IR2302SPBF [INFINEON]

HIGH AND LOW SIDE DRIVER; 高端和低端驱动器
IR2302SPBF
型号: IR2302SPBF
厂家: Infineon    Infineon
描述:

HIGH AND LOW SIDE DRIVER
高端和低端驱动器

驱动器 MOSFET驱动器 驱动程序和接口 接口集成电路 光电二极管 PC
文件: 总18页 (文件大小:188K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60201 Rev.D  
IR2301(S) &(PbF)  
HIGH AND LOW SIDE DRIVER  
Features  
Packages  
Floating channel designed for bootstrap operation  
Fully operational to +600V  
Tolerant to negative transient voltage dV/dt immune  
8 Lead PDIP  
IR2301  
Gate drive supply range from 5 to 20V  
Undervoltage lockout for both channels  
3.3V, 5V and 15V input logic compatible  
Matched propagation delay for both channels  
Logic and power ground +/- 5V offset.  
Lower di/dt gate driver for better noise immunity  
8 Lead SOIC  
IR2301S  
Outputs in phase with inputs  
Also available LEAD-FREE (PbF)  
Description  
2106/2301//2108//2109/2302/2304 Feature Comparison  
The IR2301(S) are high voltage, high speed  
power MOSFET and IGBT drivers with indepen-  
dent high and low side referenced output  
channels. Proprietary HVIC and latch immune  
CMOS technologies enable ruggedized mono-  
lithic construction. The logic input is compatible  
with standard CMOS or LSTTL output, down to  
3.3V logic. The output drivers feature a high  
pulse current buffer stage designed for minimum  
driver cross-conduction. The floating channel  
ꢁꢖꢎꢜꢝ  
ꢈꢗꢋꢊꢍ  
ꢘꢎꢙꢚꢛ  
ꢛꢎꢗꢞꢊꢛꢍꢚꢎꢗ  
ꢋꢖꢟꢠꢟꢗꢍꢚꢎꢗ  
ꢘꢎꢙꢚꢛ  
ꢔꢕꢖꢍ  
ꢓꢟꢕꢑꢚꢡꢟ  
$ꢖꢎꢊꢗꢞꢌꢔꢚꢗꢜ  
%&ꢐꢏ'%*ꢐ&  
%&ꢐꢏ4  
ꢁꢅꢇ  
ꢀꢃꢃ'ꢁꢅꢇ  
ꢁꢅꢇ  
ꢄꢈꢉ'ꢆꢈꢉ  
ꢄꢈꢉ'ꢆꢈꢉ  
ꢗꢎ  
ꢗꢎꢗꢟ  
%&ꢐ7  
ꢈꢗꢍꢟꢖꢗꢕꢘꢌ94ꢐꢗꢜ  
ꢔꢖꢎꢙꢖꢕꢡꢡꢕ;ꢘꢟꢌꢐ<94ꢣ9µꢜ  
ꢈꢗꢍꢟꢖꢗꢕꢘꢌ94ꢐꢗꢜ  
ꢢꢟꢜ  
%&ꢐ74  
ꢀꢃꢃ'ꢁꢅꢇ  
ꢁꢅꢇ  
%&ꢐ>'%*ꢐ%  
%&ꢐ>4  
ꢈꢉ'ꢃꢓ  
ꢢꢟꢜ  
ꢢꢟꢜ  
ꢔꢖꢎꢙꢖꢕꢡꢡꢕ;ꢘꢟꢌꢐ<94ꢣ9µꢜ  
ꢀꢃꢃ'ꢁꢅꢇ  
ꢄꢈꢉ'ꢆꢈꢉ  
ꢈꢗꢍꢟꢖꢗꢕꢘꢌ&ꢐꢐꢗꢜ  
%*ꢐ4  
ꢁꢅꢇ  
can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to  
600 volts.  
Typical Connection  
ꢊꢋꢌꢍꢎꢌꢏꢐꢐꢀ  
(Refer to Lead  
ꢁꢁ  
Assignments for  
correct pin con-  
figuration). This/  
ꢁꢁ  
T
h
e
s
e
ꢄꢈꢉ  
ꢆꢈꢉ  
ꢄꢈꢉ  
ꢆꢈꢉ  
ꢄꢅ  
d i a g r a m ( s )  
show electrical  
connect ions  
only. Please re-  
fer to our Appli-  
cation Notes  
and DesignTips  
for proper circuit  
board layout.  
ꢑꢅ  
ꢆꢅꢒꢓ  
ꢁꢅꢇ  
ꢆꢅ  
IR2301  
www.irf.com  
1
(
IR2301 S)&(PbF)  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-  
eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured  
under board mounted and still air conditions.  
Symbol  
Definition  
High side floating absolute voltage  
High side floating supply offset voltage  
High side floating output voltage  
Low side and logic fixed supply voltage  
Low side output voltage  
Min.  
Max.  
Units  
V
B
-0.3  
625  
V
S
V
- 25  
V
+ 0.3  
+ 0.3  
25  
B
B
B
V
HO  
V
S
- 0.3  
V
V
-0.3  
-0.3  
V
CC  
V
LO  
V
+ 0.3  
CC  
V
Logic input voltage  
COM - 0.3  
V
+ 0.3  
CC  
IN  
dV /dt  
S
Allowable offset supply voltage transient  
50  
V/ns  
W
P
D
Package power dissipation @ T +25°C  
A
(8 lead PDIP)  
1.0  
(8 lead SOIC)  
(8 lead PDIP)  
(8 lead SOIC)  
0.625  
125  
200  
150  
150  
300  
Rth  
JA  
Thermal resistance, junction to ambient  
°C/W  
T
J
Junction temperature  
°C  
T
S
Storage temperature  
-50  
T
L
Lead temperature (soldering, 10 seconds)  
Recommended Operating Conditions  
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the  
recommended conditions. The V offset rating is tested with all supplies biased at 15V differential.  
S
Symbol  
Definition  
High side floating supply absolute voltage  
High side floating supply offset voltage  
High side floating output voltage  
Low side and logic fixed supply voltage  
Low side output voltage  
Min.  
Max.  
Units  
VB  
V
+ 5  
V + 20  
S
S
V
S
Note 1  
600  
V
HO  
V
S
V
B
V
V
5
0
20  
CC  
V
LO  
V
CC  
V
Logic input voltage  
COM  
-ꢦ0  
V
IN  
CC  
T
A
Ambient temperature  
150  
°C  
Note 1: Logic operational for V of -5 to +600V. Logic state held for V of -5V to -V . (Please refer to the Design Tip  
S S BS  
DTꢤꢥ-3 for more details).  
2
www.irf.com  
( )  
IR2301 S &(PbF)  
Dynamic Electrical Characteristics  
V
(V , V ) = 15V, C = 1000 pF, T = 25°C.  
BIAS CC BS  
L
A
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
t
Turn-on propagation delay  
Turn-off propagation delay  
220  
200  
0
300  
280  
50  
V = 0V  
S
on  
t
V = 0V or 600V  
S
off  
MT  
Delay matching, HS ꢧ LS turn-on/off  
Turn-on rise time  
nsec  
t
130  
50  
220  
80  
V
V
= 0V  
= 0V  
r
S
S
t
f
Turn-off fall time  
Static Electrical Characteristics  
V
(V , V ) = 15V, and T = 25°C unless otherwise specified. The V , V and I parameters are referenced to  
BIAS  
CC BS  
A
IL IH  
IN  
COM and are applicable to the respective input leads. The V , I and Ron parameters are referenced to COM and are  
O
O
applicable to the respective output leads: HO and LO.  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
2.ꢤ  
VCC = 10V to 20V  
VCC = 10V to 20V  
V
Logic “1” input voltage  
IH  
V
Logic “0” input voltage  
20  
50  
0.8  
1.ꢦ  
0.6  
50  
IL  
V
V
OH  
High level output voltage, V  
- V  
0.8  
0.3  
I
I
= 20 mA  
= 20 mA  
BIAS  
O
O
O
V
OL  
Low level output voltage, V  
O
I
Offset supply leakage current  
V
= V = 600V  
B S  
LK  
I
Quiescent V supply current  
BS  
60  
100  
1ꢤ0  
V
= 0V or 5V  
QBS  
IN  
IN  
µA  
I
Quiescent V  
supply current  
CC  
120  
V
= 0V or 5V  
= 5V  
IN  
QCC  
I
Logic “1” input bias current  
Logic “0” input bias current  
V
5
20  
2
IN+  
I
VIN = 0V  
ꢦ.1  
IN-  
V
V
and V supply undervoltage positive  
BS  
3.3  
5
CCUV+  
CC  
V
going threshold  
BSUV+  
V
V
and V supply undervoltage negative  
BS  
3
3.8  
0.3  
ꢦ.ꢥ  
CCUV-  
CC  
V
V
negative going threshold  
Hysteresis  
BSUV-  
V
0.1  
CCUVH  
V
BSUVH  
I
Output high short circuit pulsed current  
Output low short circuit pulsed current  
120  
250  
200  
350  
V = 0V,  
O
O+  
PW 10 µs  
= 15V,  
mA  
I
V
O
O-  
PW 10 µs  
www.irf.com  
3
(
IR2301 S)&(PbF)  
Functional Block Diagrams  
VB  
UV  
DETECT  
HO  
R
R
Q
PULSE  
FILTER  
HV  
LEVEL  
S
SHIFTER  
VSS/COM  
VS  
HIN  
LEVEL  
SHIFT  
PULSE  
GENERATOR  
VCC  
LO  
UV  
DETECT  
VSS/COM  
LEVEL  
SHIFT  
LIN  
DELAY  
COM  
Lead Definitions  
Symbol Description  
HIN  
LIN  
Logic input for high side gate driver output (HO), in phase  
Logic input for low side gate driver output (LO), in phase  
High side floating supply  
V
B
HO  
High side gate drive output  
V
S
High side floating supply return  
Low side and logic fixed supply  
Low side gate drive output  
V
CC  
LO  
COM  
Low side return  
www.irf.com  
( )  
IR2301 S &(PbF)  
Lead Assignments  
V
V
1
2
3
V
CC  
B
8
1
2
3
V
CC  
B
8
HO  
HO  
HIN  
LIN  
HIN  
LIN  
V
S
V
S
6
5
6
5
LO  
LO  
COM  
COM  
8 Lead PDIP  
8 Lead SOIC  
IR2301  
IR2301S  
9ꢐ]  
9ꢐ]  
ꢄꢈꢉ  
ꢆꢈꢉ  
ꢄꢈꢉ  
ꢆꢈꢉ  
ꢎꢗ  
ꢎꢨꢨ  
>ꢐ]  
>ꢐ]  
ꢄꢅ  
ꢆꢅ  
ꢄꢅ  
ꢆꢅ  
&ꢐ]  
&ꢐ]  
Figure 1. Input/Output Timing Diagram  
Figure 2. Switching Time Waveform Definitions  
9ꢐ]  
9ꢐ]  
ꢄꢈꢉ  
ꢆꢈꢉ  
ꢆꢅ  
ꢄꢅ  
&ꢐ]  
ꢇꢑ  
ꢇꢑ  
>ꢐ]  
ꢆꢅ  
ꢄꢅ  
Figure 3. Delay Matching Waveform Definitions  
www.irf.com  
5
(
IR2301 S)&(PbF)  
500  
400  
300  
800  
700  
600  
500  
400  
300  
200  
100  
Max.  
Typ.  
Max.  
200  
Typ.  
100  
0
-50  
-25  
0
25  
Temperature (oC)  
Figure 4A. Turn-on Propagation Delay  
50  
75  
100  
125  
5
10  
Supply Voltage (V)  
Figure 4B. Turn-on Propagation Delay  
15  
20  
vs. Temperature  
vs. Supply Voltage  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
Max.  
Max.  
Typ.  
Typ.  
-50  
-25  
0
25  
Temperature (oC)  
Figure 5A. Turn-off Propagation Delay  
50  
75  
100  
125  
5
10  
Supply Voltage (V)  
Figure 5B. Turn-off Propagation Delay  
15  
20  
vs. Temperature  
vs. Supply Voltage  
6
www.irf.com  
( )  
IR2301 S &(PbF)  
700  
600  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
Max.  
Typ.  
Max.  
Typ.  
-50  
-25  
0
25  
Temperature (oC)  
Figure 6A. Turn-on Rise Time  
50  
75  
100  
125  
5
10  
Supply Voltage (V)  
Figure 6B. Turn-on Rise Time  
15  
20  
vs. Temperature  
vs. Supply Voltage  
200  
150  
100  
50  
200  
150  
100  
50  
Max.  
Max.  
Typ.  
Typ.  
0
0
-50  
-25  
0
25  
Temperature (oC)  
Figure 7A. Turn-off Fall Time  
50  
75  
100  
125  
5
10  
Supply Voltage (V)  
Figure 7B. Turn-off Fall Time  
15  
20  
vs. Temperature  
vs. Supply Voltage  
www.irf.com  
(
IR2301 S)&(PbF)  
6
5
4
6
5
4
3
2
1
0
Max.  
Max.  
3
2
1
0
-50  
-25  
0
25  
Temperature (oC)  
Figure 8A. Logic “1” Input Voltage  
50  
75  
100  
125  
5
10  
Supply Voltage (V)  
Figure 8B. Logic “1” Input Voltage  
15  
20  
vs. Temperature  
vs. Supply Voltage  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Min.  
Min.  
5
10  
15  
20  
-50  
-25  
0
25  
Temperature (oC)  
Figure 9A. Logic “0” Input Voltage  
50  
75  
100  
125  
Supply Voltage (V)  
Figure 9B. Logic “0” Input Voltage  
vs. Supply Voltage  
vs. Temperature  
8
www.irf.com  
( )  
IR2301 S &(PbF)  
6
5
4
3
2
1
0
4
3
2
1
0
Max.  
Max.  
Typ.  
Typ.  
5
10  
Supply Voltage (V)  
Figure 10B. High Level Output Voltage  
15  
20  
-50  
-25  
0
25  
Temperature (oC)  
Figure 10A. High Level Output Voltage  
50  
75  
100  
125  
vs. Temperature  
vs. Supply Voltage  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
Max.  
Max.  
Typ.  
Typ.  
-50  
-25  
0
25  
Temperature (oC)  
Figure 11A. Low Level Output Voltage  
50  
75  
100  
125  
5
10  
Supply Voltage (V)  
Figure 11B. Low Level Output Voltage  
15  
20  
vs. Temperature  
vs. Supply Voltage  
www.irf.com  
(
IR2301 S)&(PbF)  
500  
400  
300  
200  
500  
400  
300  
200  
100  
0
100  
Max.  
Max.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
100  
200  
300  
400  
500  
600  
Temperature (oC)  
Offset Supply Voltage (V)  
Figure 12A. Offset Supply Leakage Current  
vs. Temperature  
Figure 12B. Offset Supply Leakage Current  
vs. Supply Voltage  
200  
150  
100  
50  
200  
150  
100  
50  
Max.  
Typ.  
Max.  
Typ.  
Min.  
Min.  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
5
10  
15  
20  
Temperature (oC)  
VBS Supply Voltage (V)  
Figure 13A. Quiescent V  
Supply Current  
Figure 13B. Quiescent V  
Supply Current  
vs. Supply Voltage  
BS  
BS  
vs. Temperature  
10  
www.irf.com  
( )  
IR2301 S &(PbF)  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
Max.  
Typ.  
Min.  
Max.  
Typ.  
Min.  
-50  
-25  
0
25  
50  
75  
100  
125  
5
10  
VCC Supply Voltage (V)  
Figure 14B. Quiescent V Supply Current  
15  
20  
Temperature (oC)  
Figure 14A. Quiescent V  
Supply Current  
vs. Temperature  
CC  
CC  
vs. V  
CC  
Supply Voltage  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
Max.  
Typ.  
Max.  
Typ.  
-50  
-25  
0
25  
50  
75  
100  
125  
5
10  
15  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 15A. Logic “1” Input Bias Current  
vs. Temperature  
Figure 15B. Logic “1” Input Bias Current  
vs. Supply Voltage  
www.irf.com  
11  
(
IR2301 S)&(PbF)  
5
4
3
2
1
0
5
4
3
Max.  
Max.  
2
1
0
-50  
-25  
0
25  
50  
75  
100  
125  
5
10  
Supply Voltage (V)  
Figure 16B. Logic “0” Input Bias Currentt  
15  
20  
Temperature (oC)  
Figure 16A. Logic “0” Input Bias Current  
vs. Temperature  
vs. Supply Voltage  
6
6
Max.  
Max.  
5
4
3
2
5
4
3
2
Typ.  
Min.  
Typ.  
Min.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Figure 18. V  
CC  
and V  
Undervoltage Threshold (-)  
vs. Temperature  
Figure 17. V  
CC  
and V  
Undervoltage Threshold (+)  
BS  
BS  
vs. Temperature  
12  
www.irf.com  
( )  
IR2301 S &(PbF)  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
Typ.  
Min.  
Typ.  
Min.  
5
10  
15  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Supply Voltage (V)  
Figure 19A. Output Source Current  
vs. Temperature  
Figure 19B. Output Source Current  
vs. Supply Voltage  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
Typ.  
Min.  
Typ.  
Min.  
-50  
-25  
0
25  
50  
75  
100  
125  
5
10  
15  
20  
Temperature (oC)  
Supply Voltage (V)  
Figure 20A. Output Sink Current  
vs. Temperature  
Figure 20B. Output Sink Current  
vs. Supply Voltage  
www.irf.com  
13  
(
IR2301 S)&(PbF)  
0
140  
120  
100  
80  
Typ.  
-2  
-4  
-6  
140V  
70V  
0V  
60  
-8  
40  
-10  
-12  
20  
1
10  
Frequency (KHz)  
Figure 22. IR2301 vs. Frequency (IRFBC20),  
=33 , V =15V  
100  
1000  
5
10  
15  
20  
VBS Floating Supply Voltage (V)  
Figure 21. Maximum V Negative Offset  
S
vs. V Floating Supply Voltage  
R
BS  
gate  
CC  
140  
120  
100  
80  
140  
120  
100  
80  
140V  
70V  
0V  
140V  
70V  
0V  
60  
60  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
Frequency (KHz)  
Figure 23. IR2301 vs. Frequency (IRFBC30),  
gate=22W, Vcc=15V  
100  
1000  
Frequency (KHz)  
Figure 24. IR2301 vs. Frequency (IRFBC40),  
=15 , VCC=15V  
R
R
gate  
1ꢦ  
www.irf.com  
( )  
IR2301 S &(PbF)  
140V 70V  
140  
120  
100  
80  
140  
120  
100  
80  
0V  
140V  
70V  
0V  
60  
60  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 26. IR2301S vs. Frequency (IRFBC20),  
=33 , V =15V  
Figure 25. IR2301 vs. Frequency (IRFPE50),  
=10 , V =15V  
R
R
gate  
gate  
CC  
CC  
140V70V  
140  
120  
100  
80  
140  
120  
100  
80  
140V  
70V  
0V  
0V  
60  
60  
40  
40  
20  
20  
1
10  
100  
1000  
1
10  
Frequency (KHz)  
Figure 27. IR2301S vs. Frequency (IRFBC30),  
=22 , VCC=15V  
100  
1000  
Frequency (KHz)  
Figure 28. IR2301S vs. Frequency (IRFBC40),  
=15 , VCC=15V  
R
R
gate  
gate  
www.irf.com  
15  
(
IR2301 S)&(PbF)  
140V70V 0V  
140  
120  
100  
80  
60  
40  
20  
1
10  
100  
1000  
Frequency (KHz)  
Figure 29. IR2301S vs. Frequency  
(IRFPE50), R =10 , V =15V  
gate  
CC  
Case Outlines  
01-601ꢦ  
8 Lead PDIP  
01-3003 01 (MS-001AB)  
16  
www.irf.com  
( )  
IR2301 S &(PbF)  
IN C H E S  
MILLIMETERS  
DIM  
A
D
B
MIN  
.0532  
MAX  
.0688  
.0098  
.020  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
FOOTPRINT  
8X 0.72 [.028]  
5
A
E
A1 .0040  
b
c
.013  
.0075  
.189  
.0098  
.1968  
.1574  
8
1
7
2
6
3
5
6
D
E
e
H
.1497  
0.25 [.010]  
A
.050 BASIC  
1.27 BASIC  
6.46 [.255]  
4
e 1 .025 BASIC  
0.635 BASIC  
H
K
L
y
.2284  
.0099  
.016  
0°  
.2440  
.0196  
.050  
8°  
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
3X 1.27 [.050]  
e
6X  
8X 1.78 [.070]  
K x 45°  
e1  
A
C
y
0.10 [.004]  
8X c  
8X L  
A1  
B
8X b  
0.25 [.010]  
7
C
A
5
6
7
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].  
NOTES:  
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.  
2. CONTROLLING DIMENSION: MILLIMETER  
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].  
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].  
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.  
DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO  
A SUBSTRATE.  
01-602ꢥ  
01-0021 11 (MS-012AA)  
8 Lead SOIC  
www.irf.com  
1ꢥ  
(
IR2301 S)&(PbF)  
LEADFREE PART MARKING INFORMATION  
Part number  
Date code  
IRxxxxxx  
YWW?  
IR logo  
?XXXX  
Pin 1  
Identifier  
Lot Code  
(Prod mode - 4 digit SPN code)  
?
MARKING CODE  
P
Lead Free Released  
Non-Lead Free  
Released  
Assembly site code  
Per SCOP 200-002  
ORDER INFORMATION  
Basic Part (Non-Lead Free)  
Leadfree Part  
8-Lead PDIP IR2301 order IR2301  
8-Lead SOIC IR2301S order IR2301S  
8-Lead PDIP R2301 order IR2301PbF  
8-Lead SOIC IR2301S order IR2301SPbF  
This product has been designed and qualified for the Automotive market.  
Qualification Standards can be found on IR’s Web Site http://www.irf.com  
Data and specifications subject to change without notice.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105  
9/7/2004  
18  
www.irf.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY