IR2520DPBF [INFINEON]

ADAPTIVE BALLAST CONTROL IC; 自适应镇流器控制IC
IR2520DPBF
型号: IR2520DPBF
厂家: Infineon    Infineon
描述:

ADAPTIVE BALLAST CONTROL IC
自适应镇流器控制IC

文件: 总17页 (文件大小:334K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60212 revC  
IR2520D(S) & (PbF)  
ADAPTIVE BALLAST CONTROL IC  
Packages  
Features  
600V Half Bridge Driver  
Integrated Bootstrap FET  
Adaptive zero-voltage switching (ZVS)  
Internal Crest Factor Over-Current Protection  
0 to 6VDC Voltage Controlled Oscillator  
Programmable minimum frequency  
Micropower Startup Current (80uA)  
Internal 15.6V zener clamp on Vcc  
Small DIP8/SO8 Package  
8 Lead SOIC  
IR2520DS  
8-Lead PDIP  
IR2520D  
Also available LEAD-FREE (PbF)  
Description  
The IR2520D(S) is a complete adaptive ballast controller and 600V half-bridge driver integrated into a single  
IC for fluorescent lighting applications. The IC includes adaptive zero-voltage switching (ZVS), internal crest  
factor over-current protection, as well as an integrated bootstrap FET. The heart of this IC is a voltage con-  
trolled oscillator with externally programmable minimum frequency. All of the necessary ballast features are  
integrated in a small 8-pin DIP or SOIC package.  
Typical Application Diagram  
RSUPPLY  
DCP2  
SPIRAL  
CFL  
BR1  
MHS  
VCC  
VB  
8
LF  
1
F1  
LRES  
CVCC  
L1  
L2  
COM  
HO  
2
7
CBUS  
CDC  
CSNUB  
CBS  
MLS  
CF  
VS  
6
LO  
FMIN  
3
4
RFMIN  
CRES  
VCO  
5
CVCO  
DCP1  
www.irf.com  
1
IR2520D(S)&(PbF)  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-  
eters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal resistance  
and power dissipation ratings are measured under board mounted and still air conditions.  
Symbol  
Definition  
Min.  
Max.  
Units  
V
B
High side floating supply voltage  
-0.3  
625  
V
S
High side floating supply offset voltage  
High side floating output voltage  
Low side output voltage  
V
- 25  
V
+ 0.3  
+ 0.3  
+ 0.3  
B
B
B
V
V
V
- 0.3  
S
V
HO  
V
-0.3  
-5  
V
CC  
LO  
I
Voltage controlled oscillator input current (Note 1)  
Supply current (Note 2)  
+ 5  
25  
mA  
mA  
VCO  
I
-25  
-50  
CC  
dV /dt  
S
Allowable offset voltage slew rate  
50  
V/ns  
P
D
Package power dissipation @ T +25°C  
8-Lead PDIP  
1
A
W
PD=(T  
-T )Rth  
A JA  
8-Lead SOIC  
8-Lead PDIP  
8-Lead SOIC  
0.625  
125  
200  
150  
150  
300  
JMAX  
Rth  
JA  
Thermal resistance, junction to ambient  
°C/W  
T
J
Junction temperature  
-55  
-55  
°C  
T
S
Storage temperature  
T
L
Lead temperature (soldering, 10 seconds)  
Note 1: This IC contains a zener clamp structure between the chip VCO and COM, which has a nominal breakdown voltage  
of 6V. Please note that this pin should not be driven by a DC, low impedance power source greater than 6V.  
Note 2: This IC contains a zener clamp structure between the chip VCC and COM, which has a nominal breakdown voltage  
of 15.6V. Please note that this supply pin should not be driven by a DC, low impedance power source greater than the  
VCLAMP specified in the Electrical Characteristics section.  
Recommended Operating Conditions  
For proper operation the device should be used within the recommended conditions.  
Symbol  
Definition  
Min.  
Max.  
Units  
V
High side floating supply voltage  
V
- 0.7  
V
BS  
CC  
CLAMP  
600  
V
V
S
Steady state high side floating supply offset voltage  
Supply voltage  
-1  
V
CC  
V
V
CCUV+  
CLAMP  
10  
I
Supply current  
Note 3  
mA  
kΩ  
V
CC  
R
Minimum frequency setting resistance  
VCO pin voltage  
20  
0
140  
5
FMIN  
V
VCO  
T
J
Junction temperature  
-25  
125  
°C  
Note 3: Enough current should be supplied into the VCC pin to keep the internal 15.6V zener clamp diode on this pin  
regulating its voltage,  
VCLAMP.  
2
www.irf.com  
IR2520D(S) &(PbF)  
Electrical Characteristics  
V V V  
CC = BS = BIAS  
= 14V +/- 0.25V, C =C =1000pF, R  
LO HO  
= 82kand T = 25°C unless otherwise specified.  
A
FMIN  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
Supply Characteristics  
V
V
and V supply undervoltage positive going  
BS  
11.4  
9.0  
12.6  
10.0  
13.8  
11.0  
V
rising from OV  
CC  
CCUV+  
CC  
threshold  
V and V supply undervoltage negative going  
CC  
V
V
CCUV-  
BS  
threshold  
V
V
supply undervoltage lockout hysteresis  
2.7  
45  
80  
UVHYS  
CC  
I
UVLO quiescent current  
Fault mode quiescent current  
V
= 10V  
=0V  
QCCUV  
CC  
µA  
I
100  
4.5  
2.0  
15.4  
QCCFLT  
I
V
CC  
V
CC  
V
CC  
supply current f=85KHz  
supply current f=35KHz  
Zener clamp voltage  
V
CCHF  
VCO  
mA  
V
I
V
=6V  
CCLF  
VCO  
V
14.4  
I
= 10mA  
CC  
CLAMP  
Floating Supply Characteristics  
I
Quiescent V supply current  
BS  
80  
20  
150  
40  
V
=10V, V =14V  
CC BS  
QBS0  
µA  
I
Quiescent V supply current  
BS  
V
=10V, V =7V  
CC BS  
QBSUV  
BSUV+  
BSUV-  
V
VBS supply undervoltage positive going threshold  
VBS supply undervoltage negative going threshold  
Offset supply leakage current  
7.7  
6.8  
9.0  
8.0  
10.3  
9.2  
50  
V
V
V
I
LK  
µA  
V = V = 600V  
B S  
Oscillator I/O Characteristics  
29.6  
67  
34  
86  
50  
2.0  
2.0  
50  
1.3  
1.1  
6
38.2  
96  
V
V
=6V  
=0V  
f
Minimum oscillator frequency (Note 4)  
Maximum oscillator frequency (Note 4)  
Oscillator duty cycle  
VCO  
(min)  
kHz  
%
f(  
VCO  
max)  
D
DT  
LO output deadtime  
LO  
µS  
DT  
HO output deadtime  
HO  
I
I
I
I
quick start  
V
V
=0V  
=2V  
VCOQS  
VCO  
VCO  
VCO  
VCO  
I
frequency sweep  
when VCO is at 5V  
0.8  
1.7  
µA  
VCOFS  
VCO  
I
VCO_  
5V  
V
Maximum VCO voltage  
V
VCO_max  
Gate Driver Output Characteristics  
COM  
COM  
VCC  
VCC  
150  
V
LO output voltage when LO is low  
HO output voltage when HO is low  
LO output voltage when LO is high  
HO output voltage when HO is high  
Turn on rise time  
LO=LOW  
V
HO=LOW  
V
mV  
LO=HIGH  
V
HO=HIGH  
T
RISE  
230  
120  
nS  
T
FALL  
Turn off fall time  
75  
IO+  
IO-  
Output source short circuit pulsed current  
Output sink short circuit pulse current  
140  
mA  
mA  
230  
Note 4: Frequency shown is nominal for R  
=82k. Frequency can be programmed higher or lower with the value of R  
.
FMIN  
FMIN  
www.irf.com  
3
IR2520D(S)&(PbF)  
Electrical Characteristics  
V
V V  
CC = BS = BIAS  
= 14V +/- 0.25V, C =C =1000pF, R  
LO HO  
= 82kand T = 25°C unless otherwise specified.  
A
FMIN  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
Protection Characteristics  
V
VCO voltage when entering run mode  
4.8  
V
VCO_RUN  
CSCF  
Crest factor peak-to-average fault factor  
Maximum crest factor VS offset voltage  
5.0  
3.0  
N/A  
V
V offset = 0.5V  
S
VS_  
OFFSET_MAX  
V
V
VCO  
shutdown voltage  
0.74  
0.82  
0.91  
V
VCOSD  
Minimum Frequency Setting Characteristics  
V
FMIN lead voltage during normal operation  
FMIN lead voltage during fault mode  
4.8  
5.1  
0
5.4  
V
V
FMIN  
V
FMINFLT  
Bootstrap FET  
0.1uF,  
IBS1  
VB current  
30  
10  
70  
20  
CBS=  
VS=0V  
mA  
IBS2  
VB current  
VBS = 10V  
Lead Definitions  
Symbol Description  
VCC  
COM  
FMIN  
VCO  
LO  
Supply voltage  
1
2
3
4
8
VB  
VCC  
COM  
FMIN  
VCO  
IC power and signal ground  
Minimum frequency setting  
Voltage controlled oscillator input  
Low-side gate driver output  
High-side floating return  
7 HO  
6
5
VS  
LO  
VS  
HO  
High-side gate driver output  
High-side gate driver floating supply  
VB  
4
www.irf.com  
IR2520D(S) &(PbF)  
Block Diagram  
Bootstrap  
FET  
1
2
VCC  
Bootstrap  
FET  
15.6V  
Control  
COM  
IFMAX  
8
7
6
VB  
HO  
VS  
IFMIN  
S
R1  
R2  
Q
5V  
1V  
IVCO  
IQS  
UVLO  
High-Voltage Well  
VCO  
4
VS-Sensing  
FET  
SET  
RST  
Level  
Shift  
5.1V  
Level-Shift  
FETs  
T
Q
Q
VCC  
Driver  
Logic  
HIN  
LIN  
PGEN  
R
IDT  
5
LO  
CT  
300ns  
PGEN  
Fault  
Logic  
0.8V  
S1  
S2  
Q
Q
1us  
blank  
R1  
R2  
VCC  
Averaging  
Circuit  
x 5  
S
R
Q
Q
UVLO  
4.8V  
120uA  
5V  
5V  
IFMIN=  
RRFMIN  
FMIN  
3
All values are typical  
www.irf.com  
5
IR2520D(S)&(PbF)  
State Diagram  
Power Turned  
On  
VCCUV Mode  
1/2-Bridge Off  
IQCC ≅  
µA  
45  
VVCO = 0V  
VCC < 10V  
VFMIN = 0V  
(VCCUV-)  
FAULT  
VCC > 12.6V  
Mode  
(VCCUV+)  
1
/
2
-Bridge Off  
VVCO = 0V  
IQCCFLT  
µA  
100  
VFMIN = 0V  
VCC < 10V  
Frequency Sweep Mode  
(VCCUV-)  
Crest Factor > 5.0  
VFMIN = 5.1V  
(CSCF)  
or  
VCO ramps up, frequency ramps down  
VVCO < 0.82V  
Crest Factor Disabled  
ZVS Disabled  
(VVCOSD  
)
VVCO >4.8V  
(VVCO _RUN)  
RUN Mode  
Crest Factor Enabled  
ZVS Enabled  
V
VCO = 6.0V, Frequency = fmin  
If non-ZVS detected then VVCO decreases  
and frequency increases to maintain ZVS  
All values are typical  
6
www.irf.com  
IR2520D(S) &(PbF)  
Functional Description  
high-side driver is enabled. During UVLO mode, the high- and  
low-side gate driver outputs, HO and LO, are both low and  
pin VCO is pulled down to COM for resetting the starting  
frequency to the maximum.  
Under-voltage Lock-Out Mode  
The under-voltage lock-out mode (UVLO) is defined as the  
state the IR2520D is in when VCC is below the turn-on  
threshold of the IC. The IR2520D UVLO is designed to main-  
Frequency Sweep Mode  
tain an ultra-low supply current (I  
<80uA), and to  
QCCUV  
When VCC exceeds V  
threshold, the IR2520D enters  
CCUV+  
guarantee that the IR2520D is fully functional before the  
high- and low-side output gate drivers are activated. The  
VCC capacitor, CVCC, is charged by current through sup-  
ply resistor, RSUPPLY, minus the start-up current drawn by  
the IR2520D (Figure 1). This resistor is chosen to provide  
sufficient current to supply the IR2520D from the DC bus.  
Once the capacitor voltage on VCC reaches the start-up  
frequency sweep mode. An internal current source (Figure  
2) charges the external capacitor on pin VCO, CVCO, and  
the voltage on pin VCO starts ramping up linearly. An addi-  
tional quick-start current (I  
) is also connected to the  
VCOQS  
VCO pin and charges the VCO pin initially to 0.85V. When the  
VCO voltage exceeds 0.85V, the quick-start current is then  
disconnected internally and the VCO voltage continues to  
charge up with the normal frequency sweep current source  
threshold, V  
, the IR2520D turns on and HO and LO  
start oscillating. Capacitor CVCCshould be large enough to  
CCUV+  
(I ) (Figure 3). This quick-start brings the VCO voltage  
VCOFS  
hold the voltage at VCC above the V  
threshold for  
CCUV+  
quickly to the internal range of the VCO. The frequency ramps  
down towards the resonance frequency of the high-Q bal-  
last output stage causing the lamp voltage and load current to  
increase. The voltage on pin VCO continues to increase and  
the frequency keeps decreasing until the lamp ignites. If the  
lamp ignites successfully, the voltage on pin VCO continues  
one half-cycle of the line voltage or until the external auxil-  
iary supply can maintain the required supply voltage and  
current to the IC.  
DCBUS(+)  
to increase until it internally limits at 6V (V  
). The  
VCO_MAX  
RSUPPLY  
frequency stops decreasing and stays at the minimum fre-  
quency as programmed by an external resistor, RFMIN, on  
pin FMIN. The minimum frequency should be set below the  
high-Q resonance frequency of the ballast output stage to  
ensure that the frequency ramps through resonance for lamp  
ignition (Figure 4). The desired preheat time can be set by  
adjusting the slope of the VCO ramp with the external capaci-  
tor CVCO.  
DCP2  
MHS  
VCC  
COM  
FMIN  
VCO  
VB  
HO  
VS  
LO  
Bootstrap  
FET  
1
2
3
4
8
7
6
5
CVCC  
Driver  
TO LOAD  
High-  
and  
15.6V  
CLAMP  
Low-  
side  
CBS  
CSNUB  
VCC  
UVLO  
Driver  
RFMIN  
CVCO  
MLS  
DCBUS(+)  
DCP1  
RSUPPLY  
DCP2  
DCBUS(-)  
LOAD RETURN  
MHS  
VCC  
COM  
FMIN  
VCO  
VB  
HO  
VS  
LO  
Bootstrap  
FET  
Fig. 1 Start-up circuitry  
1
2
3
4
8
7
6
5
CVCC  
Driver  
TO LOAD  
High-  
and  
An internal bootstrap MOSFET between VCC and VB and  
external supply capacitor, CBS, determine the supply volt-  
age for the high-side driver circuitry. An external charge  
pump circuit consisting of capacitor CSNUBand diodes DCP1  
and DCP2, comprises the auxiliary supply voltage for the  
low-side driver circuitry. To guarantee that the high-side  
supply is charged up before the first pulse on pin HO, the  
first pulse from the output drivers comes from the LO pin.  
LO may oscillate several times until VB-VS exceeds the  
15.6V  
CLAMP  
Low-  
side  
CBS  
CSNUB  
Driver  
VCO  
RFMIN  
CVCO  
MLS  
DCP1  
LOAD RETURN  
DCBUS(-)  
high-side UVLO rising threshold, V  
(9 Volts), and the  
BSUV+  
Fig. 2 Frequency sweep circuitry mode circuitry  
www.irf.com  
7
IR2520D(S)&(PbF)  
V
VCO  
6V  
Run Mode  
The IR2520D enters RUN mode when the voltage on pin  
4.8V  
VCO exceeds 4.8V (V  
). The lamp has ignited and  
VCO_RUN  
the ballast output stage becomes a low-Q, series-L, paral-  
lel-RC circuit. Also, the VS sensing and fault logic blocks  
(Figure 5) both become enabled for protection against non-  
ZVS and over-current fault conditions. The voltage on the  
VCO pin continues to increase and the frequency deceases  
0.85V  
further until the VCO pin voltage limits at 6V (V  
)
VCO_MAX  
and the minimum frequency is reached. The resonant in-  
ductor, resonant capacitor, DC bus voltage and minimum  
frequency determine the running lamp power. The IC stays  
at this minimum frequency unless non-ZVS occurs at the  
VS pin, a crest factor over-current condition is detected at  
the VS pin, or VCC decreases below the UVLO- threshold  
(see State Diagram).  
Frequency Sweep Mode  
Run Mode  
Freq  
fmax  
fmin  
DCBUS(+)  
RSUPPLY  
Fig. 3 IR2520D Frequency sweep mode timing  
diagram.  
DCP2  
MHS  
VCC  
COM  
FMIN  
VCO  
VB  
HO  
VS  
LO  
Bootstrap  
FET  
1
2
3
4
8
7
6
5
CVCC  
Driver  
TO LOAD  
High-  
and  
15.6V  
CLAMP  
Low-  
side  
CBS  
CSNUB  
Driver  
VCO  
RFMIN  
Fault  
Logic  
CVCO  
MLS  
VS  
Sense  
High -Q  
Vout  
Vin  
Ignition  
DCP1  
LOAD RETURN  
DCBUS(-)  
Fig. 5 IR2520D Run mode circuitry.  
Run  
Non Zero-Voltage Switching (ZVS) Protection  
Start  
Low -Q  
During run mode, if the voltage at the VS pin has not slewed  
entirely to COM during the dead-time such that there is  
voltage between the drain and source of the external low-  
side half-bridge MOSFET when LO turns-on, then the system  
is operating too close to, or, on the capacitive side of,  
resonance. The result is non-ZVS capacitive-mode  
switching that causes high peak currents to flow in the  
half-bridge MOSFETs that can damage or destroy them  
(Figure 6). This can occur due to a lamp filament failure(s),  
fmin  
fmax  
Frequency  
Fig. 4 Resonant tank Bode plot with lamp operating  
points.  
8
www.irf.com  
IR2520D(S) &(PbF)  
lamp removal (open circuit), a dropping DC bus during a  
mains brown-out or mains interrupt, lamp variations over  
time, or component variations. To protect against this, an  
internal high-voltage MOSFET is turned on at the turn-off of  
HO and the VS-sensing circuit measures VS at each rising  
edge of LO. If the VS voltage is non-zero, a pulse of current  
is sinked from the VCO pin (Figures 5 and 6) to slightly  
discharge the external capacitor, CVCO, causing the  
frequency to increase slightly. The VCO capacitor then  
charges up during the rest of the cycle slowly due to the  
internal current source.  
open circuit (Figure 7). This will cause capacitive switching  
(hard-switching) resulting in high peak MOSFET currents  
that can damage them. The IR2520D will increase the fre-  
quency in attempt to satisfy ZVS until the VCO pin de-  
creases below 0.82V (V  
). The IC will enter Fault  
VCOSD  
Mode and latch the LO and HO gate driver outputs ‘low’ for  
turning the half-bridge off safely before any damage can  
occur to the MOSFETs.  
RUN MODE  
FAULT MODE  
VLO  
VHO  
VLO  
VHO  
!
VVS  
!
VVS  
!
I
MLS  
I
L
I
MHS  
!
I
MLS  
V
VCO  
I
MHS  
0.85V  
Frequency shifted higher  
until VCO < 0.82V. LO and  
HO are latched low before  
damage occurs to MOSFETs.  
Capacitive switching. Hard-switching  
and high peak MOSFET currents!  
!
V
VCO  
Too close to resonance.  
Hard-switching and high  
peak MOSFET currents!  
Frequency shifted higher  
to maintain ZVS.  
!
Fig. 7 Lamp removal or open filament fault  
condition timing diagram  
Fig. 6 IR2520D non-ZVS protection timing diagram.  
Crest Factor Over-current Protection  
The frequency is trying to decrease towards resonance  
by charging the VCO capacitor and the adaptive ZVS cir-  
cuit “nudges” the frequency back up slightly above reso-  
nance each time non-ZVS is detected at the turn-on of LO.  
The internal high-voltage MOSFET is then turned off at the  
turn-off of LO and it withstands the high-voltage when VS  
slews up to the DC bus potential. The circuit then remains in  
this closed-loop adaptive ZVS mode during running and  
maintains ZVS operation with changing line conditions, com-  
ponent tolerance variations and lamp/load variations. Dur-  
ing a lamp removal or filament failure, the lamp resonant  
tank will be interrupted causing the half-bridge output to go  
During normal lamp ignition, the frequency sweeps through  
resonance and the output voltage increases across the  
resonant capacitor and lamp until the lamp ignites. If the  
lamp fails to ignite, the resonant capacitor voltage, the inductor  
voltage and inductor current will continue to increase until  
the inductor saturates or the output voltage exceeds the  
maximum voltage rating of the resonant capacitor or inductor.  
The ballast must shutdown before damage occurs. To  
protect against a lamp non-strike fault condition, the IR2520D  
uses the VS-sensing circuitry (Figure 5) to also measure  
the low-side half-bridge MOSFET current for detecting an  
www.irf.com  
9
IR2520D(S)&(PbF)  
faults. This can occur when a half-bridge MOSFET is  
selected that has an RDSon that is too large for the application  
causing the internal average to exceed the maximum limit.  
over-current fault. By using the RDSon of the external low-  
side MOSFET for current sensing and the VS-sensing  
circuitry, the IR2520D eliminates the need for an additional  
current sensing resistor, filter and current-sensing pin. To  
cancel changes in the RDSon value due to temperature and  
MOSFET variations, the IR2520D performs a crest factor  
measurement that detects when the peak current exceeds  
the average current by a factor of 5 (CSCF). Measuring the  
crest factor is ideal for detecting when the inductor saturates  
due to excessive current that occurs in the resonant tank  
when the frequency sweeps through resonance and the  
lamp does not ignite. When the VCO voltage ramps up for  
the first time from zero, the resonant tank current and  
voltages increase as the frequency decreases towards  
resonance (Figure 8). If the lamp does not ignite, the inductor  
current will eventually saturate but the crest factor fault  
protection is not active until the VCO voltage exceeds 4.8V  
FAULT MODE  
During Run Mode, should the VCO voltage decrease below  
0.82V (V  
) or a crest factor fault occur, the IR2520D  
VCOSD  
will enter Fault Mode (see State Diagram). The LO and HO  
gate driver outputs are both latched ‘low’ so that the half-  
bridge is disabled. The VCO pin is pulled low to COM and  
the FMIN pin decreases from 5V to COM. VCC draws  
micro-power current (I  
) so that VCC stays at the  
CCFLT  
clamp voltage and the IC remains in Fault Mode without the  
need for the charge-pump auxiliary supply. To exit Fault  
Mode and return to Frequency Sweep Mode, VCC must be  
cycled below the UVLO- threshold and back above the  
UVLO+ threshold.  
(V  
) for the first time. The frequency will continue  
VCO_RUN  
decreasing to the capacitive side of resonance towards  
the minimum frequency setting and the resonant tank current  
and voltages will decrease again. When the VCO voltage  
exceeds 4.8V (V  
), the IC enters Run Mode and  
VCO_RUN  
LO  
the non-ZVS protection and crest factor protection are both  
enabled. The non-ZVS protection will increase the  
frequency again cycle-by-cycle towards resonance from  
the capacitive side. The resonant tank current will increase  
again as the frequency nears resonance until the inductor  
saturates again.  
AVG*5  
Inductor  
saturation  
I
MLS  
INDUCTIVE SIDE  
OF RESONANCE  
CAPACITIVE SIDE  
OF RESONANCE  
The crest factor protection is now enabled and measures  
the instantaneous voltage at the VS pin only during the time  
when LO is ‘high’ and after an initial 1us blank time from the  
rising edge of LO. The blank time is necessary to prevent  
the crest factor protection circuit from reacting to a non-  
ZVS condition. An internal averaging circuit averages the  
instantaneous voltage at the VS pin over 10 to 20 switching  
cycles of LO. During Run Mode, the first time the inductor  
saturates when LO is ‘high’ (after the 1us blank time) and  
the peak current exceeds the average by 5 (CSCF), the  
IR2520D will enter Fault Mode and both LO and HO outputs  
will be latched ‘low’. The half-bridge will be safely disabled  
before any damage can occur to the ballast components.  
I
L
4.6V  
VCO  
V
FREQUENCY SWEEP MODE  
RUN MODE FAULT MODE  
The crest factor peak-to-average fault factor varies as a  
function of the internal average (Figure 20). The maximum  
internal average should be below 3.0 volts. Should the  
average exceed this amount, the multiplied average voltage  
can exceed the maximum limit of the VS sensing circuit and  
the VS sensing circuit will no longer detect crest factor  
Fig. 8 Crest factor protection timing diagram  
10  
www.irf.com  
IR2520D(S) &(PbF)  
16  
14  
12  
10  
8
50  
40  
30  
20  
10  
0
VCCUV+  
VCCUV-  
6
-25  
0
25  
50  
75 100 125  
-25  
0
25  
50  
75  
100  
125  
Temperature(C)  
Temperature(°C)  
Fig. 10 IQCCUV vs TEMP  
VCC=10V, VCO=0V  
Fig. 9 VCCUV+/- vs TEMP  
12  
10  
8
100  
80  
60  
40  
20  
0
VBSUV+  
VBSUV-  
6
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature(°C)  
Temperature(°C)  
Fig. 12 IQBSUV vs TEMP  
Fig. 11 VBSUV+/- vs TEMP  
www.irf.com  
11  
IR2520D(S)&(PbF)  
100  
90  
90  
80  
70  
60  
50  
40  
30  
20  
80  
20  
40  
60  
80  
K
K
K
K
VVCO=0V  
70  
60  
50  
40  
K
K
K
100  
120  
140  
30  
VVCO=5V  
20  
10  
0
10  
0
-25  
0
25 50 75 100 125  
-25  
0
25  
50  
75  
100  
125  
Temperature(C)  
Temperature(C)  
Fig. 13 Frequency vs TEMP  
REMIN=82K  
Fig. 14 Frequency vs RFMIN vs TEMP  
VVCO=6V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
93  
-25  
25  
92  
-25  
75  
91  
90  
89  
88  
87  
86  
25  
75  
125  
125  
0
12  
13  
14  
15  
16  
1
2
3
4
5
6
Temperature(C)  
VCO(V)  
Fig. 16 FREQ VS VCC vs TEMP  
VVCO=0V  
Fig. 15 FREQ VS VVCO vs TEMP  
VCC=14V  
12  
www.irf.com  
IR2520D(S) &(PbF)  
2
2.5  
2
1.8  
1.6  
1.4  
1.2  
TDHO  
TDLO  
1.5  
1
1
0.8  
0.6  
0.4  
0.2  
0
0.5  
0
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature(°C)  
Temperature(°C)  
Fig. 17 DTHO, DTLO vs TEMP  
VCO=0V  
Fig. 18 IVCO_FS vs TEMP  
7
10  
9
8
7
6
5
4
3
2
1
0
6.5  
6
5.5  
0.2  
0.4  
0.6  
0.8  
1
5
-25  
0
25  
50  
75  
100  
125  
VS OFFSET(V)  
Temperature(C)  
Fig. 20 CSCF vs OFFSET  
Fig. 19 VVCOMAX vs TEMP  
www.irf.com  
13  
IR2520D(S)&(PbF)  
1.5  
1.25  
1
10  
8
6
0.75  
0.5  
0.25  
0
4
2
-25  
0
25  
50  
75  
100  
125  
0
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature(°C)  
Fig. 22 VVCO_SD vs TEMP  
Fig. 21 CSCF vs TEMP  
VS_OFFSET=0.5V  
6
5
4
3
2
1
0
100  
80  
60  
40  
20  
0
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature(C)  
(
Temperature(°C)  
)
Fig. 24 IBS1 vs TEMP  
Fig. 23 VFMIN vs TEMP  
VCO=0V, RFMIN=82K  
14  
www.irf.com  
IR2520D(S) &(PbF)  
30  
25  
20  
15  
10  
5
0
-25  
0
25  
50  
75  
100  
125  
Temperature(°C)  
Fig. 26 IBS2 vs TEMP  
www.irf.com  
15  
IR2520D(S)&(PbF)  
Case outlines  
01-6014  
01-3003 01 (MS-001AB)  
IR2520D 8-Lead PDIP  
INC HES  
MILLIMETERS  
DIM  
A
D
B
MIN  
.0532  
A1 .0040  
MAX  
.0688  
.0098  
.020  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
FOOTPRINT  
5
A
E
8X 0.72 [.028]  
b
c
D
E
e
.013  
.0075  
.189  
.1497  
.0098  
.1968  
.1574  
8
1
7
2
6
3
5
6
H
0.25 [.010]  
A
.050 BASIC  
1.27 BASIC  
0.635 BASIC  
6.46 [.255]  
4
e 1 .025 BASIC  
H
K
L
.2284  
.0099  
.016  
0°  
.2440  
.0196  
.050  
8°  
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
3X 1.27 [.050]  
e
6X  
8X 1.78 [.070]  
y
K x 45°  
e1  
A
A
C
y
0.10 [.004]  
8X c  
8X L  
A1  
B
8X b  
0.25 [.010]  
7
C
NOTES:  
5
6
7
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].  
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].  
DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO  
A SUBSTRATE.  
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.  
2. CONTROLLING DIMENSION: MILLIMETER  
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].  
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.  
01-6027  
IR2520DS  
8-Lead SOIC  
01-0021 11 (MS-012AA)  
16  
www.irf.com  
IR2520D(S) &(PbF)  
LEADFREE PART MARKING INFORMATION  
Part number  
Date code  
IRxxxxxx  
YWW?  
IR logo  
?XXXX  
Pin 1  
Identifier  
Lot Code  
(Prod mode - 4 digit SPN code)  
?
MARKING CODE  
P
Lead Free Released  
Non-Lead Free  
Released  
Assembly site code  
Per SCOP 200-002  
ORDER INFORMATION  
Basic Part (Non-Lead Free)  
Leadfree Part  
8-Lead PDIP IR2520D order IR2520D  
8-Lead SOIC IR2520DS order IR2520DS  
8-Lead PDIP IR2520D order IR2520DPbF  
8-Lead SOIC IR2520DS order IR2520DSPbF  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105  
This product has been qualified per industrial level MSL-3  
Data and specifications subject to change without notice. 3/1/2005  
www.irf.com  
17  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY