IR2302PBF [INFINEON]

HALF-BRIDGE DRIVER; 半桥驱动器
IR2302PBF
型号: IR2302PBF
厂家: Infineon    Infineon
描述:

HALF-BRIDGE DRIVER
半桥驱动器

驱动器 接口集成电路 光电二极管
文件: 总22页 (文件大小:205K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60207 Rev.A  
( )  
S & (PbF)  
IR2302  
HALF-BRIDGE DRIVER  
Packages  
Features  
Floating channel designed for bootstrap operation  
Fully operational to +600V  
Tolerant to negative transient voltage  
dV/dt immune  
Gate drive supply range from 5 to 20V  
8-Lead SOIC  
IR2302(S)  
Undervoltage lockout for both channels  
(Also available LEAD-FREE (PbF))  
3.3V, 5V and 15V input logic compatible  
8-Lead PDIP  
IR2302  
Cross-conduction prevention logic  
Matched propagation delay for both channels  
High side output in phase with IN input  
2106/2301//2108//2109/2302/2304 Feature Comparison  
Logic and power ground +/- 5V offset.  
ꢍꢂꢉꢎꢏ  
Internal 540ns dead-time  
ꢄꢅꢆꢇꢃ  
ꢈꢉꢊꢋꢌ  
ꢌꢉꢅꢐꢇꢌꢃꢋꢉꢅ  
ꢆꢂꢑꢒꢑꢅꢃꢋꢉꢅ  
ꢈꢉꢊꢋꢌ  
Lower di/dt gate driver for better noise  
ꢀꢁꢂꢃ  
ꢓꢑꢁꢔꢋꢕꢑ  
ꢖꢂꢉꢇꢅꢐꢗꢀꢋꢅꢎ  
immunity  
ꢘꢙꢚꢛꢜꢘꢝꢚꢙ  
ꢘꢙꢚꢛ"  
Shut down input turns off both channels  
ꢍꢞ!  
&''ꢜꢍꢞ!  
ꢍꢞ!  
#ꢄ$ꢜ%ꢄ$  
#ꢄ$ꢜ%ꢄ$  
ꢅꢉ  
ꢅꢉꢅꢑ  
8-Lead SOIC also available LEAD-FREE (PbF).  
ꢘꢙꢚ*  
ꢄꢅꢃꢑꢂꢅꢁꢈꢗ7"ꢚꢅꢎ  
ꢀꢂꢉꢊꢂꢁꢕꢕꢁ:ꢈꢑꢗꢚ;7"ꢠ7µꢎ  
ꢄꢅꢃꢑꢂꢅꢁꢈꢗ7"ꢚꢅꢎ  
ꢟꢑꢎ  
ꢘꢙꢚ*"  
&''ꢜꢍꢞ!  
ꢍꢞ!  
Description  
ꢘꢙꢚ=ꢜꢘꢝꢚꢘ  
ꢘꢙꢚ="  
ꢄ$ꢜ'ꢓ  
ꢟꢑꢎ  
ꢟꢑꢎ  
The IR2302(S) are high voltage, high speed  
power MOSFET and IGBT drivers with depen-  
dent high and low side referenced output  
ꢀꢂꢉꢊꢂꢁꢕꢕꢁ:ꢈꢑꢗꢚ;7"ꢠ7µꢎ  
&''ꢜꢍꢞ!  
#ꢄ$ꢜ%ꢄ$  
ꢄꢅꢃꢑꢂꢅꢁꢈꢗꢙꢚꢚꢅꢎ  
ꢘꢝꢚ"  
ꢍꢞ!  
channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction.  
The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers  
feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can  
be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to  
600 volts.  
Typical Connection  
ꢇꢆꢗꢃꢉꢗꢛꢚꢚ&  
&
ꢍꢍ  
&
&
>
ꢍꢍ  
ꢄ$  
ꢄ$  
#ꢞ  
ꢔꢞ  
%ꢞ?ꢓ  
'ꢓ  
'ꢓ  
&
'
ꢍꢞ!  
%ꢞ  
IR2302  
(Refer to Lead Assignments for  
correct configuration). This/  
These diagram(s) show elec-  
trical connections only. Please refer to our Application Notes  
and DesignTips for proper circuit board layout.  
www.irf.com  
1
IR2302( )  
S
& (PbF)  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-  
eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured  
under board mounted and still air conditions.  
Symbol  
Definition  
High side floating absolute voltage  
High side floating supply offset voltage  
High side floating output voltage  
Low side and logic fixed supply voltage  
Low side output voltage  
Min.  
Max.  
Units  
V
B
-0.3  
625  
V
S
V
B
- 25  
V
+ 0.3  
+ 0.3  
25  
B
V
V
- 0.3  
V
HO  
S
B
V
V
CC  
-0.3  
-0.3  
V
V
V
+ 0.3  
CC  
LO  
V
IN  
Logic input voltage (IN ꢣ SD)  
COM - 0.3  
+ 0.3  
CC  
dV /dt  
S
Allowable offset supply voltage transient  
-50  
50  
V/ns  
W
P
D
Package power dissipation @ T +25°C (8 Lead PDIP)  
A
1.0  
0.625  
125  
200  
150  
150  
300  
(8 Lead SOIC)  
Rth  
JA  
Thermal resistance, junction to ambient  
(8 Lead PDIP)  
(8 Lead SOIC)  
°C/W  
T
J
Junction temperature  
T
S
Storage temperature  
°C  
T
L
Lead temperature (soldering, 10 seconds)  
Recommended Operating Conditions  
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the  
recommended conditions. The V offset rating is tested with all supplies biased at 15V differential.  
S
Symbol  
Definition  
High side floating supply absolute voltage  
High side floating supply offset voltage  
High side floating output voltage  
Low side and logic fixed supply voltage  
Low side output voltage  
Min.  
Max.  
Units  
VB  
V
+ 5  
V + 20  
S
S
V
S
Note 1  
600  
V
HO  
V
S
V
B
V
V
5
0
20  
CC  
V
LO  
V
CC  
V
Logic input voltage (IN ꢣ SD)  
COM  
-40  
V
IN  
CC  
T
A
Ambient temperature  
150  
°C  
Note 1ꢡ Logic operational for V of -5 to +600V. Logic state held for V of -5V to -V . (Please refer to the Design Tip  
S S BS  
DT9ꢢ-3 for more details).  
2
www.irf.com  
IR2302( )  
S
& (PbF)  
Dynamic Electrical Characteristics  
V
(V , V ) ꢤ 15V, C ꢤ 1000 pF, and T ꢤ 25°C unless otherwise specified.  
BIAS CC BS  
L
A
Symbol  
Definition  
Turn-on propagation delay  
Turn-off propagation delay  
Min. Typ. Max. Units Test Conditions  
t
550  
ꢢ50  
200  
200  
0
950  
280  
280  
50  
V ꢤ 0V  
S
on  
t
V ꢤ 0V or 600V  
S
off  
t
sd  
Shut-down propagation delay  
MT  
Delay matching, HS ꢣ LS turn-on/off  
Turn-on rise time  
nsec  
t
130  
50  
220  
80  
V
V
ꢤ 0V  
ꢤ 0V  
r
S
S
t
f
Turn-off fall time  
DT  
Deadtimeꢡ LO turn-off to HO turn-on(DT  
400  
540  
680  
LO-HO) ꢣ  
HO turn-off to LO turn-on (DT  
HO-LO)  
MDT  
Deadtime matching ꢤ DT  
- DT  
0
60  
LO - HO  
HO-LO  
Static Electrical Characteristics  
V
(V , V ) ꢤ 15V and T ꢤ 25°C unless otherwise specified. The V , V and I parameters are referenced to  
BIAS  
CC BS  
A
IL IH  
IN  
COM and are applicable to the respective input leadsꢡ IN and SD. The V , I and Ron parameters are referenced to COM  
O
O
and are applicable to the respective output leadsꢡ HO and LO.  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
V
Logic “1” input voltage for HO ꢣ logic “0” for LO  
Logic “0” input voltage for HO ꢣ logic “1” for LO  
2.9  
0.8  
V
V
V
V
ꢤ 10V to 20V  
ꢤ 10V to 20V  
ꢤ 10V to 20V  
ꢤ 10V to 20V  
ꢤ 20 mA  
IH  
CC  
CC  
CC  
V
IL  
V
SD,TH+  
SD input positive going threshold  
SD input negative going threshold  
2.9  
V
V
0.8  
1.4  
0.6  
50  
100  
1.6  
20  
2
SD,TH-  
CC  
I
V
OH  
High level output voltage, V  
- V  
0.8  
0.3  
BIAS  
O
O
V
OL  
Low level output voltage, V  
I
ꢤ 20 mA  
O
O
I
Offset supply leakage current  
V
ꢤ V ꢤ 600V  
B S  
LK  
µA  
mA  
µA  
I
Quiescent V supply current  
BS  
20  
0.4  
60  
1.0  
5
V
ꢤ 0V or 5V  
QBS  
IN  
I
Quiescent V  
supply current  
V
ꢤ 0V or 5V  
IN  
QCC  
CC  
I
Logic “1” input bias current  
Logic “0” input bias current  
IN ꢤ 5V, SD ꢤ 0V  
IN ꢤ 0V, SD ꢤ 5V  
IN+  
I
IN-  
V
V
and V supply undervoltage  
BS  
3.3  
4.1  
5
CCUV+  
CC  
V
positive going threshold  
BSUV+  
V
V
and V supply undervoltage  
BS  
3
3.8  
0.3  
4.ꢢ  
CCUV-  
CC  
V
V
negative going threshold  
Hysteresis  
BSUV-  
V
0.1  
CCUVH  
V
BSUVH  
I
Output high short circuit pulsed vurrent  
Output low short circuit pulsed current  
120  
250  
200  
350  
V
ꢤ 0V, PW 10 µs  
O+  
O
mA  
I
V
O
ꢤ 15V,PW 10 µs  
O-  
www.irf.com  
3
IR2302( )  
S
& (PbF)  
Functional Block Diagrams  
VB  
UV  
DETECT  
HO  
R
R
Q
PULSE  
FILTER  
HV  
LEVEL  
SHIFTER  
S
VSS/COM  
LEVEL  
SHIFT  
IN  
VS  
PULSE  
GENERATOR  
VCC  
LO  
DEADTIME  
UV  
DETECT  
+5V  
VSS/COM  
LEVEL  
SHIFT  
DELAY  
SD  
COM  
4
www.irf.com  
IR2302( )  
S
& (PbF)  
Lead Definitions  
Symbol Description  
IN  
Logic input for high and low side gate driver outputs (HO and LO), in phase with HO  
Logic input for shutdown  
SD  
V
High side floating supply  
B
HO  
High side gate drive output  
V
High side floating supply return  
Low side and logic fixed supply  
Low side gate drive output  
S
V
CC  
LO  
COM  
Low side return  
Lead Assignments  
V
V
1
2
3
4
V
B
8
1
2
3
4
V
B
8
CC  
CC  
HO  
HO  
IN  
IN  
V
S
V
S
SD  
6
5
SD  
6
5
LO  
LO  
COM  
COM  
8 Lead PDIP  
8 Lead SOIC  
(Also available LEAD-FREE (PbF)  
IR2302  
IR2302S  
www.irf.com  
5
IR2302( )  
S
& (PbF)  
ꢄ$  
ꢄ$_%ꢞ`  
7ꢚ]  
7ꢚ]  
'ꢓ  
ꢄ$_#ꢞ`  
ꢉꢅ  
ꢉꢥꢥ  
#ꢞ  
%ꢞ  
=ꢚ]  
=ꢚ]  
%ꢞ  
#ꢞ  
ꢙꢚ]  
ꢙꢚ]  
Figure 1. Input/Output Timing Diagram  
Figure 2. Switching Time Waveform Definitions  
7ꢚ]  
7ꢚ]  
ꢄ$  
=ꢚ]  
'ꢓ  
ꢓꢔ  
ꢙꢚ]  
#ꢞ  
%ꢞ  
%ꢞꢏ#ꢞ  
7ꢚ]  
ꢓꢔ  
#ꢞꢏ%ꢞ  
=ꢚ]  
ꢎꢐ  
ꢙꢚ]  
#ꢞ  
%ꢞ  
=ꢚ]  
!ꢓꢔ^  
ꢓꢔ  
ꢏꢗꢗꢓꢔ  
%ꢞꢏ#ꢞ  
#ꢞꢏ%ꢞ  
Figure 4. Deadtime Waveform Definitions  
Figure 3. Shutdown Waveform Definitions  
6
www.irf.com  
IR2302( )  
S
& (PbF)  
$_%ꢞ`  
7ꢚ]  
7ꢚ]  
$_#ꢞ`  
%ꢞ  
#ꢞ  
ꢙꢚ]  
!ꢔ  
!ꢔ  
=ꢚ]  
%ꢞ  
#ꢞ  
Figure 5. Delay Matching Waveform Definitions  
1500  
1300  
1300  
1100  
900  
Max.  
1100  
Max.  
Typ.  
900  
Typ.  
Min.  
700  
Min.  
700  
500  
500  
300  
300  
-50 -25  
0
25 50 75 100 125  
5
10  
15  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 6A. Turn-on Propagation Delay  
vs. Temperature  
Figure 6B. Turn-on Propagation Delay  
vs. Supply Voltage  
www.irf.com  
IR2302( )  
S
& (PbF)  
1300  
500  
400  
300  
200  
100  
0
1100  
Max.  
900  
Typ.  
Max.  
Typ.  
700  
Min.  
500  
300  
3
6
9
12  
15  
-50 -25  
0
25 50  
75 100 125  
Temperature (oC)  
Input Voltage (V)  
Figure 6C. Turn-on Propagation Delay  
vs. Input Voltage  
Figure 7A. Turn-off Propagation Delay  
vs. Temperature  
700  
600  
500  
400  
300  
200  
100  
400  
350  
300  
250  
200  
150  
100  
Max.  
Typ.  
Max.  
Typ.  
3
6
9
12  
15  
5
10  
15  
20  
Input Voltage (V)  
Supply Voltage (V)  
Figure 7C. Turn-off Propagation Delay  
vs. Input Voltage  
Figure 7B. Turn-off Propagation Delay  
vs. Supply Voltage  
8
www.irf.com  
IR2302( )  
S
& (PbF)  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
Max.  
Max.  
Typ.  
Typ.  
5
10  
15  
20  
-50 -25  
0
25 50  
75 100 125  
Supply Voltage (V)  
Temperature (oC)  
Figure 8A. Shut-down Propagation Delay  
vs. Temperature  
Figure 8B. Shut-down Propagation Delay  
vs. Supply Voltage  
400  
350  
500  
400  
300  
300  
Max.  
250  
200  
Max.  
Typ.  
200  
100  
150  
100  
Typ.  
0
-50 -25  
0
25 50  
75 100 125  
3
6
9
12  
15  
Temperature (oC)  
Input Voltage (V)  
Figure 8C. Shut-down Propagation Delay  
vs. Input Voltage  
Figure 9A. Turn-on Rise Time  
vs. Temperature  
www.irf.com  
9
IR2302( )  
S
& (PbF)  
700  
600  
200  
150  
100  
50  
500  
Max.  
400  
300  
Typ.  
Max.  
Typ.  
200  
100  
0
0
5
-50 -25  
0
25  
50 75 100 125  
10  
15  
20  
Supply Voltage (V)  
Temperature (oC)  
Figure 9B. Turn-on Rise Time  
vs. Supply Voltage  
Figure 10A. Turn-off Fall Time  
vs. Temperature  
200  
150  
100  
50  
1000  
800  
600  
400  
200  
Max.  
Max.  
Typ.  
Min.  
Typ.  
0
-50 -25  
0
25 50 75 100 125  
5
10  
15  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 10B. Turn-off Fall Time  
vs. Supply Voltage  
Figure 11A. Deadtime  
vs. Temperature  
10  
www.irf.com  
IR2302( )  
S
& (PbF)  
1000  
800  
600  
400  
200  
0
7
6
5
4
3
2
1
0
Max.  
Max.  
Typ.  
Min.  
Typ.  
Min.  
0
50  
100  
RDT (K )  
150  
200  
5
10  
15  
20  
Supply Voltage (V)  
Figure 11B. Deadtime  
vs. Supply Voltage  
Figure 11C. Deadtime vs. RDT  
6
6
5
4
3
2
1
0
5
4
3
2
1
0
Max.  
Max.  
-50 -25  
0
25  
50  
75 100 125  
5
10  
15  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 12A. Logic "1" Input Voltage  
vs. Temperature  
Figure 12B. Logic "1" Input Voltage  
vs. Supply Voltage  
www.irf.com  
11  
IR2302( )  
S
& (PbF)  
6
5
4
3
2
1
0
6
5
4
3
2
Min.  
Min.  
1
0
5
10  
15  
20  
-50 -25  
0
25  
50  
75 100 125  
Supply Voltage (V)  
Temperature (oC)  
Figure 13B. Logic "0" Input Voltage  
vs. Supply Voltage  
Figure 13A. Logic "0" Input Voltage  
vs. Temperature  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Max.  
Max.  
-50 -25  
0
25  
50  
75 100 125  
5
10  
15  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 14A. SD Input Positive Going Threshold  
vs. Temperature  
Figure 14B. SD Input Positive Going Threshold  
vs. Supply Voltage  
12  
www.irf.com  
IR2302( )  
S
& (PbF)  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Min.  
Min.  
-50 -25  
0
25  
50  
75 100 125  
5
10  
15  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 15A. SD Input Negative Going Threshold  
vs. Temperature  
Figure 15B. SD Input Negative Going Threshold  
vs. Supply Voltage  
4
3
2
6
5
4
Max.  
3
2
Max.  
1
Typ.  
1
0
Typ.  
0
-50 -25  
0
25  
50  
75 100 125  
5
10  
15  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 16B. High Level Output Voltage  
vs. Supply Voltage  
Figure 16A. High Level Output Voltage  
vs. Temperature  
www.irf.com  
13  
IR2302( )  
S
& (PbF)  
2.0  
1.5  
1.0  
2.0  
1.5  
1.0  
0.5  
0.0  
Max.  
Max.  
0.5  
Typ.  
Typ.  
0.0  
5
10  
15  
20  
-50 -25  
0
25  
50  
75 100 125  
Temperature (oC)  
Supply Voltage (V)  
Figure 17B. Low Level Output Voltage  
vs. Supply Voltage  
Figure 17A. Low Level Output Voltage  
vs. Temperature  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
Max.  
Max.  
-50 -25  
0
25 50  
75 100 125  
100  
200  
300  
400  
500  
600  
Temperature (oC)  
Offset Supply Voltage (V)  
Figure 18A. Offset Supply Leakage Current  
vs. Temperature  
Figure 18B. Offset Supply Leakage Current  
vs. Offset Supply Voltage  
14  
www.irf.com  
IR2302( )  
S
& (PbF)  
200  
150  
100  
50  
200  
150  
100  
50  
Max.  
Typ.  
Max.  
Typ.  
Min.  
Min.  
0
0
-50 -25  
0
25 50  
75 100 125  
5
10  
15  
20  
Temperature (oC)  
V
BS Supply Voltage (V)  
Figure 19A. Quiescent VBS Supply Current  
vs. Temperature  
Figure 19B. Quiescent VBS Supply Current  
vs. VBS Supply Voltage  
3.0  
3
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
2
1.5  
1
Max  
Typ.  
Min.  
Max.  
Typ.  
0.5  
0
Min.  
-50 -25  
0
25  
50  
75 100 125  
5
10  
15  
20  
Temperature (oC)  
V
CC Supply Voltage (V)  
Figure 20B. Quiescent VCC Supply Current  
vs. VCC Supply Voltage  
Figure 20A. Quiescent VCC Supply Current  
vs. Temperature  
www.irf.com  
15  
IR2302( )  
S
& (PbF)  
60  
50  
40  
30  
20  
50  
40  
30  
20  
10  
0
Max.  
Typ.  
Max.  
10  
Typ.  
0
-50 -25  
0
25  
50  
75 100 125  
5
10  
15  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 21A. Logic "1" Input Bias Current  
vs. Temperature  
Figure 21B. Logic "1" Input Bias Current  
vs. Supply Voltage  
5
4
3
2
1
0
5
4
3
Max.  
Max.  
2
1
0
-50 -25  
0
25  
50  
75 100 125  
5
10  
15  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 22B. Logic "0" Input Bias Current  
vs. Supply Voltage  
Figure 22A. Logic "0" Input Bias Current  
vs. Temperature  
16  
www.irf.com  
IR2302( )  
S
& (PbF)  
6
5
4
3
2
6
5
4
3
2
Max.  
Max.  
Typ.  
Min.  
Typ.  
Min.  
-50 -25  
0
25 50 75 100 125  
-50 -25  
0
25 50 75 100 125  
Temperature (oC)  
Temperature (oC)  
Figure 23. VCC and VBS Undervoltage  
Threshold (+) vs. Temperature  
Figure 24. VCC and VBS Undervoltage  
Threshold (-) vs. Temperature  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
Typ.  
Min.  
Typ.  
Min.  
-50 -25  
0
25  
50 75 100 125  
5
10  
15  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 25A. Output Source Current  
vs. Temperature  
Figure 25B. Output Source Current  
vs. Supply Voltage  
www.irf.com  
1ꢢ  
IR2302( )  
S
& (PbF)  
600  
500  
400  
300  
200  
100  
0
600  
500  
Typ.  
400  
300  
Min.  
200  
100  
0
Typ.  
Min.  
-50 -25  
0
25  
50 75 100 125  
5
10  
15  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 26B. Output Sink Current  
vs. Supply Voltage  
Figure 26A. Output Sink Current  
vs. Temperature  
0
-2  
140  
120  
100  
80  
Typ.  
-4  
140V  
70V  
0V  
-6  
-8  
60  
-10  
-12  
40  
20  
5
10  
15  
20  
1
10  
Frequency (KHz)  
Figure 28. IR2302 vs. Frequency (IRFBC20),  
=33 , VCC=15V  
100  
1000  
V
BS Floating Supply Voltage (V)  
Figure 27. Maximum VS Negative Offset  
vs. VBS Floating Supply Voltage  
R
gate  
18  
www.irf.com  
IR2302( )  
S
& (PbF)  
140  
120  
100  
80  
140  
120  
100  
80  
140V  
70V  
0V  
140V  
70V  
0V  
60  
60  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 29. IR2302 vs. Frequency (IRFBC30),  
Figure 30. IR2302 vs. Frequency (IRFBC40),  
Rgate=15 , VCC=15V  
Rgate=22, VCC=15V  
140V 70V  
0V  
140  
120  
100  
80  
140  
120  
100  
80  
140V  
70V  
0V  
60  
60  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 31. IR2302 vs. Frequency (IRFPE50),  
Rgate=10 , VCC=15V  
Figure 32. IR2302S vs. Frequency (IRFBC20),  
Rgate=33 , VCC=15V  
www.irf.com  
19  
IR2302( )  
S
& (PbF)  
140V70V  
140  
120  
100  
80  
140  
120  
100  
80  
140V  
70V  
0V  
0V  
60  
60  
40  
40  
20  
20  
1
1
10  
100  
1000  
10  
Frequency (KHz)  
Figure 33. IR2302S vs. Frequency (IRFBC30),  
Rgate=22 , VCC=15V  
100  
1000  
Frequency (KHz)  
Figure 34. IR2302S vs. Frequency (IRFBC40),  
=15 , VCC=15V  
R
gate  
140V70V 0V  
140  
120  
100  
80  
60  
40  
20  
1
10  
100  
1000  
Frequency (KHz)  
Figure 35. IR2302S vs. Frequency  
(IRFPE50), Rgate=10 , VCC=15V  
20  
www.irf.com  
IR2302( )  
S
& (PbF)  
Case Outlines  
01-6014  
8 Lead PDIP  
01-3003 01 (MS-001AB)  
IN C H E S  
MILLIMETERS  
DIM  
A
D
B
MIN  
.0532  
MAX  
.0688  
.0098  
.020  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
FOOTPRINT  
8X 0.72 [.028]  
5
A
A1 .0040  
b
c
.013  
.0075  
.189  
.0098  
.1968  
.1574  
8
1
7
2
6
3
5
6
D
E
e
H
E
.1497  
0.25 [.010]  
A
.050 BASIC  
1.27 BASIC  
6.46 [.255]  
4
e 1 .025 BASIC  
0.635 BASIC  
H
K
L
y
.2284  
.0099  
.016  
0°  
.2440  
.0196  
.050  
8°  
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
3X 1.27 [.050]  
e
6X  
8X 1.78 [.070]  
K x 45°  
e1  
A
C
y
0.10 [.004]  
8X c  
8X L  
A1  
B
8X b  
7
0.25 [.010]  
C A  
5
6
7
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].  
NOTES:  
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.  
2. CONTROLLING DIMENSION: MILLIMETER  
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].  
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].  
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.  
DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO  
A SUBSTRATE.  
01-602ꢢ  
01-0021 11 (MS-012AA)  
8 Lead SOIC  
www.irf.com  
21  
IR2302( )  
S
& (PbF)  
LEADFREE PART MARKING INFORMATION  
Part number  
IRxxxxxx  
Date code  
IR logo  
YWW?  
?XXXX  
Pin 1  
Identifier  
Lot Code  
(Prod mode - 4 digit SPN code)  
?
MARKING CODE  
P
Lead Free Released  
Non-Lead Free  
Released  
Assembly site code  
Per SCOP 200-002  
ORDER INFORMATION  
Basic Part (Non-Lead Free)  
Leadfree Part  
8-Lead PDIP IR2302 order IR2302  
8-Lead SOIC IR2302S order IR2302S  
8-Lead PDIP R2302 not available  
8-Lead SOIC IR2302S order IR2302SPbF  
Thisproduct has been designed and qualified for the Automotive market.  
Qualification Standards can be found on IR’s Web Site http://www.irf.com  
Data and specifications subject to change without notice.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105  
8/16/2004  
22  
www.irf.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY