  
T = -25C  
T = 25C  
T = 75C  
T = 125C  
T = -25C  
T = 25C  
T = 75C  
4.1  
T = 125C  
4.05  
VCPHIGN  
(volts)  
VDC-  
3.15  
(volts)  
4
3.95  
3.9  
3.1  
3.05  
3
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
VCC (volts)  
VCC (volts)  
Figure 38: V  
threshold versus V and  
CC  
temperature  
CPHIGN  
Figure 37: VDC- threshold versus V  
and temperature  
CC  
5.25  
5.2  
1.2  
1.15  
1.1  
T = -25C  
T = 25C  
T = 75C  
T = 125C  
5.15  
1.05  
1
VCPHRUN  
(volts)  
ICPH  
(uA)  
5.1  
5.05  
5
0.95  
0.9  
T = -25C  
T = 25C  
T = 75C  
T = 125C  
0.85  
0.8  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
VCC (volts)  
VCC (volts)  
Figure 39: V  
threshold versus V and  
CC  
temperature  
CPHRUN  
Figure 40: I  
versus V  
and temperature  
CC  
CPH  
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 322 3331  
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020  
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T 3Z2 Tel: (905) 453-2200  
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590  
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111  
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171 Tel: 81 3 3983 0086  
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: 65 838 4630  
IR TAIWAN: 16 Fl. Suite D..207, Sec.2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936  
http://www.irf.com/  
Data and specifications subject to change without notice. 3/1/99  
20  

相关型号:

IR21571

FULLY INTEGRATED BALLAST CONTROL IC
INFINEON

IR21571PBF

Fluorescent Light Controller, 0.5A, 50.5kHz Switching Freq-Max, PDIP16, LEAD FREE, MS-001AA, DIP-16
INFINEON

IR21571S

FULLY INTEGRATED BALLAST CONTROL IC
INFINEON

IR21571SPBF

Fluorescent Light Controller, 0.5A, 50.5kHz Switching Freq-Max, PDSO16, LEAD FREE, MS-012AC, SOIC-16
INFINEON

IR21571STR

暂无描述
INFINEON

IR21571STRPBF

Fluorescent Light Controller, 0.5A, 50.5kHz Switching Freq-Max, PDSO16, MS-012AC, SOIC-16
INFINEON

IR2157S

Ballast Control. Below Resonance Protection. Thermal Overload Protection. Protection from Failure to Strike. Programmable Preheat Time and Run Frequency. Programmable Deadtime in a 16-lead SOIC Narrow package
ETC

IR2157_07

FULLY INTEGRATED BALLAST CONTROL IC
INFINEON

IR2159

DIMMING BALLAST CONTROL IC
INFINEON

IR21591

DIMMING BALLAST CONTROL IC
INFINEON

IR21591PBF

Fluorescent Light Controller, 0.5A, 230kHz Switching Freq-Max, BICMOS, PDIP16, PLASTIC, MS-001A, DIP-16
INFINEON

IR21591S

DIMMING BALLAST CONTROL IC
INFINEON