IR3084AMTRPBF [INFINEON]

XPHASE TM VR 10/11 CONTROL IC; 的XPhase TM VR 10/11控制IC
IR3084AMTRPBF
型号: IR3084AMTRPBF
厂家: Infineon    Infineon
描述:

XPHASE TM VR 10/11 CONTROL IC
的XPhase TM VR 10/11控制IC

稳压器 开关式稳压器或控制器 电源电路 开关式控制器
文件: 总45页 (文件大小:681K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IR3084A  
Data Sheet No. PD. 94721  
XPHASETM VR 10/11 CONTROL IC  
DESCRIPTION  
The IR3084A Control IC combined with an IR XPhaseTM Phase IC provides a full featured and flexible  
way to implement a complete VR10 or VR11 power solution. The “Control” IC provides overall system  
control and interfaces with any number of “Phase” ICs which each drive and monitor a single phase of a  
multiphase converter. The XPhaseTM architecture results in a power supply that is smaller, less  
expensive, and easier to design while providing higher efficiency than conventional approaches.  
FEATURES  
1 to X phase operation with matching Phase IC  
Supports both VR11 8-bit VID code and extended VR10 7-bit VID code  
0.5% Overall System Setpoint Accuracy  
VID Select pin sets the DAC to either VR10 or VR11  
VID Select pin selects either VR11 or legacy VR10 type startups  
Programmable VID offset and Load Line output impedance  
Programmable VID offset function at the Error Amp’s non-inverting input allowing zero offset  
Programmable Dynamic VID Slew Rate  
±300mV Differential Remote Sense  
Programmable 150kHz to 1MHz oscillator  
Enable Input with 0.85V threshold and 100mV of hysteresis  
VR Ready output provides indication of proper operation and avoids false triggering  
Phase IC Gate Driver Bias Regulator / VRHOT Comparator  
Operates from 12V input with 9.9V Under-Voltage Lockout  
6.9V/6mA Bias Regulator provides System Reference Voltage  
Programmable Hiccup Over-Current Protection with Delay to prevent false triggering  
Small thermally enhanced 5mm x 5mm, 28 pin MLPQ package  
TYPICAL APPLICATION CIRCUIT  
CCP1  
100pF  
EA  
+5.0V  
R117  
1.21K  
RCP  
2.49K  
RT2  
4.7K, B=4450  
CCP  
56nF  
R1331  
1
Q4  
CJD200  
VREG_12V_FILTERED  
R137  
2K  
VGDRIVE  
RFB1  
162  
CFB  
10nF  
18  
C204  
0.1uF  
C135  
1uF  
VCC_SENSE  
VSS_SENSE  
VR_RDY  
ISHARE  
RMP  
17  
27  
15  
FB  
EAOUT  
VRRDY  
IIN  
C1009  
100pF  
RFB  
324  
19  
RMPOUT  
VBIAS  
20  
RDRP  
787  
VBIAS  
C89  
100pF  
C134  
0.1uF  
IR3084MTR  
16  
24  
VDRP  
REGDRV  
28  
9
8
7
6
5
4
3
2
1
OUTEN  
23  
25  
ENABLE  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
REGFB  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
VID_SEL  
REGSET  
RVSETPT  
124  
RVGDRV  
97.6K  
CVGDRV  
10nF  
14  
VSETPT  
OCSET  
VDAC  
ROCSET  
13  
15.8K  
VIDSEL  
VREG_12V_FILTERED  
21  
26  
VCC  
12  
VDAC  
R30  
10  
C130  
0.1uF  
ROSC 30.1K  
11  
RVDAC  
3.5  
SS/DEL  
ROSC  
LGND  
CVDAC  
33nF  
CSS/DEL  
0.1uF  
22  
VOSNS--  
10  
Page 1 of 45  
10/30/2006  
IR3084A  
ORDERING INFORAMATION  
DEVICE  
ORDER QUANTITY  
3000 Tape and Reel  
100 Piece Strip  
IR3084AMTRPBF  
IR3084AMPBF  
ABSOLUTE MAXIMUM RATINGS  
Stresses beyond those listed below may cause permanent damage to the device. These are stress  
ratings only and functional operation of the device at these or any other conditions beyond those  
indicated in the operational sections of the specifications are not implied.  
Operating Junction Temperature……………..0 to 150oC  
Storage Temperature Range………………….í65oC to 150oC  
ESD Rating………………………………………HBM Class 1B JEDEC standard  
Moisture Sensitivity Level………………………JEDEC Level 2 @ 260 oC  
PIN #  
1
PIN NAME  
VIDSEL  
VID7íꢀ  
VOSNSí  
ROSC  
VMAX  
20V  
20V  
0.5V  
20V  
20V  
20V  
20V  
20V  
20V  
20V  
10V  
20V  
20V  
20V  
n/a  
VMIN  
ISOURCE  
1mA  
1mA  
10mA  
1mA  
1mA  
1mA  
1mA  
1mA  
5mA  
1mA  
20mA  
5mA  
50mA  
1mA  
50mA  
1mA  
10mA  
1mA  
1mA  
1mA  
1mA  
ISINK  
1mA  
1mA  
10mA  
1mA  
1mA  
1mA  
1mA  
1mA  
5mA  
1mA  
20mA  
5mA  
10mA  
50mA  
1mA  
1mA  
50mA  
1mA  
1mA  
20mA  
1mA  
í0.3V  
í0.3V  
í0.5V  
í0.5V  
í0.3V  
í0.3V  
í0.3V  
í0.3V  
í0.3V  
í0.3V  
í0.3V  
í0.3V  
í0.3V  
í0.3V  
n/a  
2í9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
VDAC  
OCSET  
VSETPT  
IIN  
VDRP  
FB  
EAOUT  
RMPOUT  
VBIAS  
VCC  
LGND  
REGFB  
REGDRV  
REGSET  
SS/DEL  
VRRDY  
ENABLE  
20V  
20V  
20V  
20V  
20V  
20V  
í0.3V  
í0.3V  
í0.3V  
í0.3V  
í0.3V  
í0.3V  
Page 2 of 45  
10/30/2006  
IR3084A  
ELECTRICAL SPECIFICATIONS  
Unless otherwise specified, these specifications apply over: 9.5V ” VCC ” 16V, í0.3V ” VOSNSí ” 0.3V,  
0 oC ” TJ ” 100 oC, ROSC = 24kŸꢁꢂ&66ꢃ'(/ꢂ ꢂꢀꢄꢅµF ±10%  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
VDAC REFERENCE  
VID • 1V, 10kŸ”526&”ꢅꢀꢀNŸ,  
25 oC ” TJ ” 100 oC  
í0.5  
í5  
0.5  
+5  
+8  
%
System Set-Point Accuracy  
(Deviation from Tables 1 & 2  
per test circuit in Figure 1  
which emulates in-VR  
operation)  
0.8V ” VID < 1V, 10kŸ”526&”ꢅꢀꢀNŸ,  
25 oC ” TJ ” 100 oC  
mV  
mV  
0.5V”VID<0.8V, 10kŸ”526&”ꢅꢀꢀNŸ,  
25 oC ” TJ ” 100 oC  
í8  
Source Current  
Sink Current  
Includes OCSET and VSETPT currents  
Includes OCSET and VSETPT currents  
104  
92  
113  
100  
600  
122  
108  
700  
$
µA  
mV  
VIDx Input Threshold  
500  
VIDx & VIDSEL Input Bias  
Current  
µA  
µs  
0V ” VIDx ” VCC  
í5  
0
5
Measure Time till VRRDY drives low,  
Note 1  
VIDx 11111x Blanking Delay  
0.5  
1.3  
2.1  
VIDSEL Pull-up Voltage  
VIDSEL FLOATING  
1.15  
5.0  
1.25  
12.5  
1.35  
20.0  
V
VIDSEL Pull-up Resistance  
KŸ  
VIDSEL VR10/VR11  
Threshold  
0.55  
3.0  
0.62  
3.5  
0.69  
4.0  
V
V
V
VIDSEL VR11 No Boot  
Threshold  
VIDSEL VR10 No Boot  
Threshold  
7.0  
7.5  
8.0  
ERROR AMPLIFIER  
Measure V(FB) – V(VSETPT) per test  
circuit in Figure 1. Applies to TBS VID  
codes. Note 2.  
Input Offset Voltage  
í5  
0.0  
5
mV  
µA  
µA  
dB  
FB Bias Current  
VSETPT Bias Current  
DC Gain  
í1  
48.5  
90  
í0.3  
51  
0.5  
53.5  
110  
Note 1  
100  
10  
Gain Bandwidth Product  
Corner Frequency  
Slew Rate  
Note 1  
6
MHz  
Hz  
45 deg Phase Shift, Note 1  
Note 1  
200  
3.2  
400  
5
V/µs  
mA  
mA  
mV  
mV  
1.4  
í1.2  
0.5  
Source Current  
Sink Current  
í0.8  
1.0  
í0.35  
1.7  
Max Voltage  
VBIAS–VEAOUT (ref. to VBIAS)  
150  
30  
375  
110  
600  
200  
Min Voltage  
Normal operation or Fault mode  
VDRP BUFFER AMPLIFIER  
Input Offset Voltage  
Source Current  
Sink Current  
V(VDRP) – V(IIN), 0.5V ”ꢂ9ꢆ,,1ꢇꢂ”ꢂꢈ9  
0.5V ”ꢂ9ꢆ,,1ꢇꢂ”ꢂꢈ9  
0.5V ”ꢂ9ꢆ,,1ꢇꢂ”ꢂꢈ9  
Note 1  
í10  
í9  
0.2  
1
í1  
í7.3  
0.88  
6
6
mV  
mA  
í4  
4.1  
mA  
Bandwidth (í3dB)  
Slew Rate  
MHz  
V/µs  
Note 1  
5
10  
Page 3 of 45  
10/30/2006  
IR3084A  
PARAMETER  
CURRENT SENSE INPUT  
IIN Bias Current  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
V(SS/DEL) > 0.85V, V(EAOUT) > 0.5V  
V(SS/DEL) < 0.35V  
í2.0  
í0.2  
1.0  
µA  
IIN Preconditioning Pull-Down  
Resistance  
5.6  
12.5  
19.4  
KŸ  
IIN Preconditioning RESET  
Threshold  
V(EAOUT)  
V(SS/DEL)  
0.20  
0.35  
0.35  
0.60  
0.50  
0.85  
V
V
IIN Preconditioning SET  
Threshold  
VBIAS REGULATOR  
Output Voltage  
Current Limit  
í5mA ”ꢂ,ꢆ9%,$6ꢇꢂ”ꢂꢀP$  
1V ”ꢂ9ꢆ2&6(7ꢇꢂ”ꢂꢈ9  
6.6  
6.9  
7.2  
V
í35  
í20  
í6  
mA  
Over-Current Comparator  
Input Offset Voltage  
OCSET Bias Current  
í10  
í53.5  
í1  
í51  
10  
mV  
í48.5  
µA  
SOFT START AND DELAY  
Start Delay (TD1)  
RDRP = ’  
RDRP = ’  
1.2  
0.8  
0.2  
0.5  
150  
1.8  
1.6  
1.0  
1.3  
250  
2.6  
2.8  
2.5  
2.2  
350  
ms  
ms  
ms  
ms  
µs  
Soft Start Time (TD2)  
VID Sample Delay (TD3)  
VRRDY Delay (TD4 + TD5)  
OC Delay Time  
Note 1  
SS/DEL to FB Input Offset  
Voltage  
With FB = 0V, adjust V(SS/DEL) until  
EAOUT drives high  
0.85  
1.3  
1.5  
V
SS/DEL Charge Current  
µA  
µA  
40  
4
70  
100  
9
SS/DEL Discharge Current  
6.5  
Charge/Discharge Current  
Ratio  
µA/µA  
9.5  
11.2  
12.5  
OC Discharge Current  
Charge Voltage  
Note 1  
µA  
V
20  
40  
60  
3.6  
3.85  
4.1  
OC/VRRDY Delay  
Comparator Threshold  
Relative to Charge Voltage,  
SS/DEL rising  
80  
mV  
OC/VRRDY Delay  
Comparator Threshold  
Relative to Charge Voltage,  
SS/DEL falling  
100  
20  
mV  
mV  
V
Delay Comparator Hysteresis  
VID Sample Delay  
Comparator Threshold  
3.10  
SS/DEL Discharge  
Comparator Threshold  
215  
mV  
ENABLE INPUT  
Threshold Voltage  
Threshold Voltage  
Threshold Hysteresis  
Input Resistance  
ENABLE rising  
ENABLE falling  
775  
675  
60  
850  
750  
100  
100  
925  
825  
140  
200  
mV  
mV  
mV  
KŸ  
50  
Noise Pulse < 250ns will not register  
an ENABLE state change. Note 1  
Blanking Time  
75  
250  
400  
ns  
Page 4 of 45  
10/30/2006  
IR3084A  
PARAMETER  
VRRDY OUTPUT  
TEST CONDITION  
I(VRRDY) = 4mA  
MIN  
TYP  
MAX  
UNIT  
Output Voltage  
150  
0
300  
10  
mV  
Leakage Current  
V(VRRDY) = 5.5V  
µA  
OSCILLATOR  
Switching Frequency  
450  
70  
500  
72  
550  
74  
kHz  
%
Peak Voltage (4.8V typical,  
measured as % of VBIAS)  
Valley Voltage (0.9V typical,  
measured as % of VBIAS)  
10  
13  
15  
%
DRIVER BIAS REGULATOR  
REGSET Bias Current  
1.5V ”ꢂ9ꢆ5(*6(7ꢇꢂ”ꢂ9&&ꢂ– 1.5V  
µA  
í112  
í12  
í99  
í85  
1.5V ”ꢂ9ꢆ5(*6(7ꢇꢂ”ꢂ9&&ꢂ– 1.5V,  
100µA ”ꢂ,ꢆ5(*'59ꢇꢂ”ꢂꢅꢀP$  
Input Offset Voltage  
0
12  
mV  
V(REGDRV) = 0V,  
1.5V ”ꢂ9ꢆ5(*6(7ꢇꢂ”ꢂ9&&ꢂ– 1.5V,  
Note 1  
Short Circuit Current  
Dropout Voltage  
10  
20  
50  
mA  
V
I(REGDRV) = 10mA, Note 1  
0.4  
0.87  
1.33  
VCC UNDERíVOLTAGE LOCKOUT  
Start Threshold  
Stop Threshold  
9.3  
8.5  
575  
9.9  
9.1  
800  
10.3  
9.5  
V
V
Hysteresis  
Start – Stop  
1000  
mV  
GENERAL  
VCC Supply Current  
9
14  
18  
mA  
mA  
í0.3V ” VOSNSí ” 0.3V,  
All VID Codes  
VOSNSíꢂ&XUUHQW  
í1.45  
í1.3  
í0.75  
Note 1: Guaranteed by design but not tested in production  
Note 2: VDAC Output is trimmed to compensate for Error Amp input offsets errors  
+
EAOUT  
-
IR3084  
ERROR  
AMP  
200 OHM  
FB  
200 OHM  
VSETPT  
+
-
+
"FAST"  
VDAC  
-
OCSET  
VDAC  
ISOURCE  
ISINK  
VDAC  
BUFFER  
AMP  
SYSTEM  
SET POINT  
VOLTAGE  
IOFFSET  
IOCSET  
IROSC  
IROSC  
RVDAC  
CVDAC  
ROSC  
BUFFER  
AMP  
CURRENT  
SOURCE  
GENERATOR  
+
-
ROSC  
+
-
ROSC  
1.2V  
VOSNS-  
Figure 1 – System Set Point Test Circuit  
Page 5 of 45  
10/30/2006  
IR3084A  
PIN DESCRIPTIONS  
PIN# PIN SYMBOL  
DESCRIPTION  
Selects the DAC table and the type of Soft Start. There are 4 possible modes of  
operation: (1) GND selects VR10 DAC and VR11 type startup, (2) FLOAT (1.25V)  
selects VR11 DAC and VR11 type startup, (3) VBIAS (6.9V) selects VR11 DAC and  
legacy VR10 type startup, (4) VCC (12V) selects VR10 DAC and legacy VR10 type  
startup. Additional details are provided in the Theory of Operation section.  
1
VIDSEL  
Inputs to the D to A Converter. Must be connected to an external pull-up resistor.  
Remote Sense Input. Connect to ground at the Load.  
2í9  
VID7í0  
10  
VOSNSí  
Connect a resistor to VOSNSí to program oscillator frequency and OCSET,  
VSETPT, REGSET, and VDAC bias currents  
11  
ROSC  
Regulated voltage programmed by the VID inputs. Connect an external RC network  
to VOSNSí to program Dynamic VID slew rate and provide compensation for the  
internal Buffer Amplifier.  
12  
VDAC  
Programs the hiccup over-current threshold through an external resistor tied to  
VDAC and an internal current source. Over-current protection can be disabled by  
connecting a resistor from this pin to VDAC to program the threshold higher than the  
possible signal into the IIN pin from the Phase ICs but no greater than 5V (do not  
float this pin as improper operation will occur).  
13  
14  
OCSET  
Error Amp non-inverting input. Converter output voltage can be decreased from the  
VDAC (VID) voltage with an external resistor connected to VDAC and an internal  
current sink. Current sensing and PWM operation are referenced to this pin.  
VSETPT  
Current Sense input from the Phase ICs. Prior to startup, SS/DEL<0.6V, this pin is  
pulled low by a 12.5K resistor to disable current balancing in the Phase ICs. When  
SS/DEL>0.6V and EAOUT>0.35V, this pin is released and current balancing is  
enabled. If current feedback from the Phase ICs is not required for implementing  
droop or over-current protection connect this pin to LGND. To ensure proper  
operation do not float this pin.  
15  
16  
IIN  
Buffered IIN signal. Connect an external RC network to FB to program converter  
output impedance  
VDRP  
Inverting input to the Error Amplifier.  
17  
18  
19  
FB  
Output of the Error Amplifier. When Low, provides UVL function to the Phase ICs.  
Oscillator Output voltage. Used by Phase ICs to program Phase Delay  
EAOUT  
RMPOUT  
6.9V/6mA Regulated output used as a system reference voltage for internal circuitry  
and the Phase ICs.  
20  
VBIAS  
Power Input for internal circuitry  
21  
22  
VCC  
Local Ground for internal circuitry and IC substrate connection  
LGND  
Inverting input of the Bias Regulator Error Amp. Connect to the out put of the Phase  
IC Gate Driver Bias Regulator.  
23  
24  
REGFB  
Output of the Bias Regulator Error Amp.  
REGDRV  
Non-inverting input of the Bias Regulator Error Amp. Output Voltage of the Phase IC  
Gate Driver Bias Regulator is set by an internal current source flowing into an  
external resistor connected between this pin and ground.  
25  
REGSET  
Controls Converter Start-up and Over-Current Timing. Connect an external capacitor  
to LGND to program.  
26  
27  
28  
SS/DEL  
VRRDY  
ENABLE  
Open Collector output that drives low during Start-Up and any external fault  
condition. Connect external pull-up.  
Enable Input. A logic low applied to this pin puts the IC into Fault mode. This pin  
has a 100K pull-down resistor to GND.  
Page 6 of 45  
10/30/2006  
IR3084A  
SYSTEM THEORY OF OPERATION  
XPhaseTM Architecture  
The XPhaseTM architecture is designed for multiphase interleaved buck converters which are used in  
applications requiring small size, design flexibility, low voltage, high current and fast transient response. The  
architecture can be used in any multiphase converter ranging from 1 to 16 or more phases where flexibility  
facilitates the design tradeíoff of multiphase converters. The scalable architecture can be applied to other  
applications which require high current or multiple output voltages.  
As shown in Figure 2, the XPhaseTM architecture consists of a Control IC and a scalable array of phase  
converters each using a single Phase IC. The Control IC communicates with the Phase ICs through a 5íwire  
analog bus, i.e. bias voltage, phase timing, average current, error amplifier output, and VID voltage. The Control  
IC incorporates all the system functions, i.e. VID, PWM ramp oscillator, error amplifier, bias voltage, and fault  
protections etc. The Phase IC implements the functions required by the converter of each phase, i.e. the gate  
drivers, PWM comparator and latch, overívoltage protection, and current sensing and sharing.  
There is no unused or redundant silicon with the XPhaseTM architecture compared to others such as a 4 phase  
controller that can be configured for 2, 3, or 4 phase operation. PCB Layout is easier since the 5 wire bus  
eliminates the need for pointítoípoint wiring between the Control IC and each Phase. The critical gate drive and  
current sense connections are short and local to the Phase ICs. This improves the PCB layout by lowering the  
parasitic inductance of the gate drive circuits and reducing the noise of the current sense signal.  
VR READY  
PHASE FAULT  
VR HOT  
VR FAN  
12V  
ENABLE  
VIDSEL  
PHASE FAULT  
VID7  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
CIN  
IR3084  
CONTROL  
IC  
>> BIAS VOLTAGE  
>> PHASE TIMING  
<< CURRENT SENSE  
>> PWM CONTROL  
>> VID VOLTAGE  
VOUT SENSE+  
VOUT+  
CURRENT SHARE  
IR3086  
PHASE  
IC  
COUT  
VOUT-  
CCS RCS  
VOUT SENSE-  
PHASE FAULT  
CURRENT SHARE  
IR3086  
PHASE  
IC  
CCS RCS  
ADDITIONAL PHASES  
CONTROL BUS  
INPUT/OUTPUT  
Figure 2 – System Block Diagram  
Page 7 of 45  
10/30/2006  
IR3084A  
PWM Control Method  
The PWM block diagram of the XPhaseTM architecture is shown in Figure 3. Feedíforward voltage mode control  
with trailing edge modulation is used. A highígain wideíbandwidth voltage type error amplifier in the Control IC is  
used for the voltage control loop. An external RC circuit connected to the input voltage and ground is used to  
program the slope of the PWM ramp and to provide the feedíforward control at each phase. The PWM ramp  
slope will change with the input voltage and automatically compensate for changes in the input voltage. The input  
voltage can change due to variations in the silver box output voltage or due to drops in the PCB related to  
changes in load current.  
VIN  
CONTROL IC  
PHASE IC  
SYSTEM  
REFERENCE  
VOLTAGE  
BIASIN  
50%  
DUTY  
CYCLE  
PWM  
LATCH  
RAMP GENERATOR  
VPEAK  
RMPOUT  
RAMPIN+  
GATEH  
GATEL  
VOSNS+  
VOUT  
+
-
CLOCK  
PULSE  
S
PWM  
COMPARATOR  
GENERATOR  
RESET  
DOMINANT  
RRAMP1  
VVALLEY  
RAMPIN-  
EAIN  
COUT  
-
VBIAS  
VOSNS-  
VDAC  
R
+
VDAC  
GND  
+
-
RRAMP2  
VBIAS  
REGULATOR  
ENABLE  
PWMRMP  
+
RAMP  
SLOPE  
ADJUST  
O% DUTY  
CYCLE  
COMPARATOR  
RPWMRMP  
-
VOSNS-  
RAMP  
DISCHARGE  
CLAMP  
VSETPT  
EAOUT  
200 OHM  
RVSETPT  
SCOMP  
CPWMRMP  
+
-
SHARE  
CSCOMP  
ADJUST  
ERROR  
AMP  
X
ERROR  
AMP  
0.91  
+
-
RVFB  
RDRP  
CURRENT  
SENSE  
AMP  
ISHARE  
DACIN  
20mV  
CSIN+  
CSIN-  
10K  
+
FB  
CCS RCS  
-
X34  
IOFFSET  
IROSC  
VDRP  
AMP  
+
VDRP  
-
IIN  
PHASE IC  
SYSTEM  
BIASIN  
REFERENCE  
VOLTAGE  
PWM  
LATCH  
RAMPIN+  
GATEH  
GATEL  
+
-
CLOCK  
PULSE  
GENERATOR  
S
RRAMP1  
PWM  
COMPARATOR  
RESET  
DOMINANT  
RAMPIN-  
EAIN  
-
R
+
RRAMP2  
ENABLE  
PWMRMP  
+
RAMP  
O% DUTY  
CYCLE  
COMPARATOR  
SLOPE  
ADJUST  
-
RPWMRMP  
RAMP  
DISCHARGE  
CLAMP  
SCOMP  
CPWMRMP  
SHARE  
CSCOMP  
ADJUST  
ERROR  
AMP  
X
0.91  
+
-
CURRENT  
SENSE  
AMP  
ISHARE  
DACIN  
20mV  
CSIN+  
CSIN-  
10K  
+
CCS RCS  
-
X34  
Figure 3 – IR3084A PWM Block Diagram  
Frequency and Phase Timing Control  
The oscillator is located in the Control IC and its frequency is programmable from 150kHz to 1MHZ by an external  
resistor. The output of the oscillator is a 50% duty cycle triangle waveform with peak and valley voltages of  
approximately 4.8V and 0.9V. This signal is used to program both the switching frequency and phase timing of  
the Phase ICs. The Phase IC is programmed by resistor divider RRAMP1 and RRAMP2 connected between the  
VBIAS reference voltage and the Phase IC LGND pin. A comparator in the Phase ICs detects the crossing of the  
oscillator waveform with the voltage generated by the resistor divider and triggers a clock pulse that starts the  
PWM cycle. The peak and valley voltages track the VBIAS voltage reducing potential Phase IC timing errors.  
Figure 4 shows the Phase timing for an 8 phase converter. Note that both slopes of the triangle waveform can be  
used for synchronization by swapping the RAMP + and – pins.  
Page 8 of 45  
10/30/2006  
IR3084A  
50% RAMP  
DUTY CYCLE  
SLOPE  
SLOPE  
SLOPE  
=
=
=
80mV  
/
%
DC  
ns  
ns  
VPEAK (5.0V)  
1.6mV  
8.0mV  
/
/
@
@
200kHz  
1MHz  
VPHASE4&5 (4.5V)  
VPHASE3&6 (3.5V)  
VPHASE2&7 (2.5V)  
VPHASE1&8 (1.5V)  
VVALLEY (1.00V)  
CLK1  
CLK2  
CLK3  
CLK4  
CLK5  
CLK6  
CLK7  
CLK8  
Figure 4 – 8 Phase Oscillator Waveforms  
PWM Operation  
The PWM comparator is located in the Phase IC. Upon receiving a clock pulse, the PWM latch is set, the  
PWMRMP voltage begins to increase, the low side driver is turned off, and the high side driver is then turned on.  
When the PWMRMP voltage exceeds the Error Amp’s output voltage the PWM latch is reset. This turns off the  
high side driver, turns on the low side driver, and activates the Ramp Discharge Clamp. The clamp quickly  
discharges the PWMRMP capacitor to the VDAC voltage of the Control IC until the next clock pulse.  
The PWM latch is reset dominant allowing all phases to go to zero duty cycle within a few tens of nanoseconds in  
response to a load step decrease. Phases can overlap and go to 100% duty cycle in response to a load step  
increase with turn-on gated by the clock pulses. An Error Amp output voltage greater than the common mode  
input range of the PWM comparator results in 100% duty cycle regardless of the voltage of the PWM ramp. This  
arrangement guarantees the Error Amp is always in control and can demand 0 to 100% duty cycle as required. It  
also favors response to a load step decrease which is appropriate given the low output to input voltage ratio of  
most systems. The inductor current will increase much more rapidly than decrease in response to load transients.  
This control method is designed to provide “single cycle transient response” where the inductor current changes  
in response to load transients within a single switching cycle maximizing the effectiveness of the power train and  
minimizing the output capacitor requirements. An additional advantage is that differences in ground or input  
voltage at the phases have no effect on operation since the PWM ramps are referenced to VDAC.  
Page 9 of 45  
10/30/2006  
IR3084A  
Body BrakingTM  
In a conventional synchronous buck converter, the minimum time required to reduce the current in the inductor in  
response to a load step decrease is;  
TSLEW = [L x (IMAX í IMIN)] / Vout  
The slew rate of the inductor current can be significantly increased by turning off the synchronous rectifier in  
response to a load step decrease. The switch node voltage is then forced to decrease until conduction of the  
synchronous rectifier’s body diode occurs. This increases the voltage across the inductor from Vout to Vout +  
VBODY DIODE. The minimum time required to reduce the current in the inductor in response to a load transient  
decrease is now;  
TSLEW = [L x (IMAX í IMIN)] / (Vout + VBODY DIODE  
)
Since the voltage drop in the body diode is often higher than output voltage, the inductor current slew rate can be  
increased by 2X or more. This patent pending technique is referred to as “body braking” and is accomplished  
through the “0% Duty Cycle Comparator” located in the Phase IC. If the Error Amp’s output voltage drops below  
91% of the VDAC voltage this comparator turns off the low side gate driver.  
Figure 5 depicts PWM operating waveforms under various conditions  
PHASE IC  
CLOCK  
PULSE  
EAIN  
PWMRMP  
VDAC  
Body-Braking  
Threshold  
GATEH  
GATEL  
STEADY-STATE  
OPERATION  
DUTY CYCLE INCREASE  
DUE TO LOAD  
INCREASE  
DUTY CYCLE DECREASE  
DUE TO VIN INCREASE  
(FEED-FORWARD)  
DUTY CYCLE DECREASE DUE TO LOAD  
DECREASE (BODY BRAKING) OR FAULT  
(VCC UV, VCCVID UV, OCP, VID=11111X)  
STEADY-STATE  
OPERATION  
Figure 5 – PWM Operating Waveforms  
Lossless Average Inductor Current Sensing  
Inductor current can be sensed by connecting a series resistor and a capacitor network in parallel with the  
inductor and measuring the voltage across the capacitor. The equation of the sensing network is,  
RL + sL  
1+ sRS CS  
1
vC (s) = vL (s)  
= iL (s)  
1+ sRS CS  
Usually the resistor Rcs and capacitor Ccs are chosen so that the time constant of Rcs and Ccs equals the time  
constant of the inductor which is the inductance L over the inductor DCR. If the two time constants match, the  
voltage across Ccs is proportional to the current through L, and the sense circuit can be treated as if only a sense  
resistor with the value of RL was used. The mismatch of the time constants does not affect the measurement of  
inductor DC current, but affects the AC component of the inductor current.  
Page 10 of 45  
10/30/2006  
IR3084A  
The advantage of sensing the inductor current versus high side or low side sensing is that actual output current  
being delivered to the load is obtained rather than peak or sampled information about the switch currents. The  
output voltage can be positioned to meet a load line based on real time information. Except for a sense resistor in  
series with the inductor, this is the only sense method that can support a single cycle transient response. Other  
methods provide no information during either load increase (low side sensing) or load decrease (high side  
sensing).  
An additional problem associated with peak or valley current mode control for voltage positioning is that they  
suffer from peakítoíaverage errors. These errors will show in many ways but one example is the effect of  
frequency variation. If the frequency of a particular unit is 10% low, the peak to peak inductor current will be 10%  
larger and the output impedance of the converter will drop by about 10%. Variations in inductance, current sense  
amplifier bandwidth, PWM prop delay, any added slope compensation, input voltage, and output voltage are all  
additional sources of peakítoíaverage errors.  
Current Sense Amplifier  
A high speed differential current sense amplifier is located in the Phase IC, as shown in Figure 6. Its gain  
decreases with increasing temperature and is nominally 34 at 25ºC and 29 at 125ºC (í1470 ppm/ºC). This  
reduction of gain tends to compensate the 3850 ppm/ºC increase in inductor DCR. Since in most designs the  
Phase IC junction is hotter than the inductor these two effects tend to cancel such that no additional temperature  
compensation of the load line is required.  
The current sense amplifier can accept positive differential input up to 100mV and negative up to í20mV before  
clipping. The output of the current sense amplifier is summed with the DAC voltage and sent to the Control IC  
and other Phases through an on-chip 10KŸUHVLVWRUFRQQHFWHGWRWKH,6+$5(SLQꢄꢂ7KHꢂ,6+$5(ꢂSLQVꢂRIꢂDOOꢂWKHꢂ  
phases are tied together and the voltage on the share bus represents the average inductor current through all the  
inductors and is used by the Control IC for voltage positioning and current limit protection.  
vL  
L
RL  
iL  
Vo  
Rs  
Cs  
vc  
Co  
CSA  
CO  
Figure 6 – Inductor Current Sensing and Current Sense Amplifier  
Average Current Share Loop  
Current sharing between phases of the converter is achieved by the average current share loop in each Phase  
IC. The output of the current sense amplifier is compared with the share bus less a nominal 20mV offset. If  
current in a phase is smaller than the average current, the share adjust amplifier of the phase will activate a  
current source that reduces the slope of its PWM ramp thereby increasing its duty cycle and output current. The  
crossover frequency of the current share loop can be programmed with a capacitor at the SCOMP pin so that the  
share loop does not interact with the output voltage loop.  
Page 11 of 45  
10/30/2006  
IR3084A  
IR3084A THEORY OF OPERATION  
Block Diagram  
VRRDY  
VCC  
-
UVLO  
DISABLE  
OVER CURRENT  
NO CPU  
FAULT  
+
S
R
+
-
0.215V  
IIN  
VCC UVLO  
COMPARATOR  
9.9V  
9.1V  
+
-
0.6V  
12.5K  
ENABLE  
COMPARATOR  
+
-
NO CPU LATCHED  
SS DISCHARGE  
COMPARATOR  
S
R
SS/DEL  
250ns  
BLANKING  
ENABLE  
-
+
OC DELAY  
FAULT  
LATCH  
0.35V  
COMPARATOR  
-
+
-
+
S
R
IIN  
+
-
NO CPU  
FAULT  
LATCH  
EAOUT  
PRECONDITION  
LATCH  
850mV  
750mV  
100k  
+
-
STARTUP  
80mV  
100mV  
VCHG  
3.85V  
VDRP  
AMP  
VDRP  
-
+
ON  
+
-
OC  
COMPARATOR  
I_OC_DISCHG  
40uA  
OCSET  
SS/DEL DISCHARGE  
STARTUP  
LGND  
S
R
VID SAMPLE  
DELAY COMPARATOR  
OFF  
ON  
START  
LATCH  
IDISCHG  
6.5uA  
ICHG  
70uA  
3.1V  
-
+
SS/DEL  
1.3V  
IROSC  
1.3us  
BLANKING  
VID FAULT CODE  
DISABLE  
DIGITAL TO  
IROSC  
+
+
-
EAOUT  
FB  
VID INPUT  
COMPARATORS  
VID7  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
ANALOG  
-
IROSC  
ERROR  
AMP  
+
-
CONVERTER  
+
7.5V  
3.5V  
(1 of  
8
shown)  
IROSC  
IROSC  
IROSC  
+
-
-
+
SOFTSTART  
CLAMP  
ENABLE 1.1V BOOT  
VSETPT  
VDAC  
"FAST" VDAC  
IROSC  
IOFFSET  
+
-
IROSC  
IROSC  
IOCSET  
+
-
IROSC  
+
IROSC  
0.6V  
-
+
ISOURCE  
ISINK  
0.62V  
IROSC  
-
1.11V.11V.1V  
1.25V  
SET VR10 DAC  
SET VR11 DAC  
VDAC  
BUFFER  
AMP  
IVOSNS-  
1.3mA  
12.5K  
SET VID = 1.1V BOOT  
VIDSEL  
VOSNS-  
VBIAS  
1.24V  
VBIAS  
REGULATOR  
RAMP GENERATOR  
50%  
-
+
VBIAS  
IROSC  
BIAS  
REGULATOR  
ERROR AMP  
4.8V  
0.9V  
6.9V  
DUTY  
CYCLE  
RMPOUT  
+
-
REGDRV  
REGFB  
ROSC  
BUFFER  
AMP  
VCC  
CURRENT  
SOURCE  
+
-
IROSC  
IREGSET  
GENERATOR  
REGSET  
ROSC  
Figure 7 – IR3084A Block Diagram  
VID Control  
An 8íbit VID voltage compatible with VR 10 (see Table 1) and VR11 (see Table 2) is available at the VDAC pin.  
The VIDSEL pin configures the DAC for VR10 if grounded or connected to VCC (12V) and for VR11 if floated or  
connected to VBIAS (6.9V). The VIDSEL pin is internally pulledíup to 1.25V through a 12.5Kohm resistor. The  
VID pins require an external bias voltage and should not be floated. The VID input comparators, with 0.6V  
threshold, monitor the VID pins and control the 8 bit DigitalítoíAnalog Converter (DAC) whose output is sent to  
the VDAC buffer amplifier. The output of the buffer amp is the VDAC pin. The VDAC voltage is post-package  
trimmed to compensate for the input offsets of the Error Amp to provide a 0.5% system accuracy. The actual  
VDAC voltage does not represent the system set point and has a wider tolerance.  
Page 12 of 45  
10/30/2006  
IR3084A  
VID4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID3  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
VID2  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
VID1  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
VID0  
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
VID5  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
VID6  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Voltage  
1.60000  
1.59375  
1.58750  
1.58125  
1.57500  
1.56875  
1.56250  
1.55625  
1.55000  
1.54375  
1.53750  
1.53125  
1.52500  
1.51875  
1.51250  
1.50625  
1.50000  
1.49375  
1.48750  
1.48125  
1.47500  
1.46875  
1.46250  
1.45625  
1.45000  
1.44375  
1.43750  
1.43125  
1.42500  
1.41875  
1.41250  
1.40625  
1.40000  
1.39375  
1.38750  
1.38125  
1.37500  
1.36875  
1.36250  
1.35625  
1.35000  
1.34375  
1.33750  
1.33125  
1.32500  
1.31875  
1.31250  
1.30625  
1.30000  
1.29375  
1.28750  
1.28125  
1.27500  
1.26875  
1.26250  
1.25625  
1.25000  
1.24375  
1.23750  
1.23125  
1.22500  
1.21875  
1.21250  
1.20625  
VID4  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID3  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
VID2  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
VID1  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
VID0  
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
VID5  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
VID6  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Voltage  
1.20000  
1.19375  
1.18750  
1.18125  
1.17500  
1.16875  
1.16250  
1.15625  
1.15000  
1.14375  
1.13750  
1.13125  
1.12500  
1.11875  
1.11250  
1.10625  
1.10000  
1.09375  
FAULT  
FAULT  
FAULT  
FAULT  
1.08750  
1.08125  
1.07500  
1.06875  
1.06250  
1.05625  
1.05000  
1.04375  
1.03750  
1.03125  
1.02500  
1.01875  
1.01250  
1.00625  
1.00000  
0.99375  
0.98750  
0.98125  
0.97500  
0.96875  
0.96250  
0.95625  
0.95000  
0.94375  
0.93750  
0.93125  
0.92500  
0.91875  
0.91250  
0.90625  
0.90000  
0.89375  
0.88750  
0.88125  
0.87500  
0.86875  
0.86250  
0.85625  
0.85000  
0.84375  
0.83750  
0.83125  
Table 1 – VR10 VID Table with 6.25mV extension  
Page 13 of 45  
10/30/2006  
IR3084A  
Hex (VID7:VID0)  
00  
Dec (VID7:VID0)  
00000000  
00000001  
00000010  
00000011  
00000100  
00000101  
00000110  
00000111  
00001000  
00001001  
00001010  
00001011  
00001100  
00001101  
00001110  
00001111  
00010000  
00010001  
00010010  
00010011  
00010100  
00010101  
00010110  
00010111  
00011000  
00011001  
00011010  
00011011  
00011100  
00011101  
00011110  
00011111  
00100000  
00100001  
00100010  
00100011  
00100100  
00100101  
00100110  
00100111  
00101000  
00101001  
00101010  
00101011  
00101100  
00101101  
00101110  
00101111  
00110000  
00110001  
00110010  
00110011  
00110100  
00110101  
00110110  
00110111  
00111000  
00111001  
00111010  
00111011  
00111100  
00111101  
00111110  
00111111  
Voltage  
Fault  
Fault  
Hex (VID7:VID0)  
40  
Dec (VID7:VID0)  
01000000  
01000001  
01000010  
01000011  
01000100  
01000101  
01000110  
01000111  
01001000  
01001001  
01001010  
01001011  
01001100  
01001101  
01001110  
01001111  
01010000  
01010001  
01010010  
01010011  
01010100  
01010101  
01010110  
01010111  
01011000  
01011001  
01011010  
01011011  
01011100  
01011101  
01011110  
01011111  
01100000  
01100001  
01100010  
01100011  
01100100  
01100101  
01100110  
01100111  
01101000  
01101001  
01101010  
01101011  
01101100  
01101101  
01101110  
01101111  
01110000  
01110001  
01110010  
01110011  
01110100  
01110101  
01110110  
01110111  
01111000  
01111001  
01111010  
01111011  
01111100  
01111101  
01111110  
01111111  
Voltage  
1.21250  
1.20625  
1.20000  
1.19375  
1.18750  
1.18125  
1.17500  
1.16875  
1.16250  
1.15625  
1.15000  
1.14375  
1.13750  
1.13125  
1.12500  
1.11875  
1.11250  
1.10625  
1.10000  
1.09375  
1.08750  
1.08125  
1.07500  
1.06875  
1.06250  
1.05625  
1.05000  
1.04375  
1.03750  
1.03125  
1.02500  
1.01875  
1.01250  
1.00625  
1.00000  
0.99375  
0.98750  
0.98125  
0.97500  
0.96875  
0.96250  
0.95625  
0.95000  
0.94375  
0.93750  
0.93125  
0.92500  
0.91875  
0.91250  
0.90625  
0.90000  
0.89375  
0.88750  
0.88125  
0.87500  
0.86875  
0.86250  
0.85625  
0.85000  
0.84375  
0.83750  
0.83125  
0.82500  
0.81875  
01  
02  
03  
04  
05  
06  
07  
08  
41  
42  
43  
44  
45  
46  
47  
48  
1.60000  
1.59375  
1.58750  
1.58125  
1.57500  
1.56875  
1.56250  
1.55625  
1.55000  
1.54375  
1.53750  
1.53125  
1.52500  
1.51875  
1.51250  
1.50625  
1.50000  
1.49375  
1.48750  
1.48125  
1.47500  
1.46875  
1.46250  
1.45625  
1.45000  
1.44375  
1.43750  
1.43125  
1.42500  
1.41875  
1.41250  
1.40625  
1.40000  
1.39375  
1.38750  
1.38125  
1.37500  
1.36875  
1.36250  
1.35625  
1.35000  
1.34375  
1.33750  
1.33125  
1.32500  
1.31875  
1.31250  
1.30625  
1.30000  
1.29375  
1.28750  
1.28125  
1.27500  
1.26875  
1.26250  
1.25625  
1.25000  
1.24375  
1.23750  
1.23125  
1.22500  
1.21875  
09  
49  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
15  
16  
17  
18  
55  
56  
57  
58  
19  
59  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
25  
26  
27  
28  
65  
66  
67  
68  
29  
69  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
35  
36  
37  
38  
75  
76  
77  
78  
39  
79  
3A  
3B  
3C  
3D  
3E  
3F  
7A  
7B  
7C  
7D  
7E  
7F  
Table 2 – VR11 VID Table (Part 1)  
Page 14 of 45  
10/30/2006  
IR3084A  
Hex (VID7:VID0)  
80  
Dec (VID7:VID0)  
10000000  
10000001  
10000010  
10000011  
10000100  
10000101  
10000110  
10000111  
10001000  
10001001  
10001010  
10001011  
10001100  
10001101  
10001110  
10001111  
10010000  
10010001  
10010010  
10010011  
10010100  
10010101  
10010110  
10010111  
10011000  
10011001  
10011010  
10011011  
10011100  
10011101  
10011110  
10011111  
10100000  
10100001  
10100010  
10100011  
10100100  
10100101  
10100110  
10100111  
10101000  
10101001  
10101010  
10101011  
10101100  
10101101  
10101110  
10101111  
10110000  
10110001  
10110010  
10110011  
10110100  
10110101  
10110110  
10110111  
10111000  
10111001  
10111010  
10111011  
10111100  
10111101  
10111110  
10111111  
Voltage  
0.81250  
0.80625  
0.80000  
0.79375  
0.78750  
0.78125  
0.77500  
0.76875  
0.76250  
0.75625  
0.75000  
0.74375  
0.73750  
0.73125  
0.72500  
0.71875  
0.71250  
0.70625  
0.70000  
0.69375  
0.68750  
0.68125  
0.67500  
0.66875  
0.66250  
0.65625  
0.65000  
0.64375  
0.63750  
0.63125  
0.62500  
0.61875  
0.61250  
0.60625  
0.60000  
0.59375  
0.58750  
0.58125  
0.57500  
0.56875  
0.56250  
0.55625  
0.55000  
0.54375  
0.53750  
0.53125  
0.52500  
0.51875  
0.51250  
0.50625  
0.50000  
0.49375  
0.48750  
0.48125  
0.47500  
0.46875  
0.46250  
0.45625  
0.45000  
0.44375  
0.43750  
0.43125  
0.42500  
0.41875  
Hex (VID7:VID0)  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
Dec (VID7:VID0)  
11000000  
11000001  
11000010  
11000011  
11000100  
11000101  
11000110  
11000111  
11001000  
11001001  
11001010  
11001011  
11001100  
11001101  
11001110  
11001111  
11010000  
11010001  
11010010  
11010011  
11010100  
11010101  
11010110  
11010111  
11011000  
11011001  
11011010  
11011011  
11011100  
11011101  
11011110  
11011111  
11100000  
11100001  
11100010  
11100011  
11100100  
11100101  
11100110  
11100111  
11101000  
11101001  
11101010  
11101011  
11101100  
11101101  
11101110  
11101111  
11110000  
11110001  
11110010  
11110011  
11110100  
11110101  
11110110  
11110111  
11111000  
11111001  
11111010  
11111011  
11111100  
11111101  
11111110  
11111111  
Voltage  
0.41250  
0.40625  
0.40000  
0.39375  
0.38750  
0.38125  
0.37500  
0.36875  
0.36250  
0.35625  
0.35000  
0.34375  
0.33750  
0.33125  
0.32500  
0.31875  
0.31250  
0.30625  
0.30000  
0.29375  
0.28750  
0.28125  
0.27500  
0.26875  
0.26250  
0.25625  
0.25000  
0.24375  
0.23750  
0.23125  
0.22500  
0.21875  
0.21250  
0.20625  
0.20000  
0.19375  
0.18750  
0.18125  
0.17500  
0.16875  
0.16250  
0.15625  
0.15000  
0.14375  
0.13750  
0.13125  
0.12500  
0.11875  
0.11250  
0.10625  
0.10000  
0.10000  
0.10000  
0.10000  
0.10000  
0.10000  
0.10000  
0.10000  
0.10000  
0.10000  
0.10000  
0.10000  
FAULT  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
FAULT  
Table 2 – VR11 VID Table (Part 2)  
Page 15 of 45  
10/30/2006  
IR3084A  
The IR3084A can accept changes in the VID code while operating and vary the DAC voltage accordingly. The  
sink/source capability of the VDAC buffer amp is programmed by the same external resistor that sets the  
oscillator frequency. The slew rate of the voltage at the VDAC pin can be adjusted by an external capacitor  
between VDAC pin and the VOSNSí pin. A resistor connected in series with this capacitor is required to  
compensate the VDAC buffer amplifier. Digital VID transitions result in a smooth analog transition of the VDAC  
voltage and converter output voltage minimizing inrush currents in the input and output capacitors and overshoot  
of the output voltage.  
Adaptive Voltage Positioning  
Adaptive Voltage Positioning (AVP) is needed to reduce the output voltage deviations during load transients and  
the power dissipation of the load when it is drawing high current. The circuitry related to the voltage positioning is  
shown in Figure 8.  
Resistor RSETPT is connected between the VDAC pin and VSETPT pin to set the desired amount of fixed offset  
voltage below the DAC voltage. The VSETPT is internally connected to the noníinverting input of the voltage  
error amplifier and an internal current source IOFFSET, whose value is programmed by the same external resistor  
that programs the oscillator frequency. The voltage drop across RSETPT caused by IOFFSET sets the no-load l  
offset voltage below the nominal DAC setting.  
The voltage at the VDRP pin is a buffered version of the share bus and represents the sum of the DAC voltage  
and the average inductor current of all the phases. The VDRP pin is connected to the FB pin through the resistor  
RDRP. Since the Error Amp will force the loop to maintain FB to be equal to the VSETPT reference voltage, a  
current will flow into the FB pin equal to (VDRPíVSETPT) / RDRP. When the load current increases, the VDRP  
voltage increases accordingly. More current flows through the feedback resistor RFB, and makes the output  
voltage lower proportional to the load current. The positioning voltage can be programmed by the resistor RDRP  
so that the droop impedance produces the desired converter output impedance. The offset and slope of the  
converter output impedance are referenced to and therefore independent of the VDAC voltage.  
Due to the difference between VDAC and VSETPT, the VDRP will cause extra offset voltage through RDRP and  
RFB. The total offset voltage is the sum of voltage across RVSETPT and the voltage drop on the RFB at no load.  
Control IC  
VDAC  
VDAC  
Phase IC  
RSETPT  
Current Sense  
VSETPT  
Amplifier  
CSIN+  
CSIN-  
+
ISHARE  
VDAC  
+
-
-
EAOUT  
FB  
10k  
IOFFSET  
Vo  
RFB  
Error  
Amplifier  
RDRP  
VDRP  
Amplifier  
Phase IC  
VDRP  
IIN  
Current Sense  
-
+
Amplifier  
CSIN+  
CSIN-  
+
ISHARE  
VDAC  
-
10k  
Figure 8 í Adaptive voltage positioning  
Page 16 of 45  
10/30/2006  
IR3084A  
Inductor DCR Temperature Correction  
If the thermal compensation of the inductor DCR provided by the temperature dependent gain of the current  
sense amplifier is not adequate, a negative temperature coefficient (NTC) thermistor can be used for additional  
correction. The thermistor should be placed close to the inductor and connected in parallel with the feedback  
resistor, as shown in Figure 9. The resistor in series with the thermistor is used to reduce the nonlinearity of the  
thermistor.  
Control IC  
VDAC  
RSETPT  
VSETPT  
+
EAOUT  
-
Vo  
RFB  
Error  
Amplifier  
IOFFSET  
RFB2  
Rt  
RDRP  
AVP  
Amplifier  
VDRP  
IIN  
-
+
Figure 9 í Temperature compensation of inductor DCR  
Remote Voltage Sensing  
To compensate for impedance in the ground plane, the VOSNSí pin is used for remote sensing and connects  
directly to the load. The VDAC voltage is referenced to VOSNSí to avoid additional error terms or delay related  
to a separate differential amplifier. The capacitor connecting the VDAC and VOSNSí pins ensure that high speed  
transients are fed directly into the error amp without delay.  
Start-up Modes  
The IR3084A has a programmable soft-start function to limit the surge current during the converter start-up. A  
capacitor connected between the SS/DEL and LGND pins controls soft start as well as over-current protection  
delay and hiccup mode timing. A charge current of 70uA controls the positive slope of the voltage at the SS/DEL  
pin.  
There are two types of start-up possible: Boot Mode (VR11) and Non-Boot Mode (legacy VR10). In Boot Mode,  
the soft start circuitry will initially set the voltage at the VDAC pin to 1.1V and the converter’s output will slowly  
rise, using the slew rate set by the capacitor at the SS/DEL pin, until it’s equal to 1.1V. After Vcore achieves the  
1.1V Boot voltage, there will be a short delay, the VID pins will be sampled, and the voltage at the VDAC pin and  
the converter’s output will increase or decrease to the desired VID setting using the dynamic VID slew rate. In  
Non-Boot Mode, the soft start sequence will ramp the voltage at the VDAC pin directly to the external VID setting  
using the slew rate set by the capacitor at the SS/DEL pin without pausing at the 1.1V Boot voltage.  
Page 17 of 45  
10/30/2006  
IR3084A  
Figure 10a depicts the start-up sequence without AVP in Boot Mode (VRM11) í VIDSEL is either floating or  
grounded. First, the VDAC pin is charged to the 1.1V Boot voltage. Then, if there are no fault conditions, the  
SS/DEL capacitor will begin to be charged. Initially, the error amplifier’s output will be clamped low until the  
voltage at the SS/DEL pin reaches 1.3V. After the voltage at the SS/DEL pin rises to 1.3V, the error amplifier’s  
output will begin to rise and the converter’s output voltage will be regulated 1.3V below the voltage at the SS/DEL  
pin. The converter’s output voltage will slowly ramp to the 1.1V Boot voltage. The SS/DEL pin’s voltage will  
continue to increase until it rises above the 3.1V threshold of the VID delay comparator. When the SS/DEL  
voltage exceeds 3.1V, the VID inputs will be sampled and the VDAC pin will transition to the level determined by  
the VID inputs at the dynamic VID slew rate. When the voltage on the SS/DEL pin rises above 3.77V the VRRDY  
Delay Comparator will allow the VRRDY signal to be asserted. SS/DEL will continue to rise until finally settling at  
3.85V, indicating the end of the start-up sequence.  
Figure 10b depicts the start-up sequence in Non-Boot Mode í VIDSEL is connected to VBIAS (6.9V) or to VCC  
(12V). First, the external VID setting is sampled and the VDAC pin is set to the desired VID voltage. Then, if  
there are no fault conditions, the SS/DEL capacitor will begin to charge. Initially, the error amplifier’s output will  
be clamped low until the voltage at the SS/DEL rises to 1.3V. After the voltage at the SS/DEL pin reaches 1.3V,  
the error amplifier’s output will begin to rise and the converter’s output voltage will be regulated 1.3V below the  
voltage at the SS/DEL pin. As the voltage at the SS/DEL pin continues to rise, the converter’s output voltage will  
slowly increase until it is equal to the voltage at the VDAC pin. When the voltage on the SS/DEL pin rises above  
3.77V the VRRDY Delay Comparator will allow the VRRDY signal to be asserted. SS/DEL will continue to rise  
until finally settling at 3.85V, indicating the end of the startíup sequence.  
If AVP is used (RDRP ꢂ ’ꢇ, the soft start timing will change slightly because of the resistor from the VDRP  
amplifier to the Error Amplifier’s FB pin. During startup with AVP, the VDRP amplifier will produce a voltage at  
the FB pin equal to VDAC times the resistor divider formed by the droop resistor and the feedback resistor from  
Vcore to the FB pin. To offset the contribution from the VDRP amplifier, the voltage at the SS/DEL pin will have  
to rise to beyond 1.3V before the Error Amplifier’s output and Vcore begin to rise. For a DAC setting of 1.3V with  
typical load line slope, the Error Amplifier’s output will begin to rise when the voltage at the SS/DEL pin reaches  
approximately 1.6V. The effect of this offset will be to slightly lengthen the Start Delay (TD1) and shorten the Soft  
Start Ramp Time (TD2).  
The following table summarizes the differences between the 4 modes associated with setting the VIDSEL pin. In  
addition to changing the soft start sequence, the NO_CPU code may or may not be ignored during startup and  
the NO_CPU code may or may not be latched.  
1.1V Boot  
Voltage During  
Startup?  
Ignore NO CPU  
Codes During  
Startup?  
VIDSEL  
Voltage  
VID  
Table  
Latch NO CPU  
Fault Code?  
GND  
VR10  
VR11  
VR11  
VR10  
YES  
YES  
NO  
YES  
YES  
NO  
YES  
YES  
NO  
FLOAT (1.2V)  
VBIAS (6.9V)  
VCC (12V)  
NO  
NO  
NO  
Table 3: 3084A Controller Functionality versus VIDSEL Voltages  
Page 18 of 45  
10/30/2006  
IR3084A  
9.1V  
UVLO  
+12Vin  
0.85V  
ENABLE  
(VTT)  
1.100V  
VDAC  
3.85V  
3.77V  
3.10V  
1.30V  
SS/DEL  
EAOOUT  
1.100V  
VDAC  
IIN  
1.100V  
VOUT  
VRRDY  
VID  
VR_RDY DELAY  
1.3ms (TD4+TD5)  
START  
(ENABLE ENDS  
FAULT MODE)  
START DELAY  
1.8ms (TD1)  
NORMAL  
OPERATION  
POWER-DOWN  
(VCC UVL  
INITIATES  
FAULT MODE)  
SOFT START TIME  
1.6ms (TD2)  
SAMPLE  
DELAY  
1.0ms  
(TD3)  
DYNAMIC VID TIME  
200us (TD4)  
Figure 10a – Startíup Waveforms with Boot Mode (VID Setting > 1.1V)  
9.1V  
UVLO  
+12Vin  
0.85V  
ENABLE  
(VTT)  
VID SETTING  
VDAC  
3.77V  
1.30V  
SS/DEL  
EAOOUT  
VID SETTING  
IIN  
VID SETTING  
VOUT  
VRRDY  
POWER-DOWN  
(VCC UVL  
INITIATES  
FAULT MODE)  
START  
(ENABLE ENDS  
FAULT MODE)  
START DELAY  
1.8ms  
SOFT START TIME  
1.6ms  
VR_RDY DELAY  
2.3ms  
NORMAL  
OPERATION  
Figure 10b – Startíup Waveforms without 1.1V Boot Mode (VID Setting=1.1V)  
Page 19 of 45  
10/30/2006  
IR3084A  
Fault Modes  
Under Voltage Lock Out, VID = FAULT, as well as a low signal on the ENABLE input immediately sets the fault  
latch. This causes the EAOUT pin to drive low turning off the Phase IC drivers. The VRRDY pin also drives low.  
The SS/DEL capacitor will discharge down to 0.215V through a 6.5uA current source. If the fault has cleared the  
fault latch will be reset by the discharge comparator allowing a normal start-up sequence to occur. If a VID =  
FAULT condition is latched it can only be cleared by cycling power to the IR3084A on and off.  
OveríCurrent Protection Delay and Hiccup Mode  
Figure 11 depicts the operating waveforms of the Over-Current protection. A delay is included if an over-current  
condition occurs after a successful soft start sequence. This is required because over-current conditions can  
occur as part of normal operation due to load transients or VID transitions. If an over-current fault occurs during  
normal operation it will activate the SS/DEL discharge current of 40uA but will not set the fault latch immediately.  
If the over-current condition persists long enough for the SS/DEL capacitor to discharge below the 100mV offset  
of the delay comparator, the Fault latch will be set pulling the error amp’s output low inhibiting switching in the  
phase ICs and de-asserting the VRRDY signal.  
The SS/DEL capacitor will continue to discharge until it reaches 0.215V and the fault latch is reset allowing a  
normal soft start to occur. If an over-current condition is again encountered during the soft start cycle the fault  
latch will be set without any delay and hiccup mode will begin. During hiccup mode the 10.8 to 1 charge to  
discharge current ratio results in a 9% hiccup mode duty cycle regardless of at what point the over-current  
condition occurs.  
If the voltage at the SS/DEL pin is pulled below the SS/DEL to FB Input Offset Voltage (0.85V min), the converter  
can be disabled.  
3.77V  
SS/DEL  
3.75V  
(3.85V DURING  
NORMAL  
OPERATION)  
1.3V  
DISCHARGE VOLTAGE  
(0.215V)  
VOUT  
VRRDY  
OCP THRESHOLD  
IOUT  
NORMAL  
HICCUP MODE  
RESTART NORMAL  
OPERATION  
OVER-CURRENT PROTECTION  
AFTER  
OCP  
OPERATION  
OCP  
DELAY  
Figure 11 – Over-Current Protection Waveforms (VID = 1.1V for simplicity)  
Page 20 of 45  
10/30/2006  
IR3084A  
Under Voltage Lockout (UVLO)  
The UVLO function monitors the IR3084A’s VCC supply pin and ensures that there is adequate voltage to safely  
power the internal circuitry. The IR3084A’s UVLO threshold is set higher than the minimum operating voltage of  
compatible Phase ICs thus providing UVLO protection for them as well. UVLO at the Phase ICs is a function of  
the Error Amplifier’s output voltage. When the IR3084A is in UVLO, the Error Amplifier is disabled and EAOUT is  
at a very low voltage (<200mV) thus preventing the Phase ICs from becoming active.  
During power-up, the IR3084A’s fault latch is reset when VCC exceeds 9.9V if there are no other faults. If the  
VCC voltage drops below 9.1V the fault latch will be set.  
Over Current Protection (OCP)  
The current limit threshold is set by a resistor connected between the OCSET and VDAC pins. If the IIN pin  
voltage, which is proportional to the average phase current plus DAC voltage, exceeds the OCSET voltage, the  
over-current protection is triggered.  
VID = Fault Code (NO_CPU)  
When VIDSEL is grounded or left floating, NO_CPU VID codes of 11111XX for VR10 and 0000000X, 1111111X  
for VR11 will set both the VID Fault Latch and the Fault Latch to disable the error amplifier. The controller will be  
latched OFF and a power-on reset (POR) will be required to produce a new soft start sequence. In these 2  
modes, the NO_CPU codes are ignored during startup. See Table 1 for further details.  
When VIDSEL is set to VBIAS (6.9V) or VCC (12V), NO_CPU VID codes of 11111XX for VR10 and 0000000X,  
1111111X for VR11 will set the Fault Latch to disable the error amplifier but the VID Fault Latch will not be set.  
The controller will not be latched OFF and a soft start sequence will be produced when the NO_CPU code is  
removed and the SS/DEL voltage falls below 0.215V. In these 2 modes, the NO_CPU codes will be not be  
ignored during startup. See Table 1 for further details.  
A 1.3µs delay is provided to prevent a NO_CPU fault condition from occurring during Dynamic VID changes.  
VRRDY (Power Good) Output  
The VRRDY pin is an open-collector output and should be pulled up to a voltage source through a resistor.  
During soft-start, the VRRDY output remains low until the converter’s output voltage is in regulation and SS/DEL  
is above 3.77V. The VRRDY pin transitions low if the fault latch is set. A high level at the VRRDY pin indicates  
that the converter is in operation and has no fault, but does not ensure the output voltage is within the  
specification. Output voltage regulation within the design limits can logically be assured however, assuming no  
component failure in the system.  
Load Current Indicator Output  
The VDRP pin voltage represents the average phase current of the converter plus the DAC voltage. The load  
current can be retrieved by subtracting the VDAC voltage from the VDRP voltage.  
Page 21 of 45  
10/30/2006  
IR3084A  
System Reference Voltage (VBIAS)  
The IR3084A supplies a 6.9V/6mA precision reference voltage from the VBIAS pin. The oscillator ramp trip points  
are based on the VBIAS voltage so it should be used to program the Phase ICs phase delay to minimize phase  
errors.  
Phase IC Gate Driver Bias Regulator / VRHOT Comparator  
An internal amplifier can be configured as a gate driver bias regulator to provide programmable gate driver  
voltage for phase ICs (Figure 12a), or a thermal monitor to provide VRHOT/VRFAN signal as required in VR11  
(Figure 12b).  
The internal current source IREGSET whose value is programmed by the switching frequency going through the  
external RSET resistor sets the gate driver voltage or the VRHOT/VRFAN threshold voltage. An NTC thermistor  
is used to monitor the temperature on the VRM/VRD.  
+12V  
VCC  
RPU  
1ohm / 1206  
IREGSET  
REGSET  
+
-
REGDRV  
REGFB  
Q1  
CJD200  
CVGDRV  
10nF  
RVGDRV  
97.6K  
VGDRIVE  
C3  
10uF  
+
IR3084 CONTROL IC  
Figure 12a – IR3084A Bias Regulator configured for Gate Driver Bias Regulator  
RH2  
36K  
RH1  
1.1MEG  
+3.3V  
VBIAS  
VCC  
RPU1  
2K  
VRHOT#  
IREGSET  
R1  
10K  
R4  
2K  
REGSET  
REGFB  
+
-
Q5  
2N7002  
REGDRV  
R5  
1K  
C2  
10nF  
C1  
R2  
1nF  
100K  
IR3084 CONTROL IC  
R3  
3K  
Figure 12b – IR3084A Bias Regulator configured for VRHOT# Function  
Page 22 of 45  
10/30/2006  
IR3084A  
PERFORMANCE CHARACTERISTICS  
Figure 13: Oscillator Frequency versus ROSC  
Figure 14: I(OCSET) versus ROSC  
1000  
120  
110  
100  
90  
900  
800  
700  
600  
500  
400  
300  
200  
100  
80  
70  
60  
50  
40  
30  
20  
10  
10  
20  
30  
40  
50  
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
ROSC (Kohms)  
ROSC (Kohms)  
Figure 16: I(REGSET) CURRENT versus ROSC  
Figure 15: I(VSETPT) versus ROSC  
250  
230  
210  
190  
170  
150  
130  
110  
90  
120  
110  
100  
90  
80  
70  
60  
50  
40  
70  
30  
50  
20  
30  
10  
10  
10  
20  
30  
40  
50  
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
ROSC (Kohms)  
ROSC (Kohms)  
Figure 17: VDAC SINK & SOURCE CURRENT vs. ROSC  
Figure 18: IR3084 Error Amplifier Bode Plot  
200  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
I(VDAC SOURCE) (uA)  
I(VDAC SINK) (uA)  
Gain  
150  
100  
50  
Phase  
0
60  
40  
20  
-50  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1.E+07  
1.E+08  
10  
20  
30  
40  
50  
60  
70  
80  
90  
Frequency (Hz)  
ROSC (Kohms)  
Page 23 of 45  
10/30/2006  
IR3084A  
APPLICATIONS INFORMATION  
VR READY  
VRHOT  
PHASE FAULT  
VOUT SENSE-  
VOUT SENSE+  
+12V  
RCS-  
CIN  
R1332  
1
Q6  
CJD200  
CCS+  
CCS-  
RBIASIN  
C205  
0.1uF  
C137  
1uF  
RCS+  
0.1uF  
CCP2  
100pF  
1
15  
RMPIN+  
VCCH  
DISTRIBUTION  
IMPEDANCE  
RT3  
R118  
2
3
4
5
14  
13  
12  
11  
IR3086  
PHASE  
IC  
+5.0V  
RMPIN-  
HOTSET  
VRHOT  
ISHARE  
GATEH  
PGND  
GATEL  
VCCL  
4.7K, B=4450 1.21K  
RCP1  
2.49K  
CCP3  
56nF  
VOUT+  
R138  
2K  
COUT  
RFB2  
162  
CFB1  
12nF  
18  
EAOUT  
17  
27  
15  
19  
20  
FB  
VRRDY  
IIN  
C1010  
100pF  
RFB3  
348  
0.1uF  
RMPOUT  
VBIAS  
RDRP1  
750  
RPWMRMP  
0.1uF  
C136  
0.1uF  
C90  
100pF  
IR3084MTR  
CSCOMP  
16  
24  
23  
25  
VDRP  
REGDRV  
REGFB  
28  
9
8
7
6
5
4
3
2
1
OUTEN  
VID0  
ENABLE  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
VID_SEL  
REGSET  
RCS-  
CCS-  
RVSETPT1  
124  
RVGDRV1  
97.6K  
CVGDRV1  
10nF  
CCS+  
14  
13  
12  
11  
22  
VSETPT  
OCSET  
VDAC  
RBIASIN  
ROCSET1  
12.7K  
VIDSEL  
RCS+  
0.1uF  
+12V  
21  
VCC  
R31  
10  
C131  
0.1uF  
26  
ROSC130.1K  
RVDAC1  
3.5  
SS/DEL  
ROSC  
LGND  
CSS/DEL1  
0.1uF  
CVDAC1  
33nF  
1
15  
RMPIN+  
VCCH  
GATEH  
PGND  
GATEL  
VCCL  
2
3
4
5
14  
13  
12  
11  
IR3086  
PHASE  
IC  
VOSNS--  
10  
RMPIN-  
HOTSET  
VRHOT  
ISHARE  
0.1uF  
RPWMRMP  
0.1uF  
CSCOMP  
RCS-  
CCS-  
CCS+  
RBIASIN  
RCS+  
0.1uF  
1
15  
RMPIN+  
VCCH  
GATEH  
PGND  
GATEL  
VCCL  
2
3
4
5
14  
13  
12  
11  
IR3086  
PHASE  
IC  
RMPIN-  
HOTSET  
VRHOT  
ISHARE  
0.1uF  
RPWMRMP  
0.1uF  
CSCOMP  
RCS-  
CCS-  
CCS+  
RBIASIN  
RCS+  
0.1uF  
1
15  
RMPIN+  
VCCH  
GATEH  
PGND  
GATEL  
VCCL  
2
3
4
5
14  
13  
12  
11  
IR3086  
PHASE  
IC  
RMPIN-  
HOTSET  
VRHOT  
ISHARE  
0.1uF  
RPWMRMP  
0.1uF  
CSCOMP  
RCS-  
CCS-  
CCS+  
RBIASIN  
RCS+  
0.1uF  
1
15  
RMPIN+  
VCCH  
GATEH  
PGND  
GATEL  
VCCL  
2
3
4
5
14  
13  
12  
11  
IR3086  
PHASE  
IC  
RMPIN-  
HOTSET  
VRHOT  
ISHARE  
0.1uF  
RPWMRMP  
0.1uF  
CSCOMP  
Figure 19 – IR3084A/3086A 5 Phase VRM/EVRD 11 Converter  
Page 24 of 45  
10/30/2006  
IR3084A  
DESIGN PROCEDURES – IR3084A and IR3086A Chipset  
IR3084A EXTERNAL COMPONENTS  
Oscillator Resistor Rosc  
The oscillator of IR3084A generates a triangle waveform to synchronize the phase ICs, and the switching  
frequency of the each phase converter equals the oscillator frequency, which is set by the external resistor ROSC  
according to the curve in Figure 13 on page 23.  
VDAC Slew Rate Programming Capacitor CVDAC and Resistor RVDAC  
The sink and source currents of the VDAC pin are set by the value of ROSC. The sink current capability of the  
VDAC pin is slightly less than the source current. Therefore, the VDAC sink current (ISINK) should be used to  
calculate CVDAC to insure that the dynamic VID slew rate when Vcore decreases is not too slow.  
The negative slew rate of VDAC (SRDOWN) is programmed by the external capacitor CVDAC as shown in Equation  
(1). The resistor RVDAC is used to compensate/stabilize the VDAC circuit and is determined by Equation (2). The  
positive slew rate of the VDAC voltage (SRUP) is proportional to the negative slew rate of VDAC and can be  
calculated using Equation (3).  
ISINK  
CVDAC  
=
(1)  
SRDOWN  
Where: ISINK is the sink current of the VDAC pin at the chosen value of ROSC as shown in Figure 17 on  
page 23.  
3.2 1015  
CVDAC  
RVDAC = 0.5Ω +  
(2)  
(3)  
2
ISOURCE  
SRUP  
=
CVDAC  
Where: ISOURCE is the source current of the VDAC pin at the chosen value of ROSC as shown in Figure 17  
on page 23.  
The VID voltage rise or fall time during startup with Boot Mode (TD4) can be calculated using either Equation  
(4a) or (4b).  
CVDAC  
TD4 =  
TD4 =  
VDAC 1.1V  
(
)
if VDAC > 1.1V  
if VDAC < 1.1V  
(4a)  
(4b)  
ISOURCE  
CVDAC  
ISINK  
1.1V VDAC  
(
)
Where: VDAC is the DAC voltage set by the VID pins.  
ISOURCE and ISINK are the source and sink currents of the VDAC pin.  
If Boot Mode is not used then TD4 = 0.  
Page 25 of 45  
10/30/2006  
IR3084A  
No Load Output Voltage Setting Resistor RVSETPT, Feedback Resistor RFB, and AVP Resistor RDRP  
An external resistor, RVSETPT, connected between the VDAC pin and the VSETPT pin is used to set the no load  
output voltage offset, VO_NLOFST, which is the difference between the VDAC voltage and output voltage at no load.  
However, the converter’s output voltage will be set by the combination of VSETPT plus some contribution from  
the VDRP pin. At no load, both pins of the Error Amplifier are at VDAC – VSETPT while the VDRP pin is at  
VDAC + VOS•GCSA (VOS and GCSA are the input offset and gain of the current sense amplifiers). Because the  
VDRP pin is at a higher voltage than the FB pin of the Error Amplifier, VDRP will contribute to the no load offset  
through the RDRP and RFB resistors. The design approach is to choose a value for the feedback resistor, RFB,  
from 100 to 2K and then calculate RDRP and RVSETPT to provide the required no load offset voltage.  
A* D C * B  
(A + B C D)  
VSETPT =  
(5)  
Io* R *G  
L
A =  
CSA +VCS _ TOFST *GCSA +VOS_EA  
C = VCS _ TOFST *GCSA +VOS_EA  
D = VO_NLOFST VOS_EA  
n
B = VO_NLOFST + Io* Ro VOS_EA  
Where:  
IO is the full load output current of the converter  
RL is the ESR of the output inductor  
GCSA is the gain of the current sense amplifiers  
n is the number of phases  
VOS_EA is the offset voltage of the error amplifier (íꢂWRꢂꢉꢂSLQꢇ  
VO_NLOFST is the desired no load offset voltage below the DAC setting  
Ro is the desired load line resistance  
VCS_TOFST is the total offset voltage of the current sense amplifiers, see below.  
The total input offset voltage (VCS_TOFST) of the current sense amplifier in the phase IC is the sum of input offset  
(VCS_OFST) of the amplifier itself plus that created by the amplifier input bias currents flowing through the current  
sense resistors RCS+ and RCS as shown in Equation (6).  
VCS_TOFST = VCS_OFST  
+
(
ICSIN + RCS +  
)
(
ICSIN RCS−  
)
(6)  
Finally, calculate the no-load setpoint resistor using Equation (7) and the droop resistor using Equation (8);  
VSETPT  
RVSETPT =  
(7)  
IVSETPT  
Where:  
IVSETPT is the current into the VSETPT pin at the switching  
frequency which is a function of ROSC, see Figure 15 on page 23.  
VSETPT is calculated by Equation (5).  
VSETPT + C  
D VSETPT  
RDRP = RFB ⋅  
(8)  
Page 26 of 45  
10/30/2006  
IR3084A  
Soft Start Capacitor CSS/DEL and Resistor RSS/DEL  
Because the capacitor CSS/DEL programs three different time parameters, i.e. soft start time, over current latch  
delay time, and the frequency of hiccup mode, they should be considered together while choosing CSS/DEL.  
The soft-start ramp time (TD2) is the time required for the converter’s output voltage to rise from 0V to the DAC  
voltage (VDAC). Given a desired soft-start ramp time (TD2) and the soft-start charge current (ICHG) from the data  
sheet, the value of the external capacitor (CSS/DEL) can be calculated using Equation (9).  
70*106 *TD2  
ICHG *TD2  
(9)  
CSS / DEL  
=
=
RFB  
RFB  
VDAC 1−  
VDAC 1−  
RFB + RDRP  
RFB + RDRP  
Where: VDAC = 1.1V in Boot Mode or the DAC voltage set by the VID pins without Boot Mode.  
RFB is the resistor from Vcore to the FB pin of the controller.  
RDRP is the resistor from VDRP to FB.  
If droop is not used, set the second term within the parenthesis to zero (RDRP = ’).  
Once CSS/DEL is determined, the soft start delay time TD1, the VID sample time TD3, the VRRDY delay time TD5,  
and the over-current fault latch delay time TOCDEL are determined and can be calculated using Equations (10),  
(11), (12), and (13) respectively.  
CSS / DEL  
RFB  
RFB + RDRP  
(10)  
TD1 =  
1.3V +VDAC ∗  
ICHG  
Where: VDAC = 1.1V in Boot Mode or the DAC voltage set by the VID pins without Boot Mode.  
ICHG is the soft-start charge current, nominally 70µA.  
RFB is the resistor from Vcore to the FB pin of the controller.  
RDRP is the resistor from VDRP to FB.  
If droop is not used, set the second term within the parenthesis to zero (RDRP = ’).  
CSS / DEL  
CSS / DEL  
TD3 =  
(
3.1V 1.3V 1.1V  
)
=
0.7V  
(11)  
(12)  
(13)  
70*106  
ICHG  
If Boot Mode is not used, then TD3 is zero.  
CSS / DEL *(3.85V 3.1V )  
CSS / DEL *0.75V  
TD5 =  
TD4 =  
TD4  
70*106  
ICHG  
Where: TD4 is the VID voltage rise time calculated from Equation 4.  
CSS / DEL *100mV CSS / DEL *100mV  
TOCDEL  
=
=
40*106  
IOC _ DISCHG  
Where: IOC_DISCHG is the over-current discharge current of the SS/DEL pin from the data sheet.  
Page 27 of 45  
10/30/2006  
IR3084A  
Over Current Setting Resistor ROCSET  
The inductor DC resistance is utilized to sense the inductor current. The copper wire of the inductor has a  
constant temperature coefficient of 3850 PPM, and therefore the maximum inductor DCR can be calculated from  
Equation (14), where RL_MAX and RL_ROOM are the inductor DCR at maximum temperature TL_MAX and room  
temperature T_ROOM respectively.  
RL_MAX = RL_ROOM [1 + 3850*106 (TL_MAX TROOM )]  
(14)  
The current sense amplifier gain of the IR3086A decreases with temperature at the rate of 1470 PPM, which  
compensates part of the inductor DCR increase. The phase IC die temperature is only a couple of degrees  
Celsius higher than the PCB temperature due to the low thermal impedance of MLPQ package. The minimum  
current sense amplifier gain at the maximum phase IC temperature TIC_MAX is calculated from Equation (15).  
GCS_MIN = GCS_ROOM [1 1470*106 (TIC_MAX TROOM )]  
(15)  
The over-current limit is set by the external resistor ROCSET as defined in Equation (16), where ILIMIT is the  
required over current limit. IOCSET, the bias current of the OCSET pin, changes with switching frequency setting  
resistor ROSC and is determined by the curve in Figure 14 on page 23. KP is the ratio of inductor peak current to  
average current in each phase and is calculated from Equation (17).  
GCS _ MIN  
ILIMIT  
ROCSET = [  
RL_MAX (1+ KP ) +VCS_TOFST ] ∗  
(16)  
(17)  
n
IOCSET  
(VI VO _ FL )VO _ FL /(L VI fSW 2)  
KP =  
ILIMIT /n  
Where: VI is the input voltage to the converter (nominally 12V).  
VO_FL is the output voltage of the converter with droop at the over-current threshold.  
L is the value of the output inductors.  
fSW is the switching frequency.  
ILIMIT is the DC output current of the converter when the over-current fault occurs.  
n is the number of phases.  
Page 28 of 45  
10/30/2006  
IR3084A  
IR3086 EXTERNAL COMPONENTS  
PWM Ramp Resistor RPWMRMP and Capacitor CPWMRMP  
PWM ramp is generated by connecting the resistor RPWMRMP between a voltage source and PWMRMP pin as  
well as the capacitor CPWMRMP between PWMRMP and LGND. Choose the desired PWM ramp magnitude  
VRAMP and the capacitor CPWMRMP in the range of 100pF and 470pF, and then calculate the resistor RPWMRMP  
from Equation (18). To achieve feedíforward voltage mode control, the resistor RRAMP should be connected to  
the input of the converter.  
V
O
(18)  
R
=
PWMRMP  
V
*f  
*C  
*[ln(V V  
IN  
) ln(V V  
IN  
V  
)]  
IN SW PWMRMP  
DAC  
DAC  
PWMRMP  
Inductor Current Sensing Capacitor CCS+ and Resistors RCS+ and RCS  
The DC resistance of the inductor is utilized to sense the inductor current. Usually the resistor RCS+ and capacitor  
CCS+ in parallel with the inductor are chosen to match the time constant of the inductor, and therefore the voltage  
across the capacitor CCS+ represents the inductor current. If the two time constants are not the same, the AC  
component of the capacitor voltage is different from that of the real inductor current. The time constant mismatch  
does not affect the average current sharing among the multiple phases, but affect the current signal ISHARE as  
well as the output voltage during the load current transient if adaptive voltage positioning is adopted.  
Measure the inductance L and the inductor DC resistance RL. Preíselect the capacitor CCS+ and calculate RCS+  
as follows.  
L RL  
(19)  
RCS +  
=
CCS +  
The bias current flowing out of the non-inverting input of the current sense amplifier creates a voltage drop across  
RCS+, which is equivalent to an input offset voltage of the current sense amplifier. The offset affects the accuracy  
of converter current signal ISHARE as well as the accuracy of the converter output voltage if adaptive voltage  
positioning is adopted. To reduce the offset voltage, a resistor RCS should be added between the amplifier  
inverting input and the converter output. The resistor RCS is determined by the ratio of the bias current from the  
non-inverting input and the bias current from the inverting input.  
ICSIN +  
(20)  
RCS−  
=
RCS +  
ICSIN −  
If RCS is not used, RCS+ should be chosen so that the offset voltage is small enough. Usually RCS+ should be  
less than 2 kŸꢂDQGꢂWKHUHIRUHꢂDꢂODUJHUꢂ&CS+ value is needed.  
Page 29 of 45  
10/30/2006  
IR3084A  
Over Temperature Setting Resistors RHOTSET1 and RHOTSET2  
The threshold voltage of VRHOT comparator is proportional to the die temperature TJ (ºC) of phase IC.  
Determine the relationship between the die temperature of phase IC and the temperature of the power converter  
according to the power loss, PCB layout and airflow etc, and then calculate HOTSET threshold voltage  
corresponding to the allowed maximum temperature from Equation (21).  
VHOTSET = 4.73*103*TJ + 1.241  
(21)  
There are two ways to set the over temperature threshold, central setting and local setting. In the central setting,  
only one resistor divider is used, and the setting voltage is connected to HOTSET pins of all the phase ICs. To  
reduce the influence of noise on the accuracy of over temperature setting, a 0.1uF capacitor should be placed  
next to HOTSET pin of each phase IC. In the local setting, a resistor divider per phase is needed, and the setting  
voltage is connected to HOTSET pin of each phase. The 0.1uF decoupling capacitor is not necessary. Use  
VBIAS as the reference voltage. If RHOTSET1 is preíselected, RHOTSET2 can be calculated as follows.  
RHOTSET1 VHOTSET  
VBIAS VHOTSET  
(22)  
RHOTSET2  
=
Phase Delay Timing Resistors RPHASE1 and RPHASE2  
The phase delay of the interleaved multiphase converter is programmed by the resistor divider connected at  
RMPIN+ or RMPINí depending on which slope of the oscillator ramp is used for the phase delay programming of  
phase IC, as shown in Figure 4.  
If the positive slope is used, RMPIN+ pin of the phase IC should be connected to RMPOUT pin of the control IC  
and RMPINí pin should be connected to the resistor divider. When RMPOUT voltage is above the trip voltage at  
RMPINí pin, the PWM latch is set. GATEL becomes low, and GATEH becomes high after the non-overlap time.  
If the negative slope is used, RMPINí pin of the phase IC should be connected to RMPOUT pin of the control IC  
and RMPIN+ pin should be connected to the resistor divider. When RMPOUT voltage is below the trip voltage at  
RMPINí pin, the PWM latch is set. GATEL becomes low, and GATEH becomes high after the non-overlap time.  
It is best to use the VBIAS voltage as the reference for the resistor dividers because the oscillator ramp  
magnitude from the control IC will track the VBIAS voltage. It is best to avoid the peak and valley of the oscillator  
ramp for better noise immunity. Determine the ratio of the programming resistors corresponding to the desired  
switching frequencies and phase numbers. If the resistor RPHASEx1 is pre-selected, the resistor RPHASEx2 is  
determined as:  
RAPHASEx RPHASEx1  
(23)  
RPHASEx2  
=
1RAPHASEx  
Page 30 of 45  
10/30/2006  
IR3084A  
Combining the Over Temperature and Phase Delay Setting Resistors RPHASE1, RPHASE2 and RPHASE3  
The over temperature setting resistor divider can be combined with the phase delay resistor divider to save one  
resistor per phase.  
Calculate the HOTSET threshold voltage VHOTSET corresponding to the allowed maximum temperature from  
Equation (20). If the over temperature setting voltage is lower than the phase delay setting voltage,  
VBIAS*RAPHASEx, connect RMPIN+ or RMPINí pin between RPHASEx1 and RPHASEx2 and connect HOTSET pin  
between RPHASEx2 and RPHASEx3 respectively. Pre-select RPHASEx1, then calculate RPHASEx2 and RPHASEx3,  
(RAPHASEx VBIAS VHOTSET )*RPHASEx1  
(24)  
RPHASEx2  
=
=
VBIAS (1RAPHASEx  
)
VHOTSET RPHASEx1  
VBIAS*(1 RAPHASEx  
(25)  
RPHASEx3  
)
If the over temperature setting voltage is higher than the phase delay setting voltage, VBIAS*RAPHASEx, connect  
HOTSET pin between RPHASEx1 and RPHASEx2 and connect RMPIN+ or RMPINí between RPHASEx2 and  
RPHASEx3 respectively. Pre-select RPHASEx1,  
(VHOTSET RAPHASEx VBIAS )RPHASEx1  
(26)  
RPHASEx2  
=
=
VBIAS VHOTSET  
RAPHASEx VBIAS*RPHASEx1  
VBIAS VHOTSET  
(27)  
RPHASEx3  
Bootstrap Capacitor CBST  
Depending on the duty cycle and gate drive current of the phase IC, a 0.1uF to 1uF capacitor is needed for the  
bootstrap circuit.  
Decoupling Capacitors for Phase IC  
0.1uFí1uF decoupling capacitors are required at VCC and VCCL pins of phase ICs.  
Page 31 of 45  
10/30/2006  
IR3084A  
VOLTAGE LOOP COMPENSATION  
The adaptive voltage positioning is used in the computer applications to meet the load line requirements. Like  
current mode control, the adaptive voltage positioning loop introduces extra zero to the voltage loop and splits the  
double poles of the power stage, which make the voltage loop compensation much easier.  
Resistors RFB and RDRP are chosen according to Equations (15) and (16), and the selection of compensation  
type depends on the capacitors used. For the applications using Electrolytic, Polymer or ALíPolymer capacitors,  
type II compensation shown in Figure 20 (a) is usually enough. While for the applications with only ceramic  
capacitors, type III compensation shown in Figure 20 (b) is preferred.  
CCP1  
CCP1  
RFB  
CFB  
RCP  
CCP  
VO+  
RCP  
CCP  
RFB1  
FB  
-
EAOUT  
RFB  
EAOUT  
VO+  
FB  
VDAC  
-
RDRP  
+
VDRP  
EAOUT  
EAOUT  
VDAC  
RDRP  
CDRP  
+
VDRP  
(a) Type II compensation  
(b) Type III compensation  
Figure 20: Voltage Loop Compensation Networks  
Type II Compensation  
Determine the compensation at no load, the worst case condition. Choose the crossover frequency fc between  
1/10 and 1/5 of the switching frequency per phase. Assume the time constant of the resistor and capacitor across  
the output inductors matches that of the inductor, RCP and CCP can be determined by Equations (28) and (29).  
(2 * fC )2 * LE *CE * RFB *VPWMRMP  
(28)  
RCP  
=
=
VO * 1+ (2 * fC *CE * RCE )2  
10 * LE *CE  
CCP  
(29)  
RCP  
Where LE and RCE are the equivalent output inductance and ESR of the output capacitors, respectively. CCP1 is  
optional and may be needed in some applications to reduce the jitter caused by the high frequency noise. A  
ceramic capacitor between 10pF and 220pF is usually enough.  
Page 32 of 45  
10/30/2006  
IR3084A  
Type III Compensation  
Determine the compensation at no load, the worst case condition. Choose the crossover frequency fc between  
1/10 and 1/5 of the switching frequency per phase. Assume the time constant of the resistor and capacitor across  
the output inductors matches that of the inductor, RCP and CCP can be determined by Equations (30) and (31),  
where CE is equivalent output capacitance.  
(2 * fC )2 * LE *CE *VPWMRMP  
RCP  
=
=
(30)  
Vo  
10 * LE *CE  
CCP  
(31)  
RCP  
Choose resistor RFB1 according to Equation (33), and determine CFB and RDRP from Equations (32) and (33).  
1
2
2
3
RFB1 = * RFB  
to  
RFB1 = * RFB  
(32)  
(33)  
1
CFB  
=
4 * fC1 * RFB1  
CCP1 is optional and may be needed in some applications to reduce the jitter caused by the high frequency noise.  
A ceramic capacitor between 10pF and 220pF is usually enough.  
CURRENT SHARE LOOP COMPENSATION  
The crossover frequency of the current share loop should be at least one decade lower than that of the voltage  
loop in order to eliminate the interaction between the two loops. A capacitor from SCOMP to LGND is usually  
enough for most of the applications. Choose the crossover frequency of current share loop (fCI) based on the  
crossover frequency of voltage loop (fC), and determine the CSCOMP,  
0.65 * RPWMRMP *VI * IO *GCS_ROOM * RLE * [1 + 2 * fCI *CE *( VO IO )] * FMI  
(34)  
CSCOMP  
=
VO * 2 * fCI *1.05 *106  
Where FMI is the PWM gain in the current share loop,  
RPWMRMP *CPWMRMP * fSW *VPWMRMP  
FMI =  
(35)  
(VO VPWMRMP VDAC )*(VI VDAC  
)
Page 33 of 45  
10/30/2006  
IR3084A  
DESIGN EXAMPLE: VRM 11 7íPHASE CONVERTER  
SPECIFICATIONS  
Input Voltage: VI = 12V  
DAC Voltage: VDAC = 1.3V  
No Load Output Voltage Offset: VO_NLOFST = 15mV  
Output Current: IO = 130 ADC  
Maximum Output Current: IOMAX = 150 ADC  
Load Line Slope: RO = 1.20 mŸ  
VRM11 Startup Boot Voltage = 1.100V  
Soft Start Time: TD2 = 1.1ms  
VCC Ready to VCC Power Good Delay: TD5 = 1.0ms  
Over Current Delay: TOCDEL = 250µs  
Dynamic VID Negative Slew Rate: SRDOWN = 2.5mV/us  
Over Temperature Threshold: TPCB = 115 ºC  
POWER STAGE  
Phase Number: n = 7  
Switching Frequency: fSW=400 kHz  
Output Inductors: L = 220 nH, RL = 0.60 mŸ  
Output Capacitors: C = 560uF, RC = 7mŸꢁꢂ1XPEHUꢂ&Q = 10  
IR3084A EXTERNAL COMPONENTS  
Oscillator Resistor Rosc  
The switching frequency sets the value of ROSC as shown by the curve in Figure 13 on page 23. In this design,  
the switching frequency of 400kHz per phase requires ROSC to be 30.1kŸ.  
VDAC Slew Rate Programming Capacitor CVDAC and Resistor RVDAC  
From Figure 17 on page 23, the sink current of the VDAC pin at 400kHz (ROSC=30.1kŸꢇꢂLVꢂꢊꢀX$ꢄꢂ&DOFXODWHꢂWKHꢂ  
VDAC slew-rate programming capacitor from the specified negative slew rate using Equation (1).  
80*106  
2.5*103 /106  
ISINK  
CVDAC  
=
=
= 32.0nF ,  
Choose CVDAC = 33nF  
SRDOWN  
Calculate the VDAC compensation resistor from Equation (2);  
3.2*1015  
3.2*1015  
RVDAC = 0.5 +  
= 0.5 +  
= 3.5  
2
2
(33*109  
)
CVDAC  
From Figure 17 on page 23, the source current of the VDAC pin is 90uA at ROSC = 30.1KŸ. The VDAC positive  
slew rate is can be calculated using Equation (3);  
90*106  
ISOURCE  
CVDAC  
SRUP  
=
=
= 2.7mV/uS  
33*109  
Page 34 of 45  
10/30/2006  
IR3084A  
Using the calculated value of CVDAC, find the positive VID voltage rise time (TD4) to the specified nominal DAC  
voltage of 1.300V during startup with Boot Mode using Equation 4a;  
CVDAC  
33nF  
90uA  
TD4 =  
(
VDAC 1.1V  
)
=
*
(
1.300V 1.1V = 73.3us  
)
ISOURCE  
No Load Output Voltage Setting Resistor RVSETPT, RFB and Adaptive Voltage Positioning Resistor RDRP  
First, use Equations (19) and (20) to calculate the current sense resistors RCS+ and RCS , respectively. For this  
design, in the next section, RCS+ is determined to be 10KŸ and RCS is found to be 6.19KŸ.  
Second, calculate the total input offset voltage (VCS_TOFST) of the current sense amplifiers using Equation (6).  
From the IR3086A data sheet, typical values for the ICSIN+ and ICSIN bias currents are determined to be 0.25µA  
and 0.40µA, respectively.  
VCS_TOFST = VCS_OFST  
+
(
ICSIN + RCS+  
)
(
I
CSIN RCS−  
)
= 0.55mV +  
(
0.25*106 *10KΩ  
)
−  
(
0.40*106 *6.19KΩ  
)
= 0.574mV  
Next, derive the intermediate calculations (A,B,C,D) as shown below before finally calculating RVSETPT and RDRP  
using Equations (7) and (8). From Figure 15 on page 23, the IVSETPT bias current is determined to be 40µA at  
ROSC=30.1kŸ and a typical value for the offset voltage of the error amplifier is 0.0mV.  
Io* R  
L
*G  
130*0.60*103 *34  
7
A =  
CSA +VCS _ TOFST *GCSA +VOS _ EA  
=
+ 0.574*103 *34 + 0.0mV  
n
= 0.3984  
B = VO _ NLOFST + Io* Ro VOS _ EA =15*103 +130*1.20*103 0.0mV = 0.1710  
C = VCS_TOFST*GCSA +VOS_EA = 0.574*103*34 + 0.0mV = 0.0.0195  
D = VO _ NLOFST VOS _ EA = 15*103 0.0mV = 0.015  
A* D C * B  
0.3984*0.015 0.0195*0.1710  
VSETPT =  
=
= 0.00494V  
(A + B C D) 0.3984 + 0.1710 0.0195 0.015  
VSETPT 0.00494  
RVSETPT =  
=
= 123.5ohms  
40x106  
IVSETPT  
Choose the closest standard resistor value to this with 1% tolerance or RVESTPT = 124ohms.  
Page 35 of 45  
10/30/2006  
IR3084A  
Select RFB = 324 ohms and then calculate the droop resistor,  
VSETPT + C  
D VSETPT  
0.00494 + 0.0195  
0.015 0.00494  
RDRP = RFB ⋅  
= 324⋅  
= 787.1ohms  
Choose the next standard value higher than this with 1% tolerance or RDRP = 787ohms.  
Soft Start Capacitor CSS/DEL and Startup Times  
Calculate the soft start capacitor from the required soft start time using Equation (9) with Boot Mode;  
70*106 *TD2  
70*106 *1.1*103  
CSS / DEL  
=
=
= 0.0988uF or 0.1uF  
RFB  
324  
VDAC 1−  
1.1V * 1−  
RFB + RDRP  
324 + 787  
The soft start delay time can be calculated using Equation (10) with Boot Mode;  
0.1*106  
70*106  
324  
324 + 787  
CSS/DEL  
ICHG  
RFB  
RFB + RDRP  
TD1 =  
1.3V +VDAC ∗  
=
* 1.3V +1.1V *  
= 2.31ms  
The VID sample time can be found using Equation (11);  
0.1*106 0.7  
CSS / DEL 0.7V  
TD3 =  
=
= 1.00mS  
70*106  
ICHG  
The power good delay time can be found using Equation (12);  
0.1*106 *0.75V  
CSS / DEL *0.75V  
TD5 =  
TD4 =  
73us = 0.998ms  
70*106  
ICHG  
Finally, use Equation (13) to calculate the over-current fault latch delay time;  
0.1*106 *100*103  
CSS / DEL *100mV  
TOCDEL  
=
=
= 250us  
40*106  
40*106  
Page 36 of 45  
10/30/2006  
IR3084A  
Over Current Setting Resistor ROCSET  
Assume that room temperature is 25ºC and the target PCB temperature is 100 ºC. The phase IC die temperature  
is usually about 1 ºC higher than that of phase IC and the inductor temperature is close to PCB temperature.  
Calculate the Inductor’s DC resistance at 100 ºC using Equation (14);  
6  
6  
RL_MAX = RL_ROOM [1+3850*10 (TL_MAX TROOM )] =0.60*103 [1+3850*10 (10025)]= 0.77mΩ  
The current sense amplifier gain is 34 at 25ºC, and its gain at 101ºC is calculated using Equation (15),  
GCS_MIN = GCS_ROOM [1 1470*10 6 (TIC_MAX TROOM )] = 34 [1 1470*10 6 (101 25)] = 30.2  
Here we will set the over current shutdown threshold to 155A at maximum operating temperature. From Figure  
14 on page 23, the bias current of the OCSET pin (IOCSET) is 42.5µA with ROSC=30.1kŸꢄꢂ7KHꢂWRWDOꢂFXUUHQWꢂVHQVHꢂ  
amplifier input offset voltage calculated previously is 0.574mV, which includes the offset created by the current  
sense amplifier input resistor mismatch.  
Calculate the constant KP, the ratio of inductor peak current over average current in each phase using Equation  
(17);  
(12 1.18) 1.18/(220*109 12 400*103 2)  
(VI VO ) VO /(L VI fSW 2)  
KP =  
=
= 0.273  
ILIMIT / n  
155/ 7  
Finally, calculate the over-current setting resistor using Equation (16);  
GCS _ MIN  
RLIMIT  
n
ROCSET = [  
RL_MAX (1+ KP ) +VCS_TOFST ] ∗  
IOCSET  
155  
7
30.2  
42.5*103  
= (  
0.77 *103 ∗  
(
1+ 0.273  
)
+ 0.574 *103 ) ∗  
= 15.8KΩ  
Page 37 of 45  
10/30/2006  
IR3084A  
IR3086 PHASE IC COMPONENTS  
PWM Ramp Resistor RRAMP and Capacitor CRAMP  
Set the PWM ramp magnitude VPWMRMP to 0.8V. Choose 220pF for the PWM ramp capacitor CPWMRMP and  
calculate the resistor RPWMRMP using Equation (18);  
VO  
RPWMRMP  
=
VIN fSW CPWMRMP [ln(VIN VDAC ) ln(VIN VDAC VPWMRMP )]  
1.30  
=
= 15.8k  
,
12 400*103 220*1012 [ln(12 1.30) ln(12 1.30 0.8)]  
Choose a standard resistor value, RPWMRMP=15.8kŸꢄ  
Inductor Current Sensing Capacitor CCS+ and Resistors RCS+ and RCS  
Choose CCS+=47nF and calculate RCS+ using Equation (19);  
220*109 /(0.47 *103 )  
L R L  
CCS+  
RCS+  
=
=
= 10.0k  
47 *109  
The bias currents of CSIN+ and CSINí are 0.25uA and 0.4uA respectively. Calculate resistor RCS using  
Equation (20);  
0.25  
0.4  
0.25  
0.4  
RCS  
=
RCS +  
=
10.0*103 = 6.2k,  
choose RCS = 6.19kŸ  
Over Temperature Setting Resistors RHOTSET1 and RHOTSET2  
Use central over temperature setting and set the temperature threshold at 115 ºC, which corresponds the IC die  
temperature of 116 ºC. Calculate the HOTSET threshold voltage corresponding to the temperature thresholds  
using Equations (21) and (22);  
VHOTSET = 4.73*103 *TJ +1.241 = 4.73*103 116 +1.241 =1.79V , choose RHOTSET1=20.0kŸꢁꢂ  
20*103 1.79  
RHOTSET1 VHOTSET  
VBIAS VHOTSET  
RHOTSET 2  
=
=
= 7.14kΩ  
6.8 1.79  
Page 38 of 45  
10/30/2006  
IR3084A  
Phase Delay Timing Resistors RPHASEx1 to RPHASEx2 (x=1,2,…,7)  
The phase delay resistor ratios for phases 1 to 7 at 400kHz are (from the XíPhase Excel based design  
spreadsheet); RAPHASE1=0.580, RAPHASE2=0.397, RAPHASE3=0.215, RAPHASE4=0.206,  
RAPHASE5=0.353 RAPHASE6=0.5 and RAPHASE7=0.647.  
Preíselect RPHASE11=RPHASE21=RPHASE31=RPHASE41=RPHASE51=RPHASE61=RPHASE71=20kŸꢁꢂ  
RAPHASE1  
0.58  
10.58  
RPHASE12  
=
RPHASE11  
=
20*103 = 27.6kΩ  
1RAPHASE1  
Calculating the other resistors from the same formula results in; RPHASE22 ꢅꢋꢄꢌN ꢁꢂ5PHASE32 ꢈꢄꢍꢊN ꢁꢂ  
RPHASE42 ꢈꢄꢌN ꢁꢂ3PHASE52 ꢅꢀꢄꢎN ꢁꢂ5PHASE62 ꢌꢀN ꢁꢂ5PHASE72 ꢋꢏꢄꢏN   
Phase ICs 1íꢋꢂVKRXOGꢂKDYHꢂWKHꢂ503287ꢂYROWDJHꢂIURPꢂWKHꢂ3084A controller connected to their RMPINíꢂSLQꢂVRꢂ  
they will trigger on the negative slope of the RMPOUT waveform. Phase ICs 4íꢐꢂVKRXOGꢂKDYHꢂWKHꢂ503287ꢂ  
voltage from the 3084A controller connected to their RMPIN+ pin so they will trigger on the positive slope of the  
RMPOUT waveform.  
Bootstrap Capacitor CBST  
Choose CBST=0.1uF.  
Decoupling Capacitors for Phase IC and Power Stage  
Choose CVCC=0.1uF, CVCCL=0.1uF  
VOLTAGE LOOP COMPENSATION  
ALíPolymer output capacitors are used in the design, for instructional purposes Type III compensation as shown  
in Figure 18(b) will be demonstrated here. First, choose the desired crossover frequency as 1/10 of the switching  
frequency, fC =40 kHz, and determine Rcp and CCP using Equations (30) and (31):  
(2π * fC )2 * LE *CE * RFB *VPWMRMP  
(2π *40*103 )2 *(220*109 / 7)*(560*106 *10)*324*0.8  
1.30 0.015130*1*103  
RCP  
=
=
Vo  
= 2.49KΩ  
10* (220*109 / 7) *(560*106 *10)  
2.49*103  
10* LE *CE  
,
Choose CCP=56nF  
CCP  
=
=
= 53nF  
RCP  
1
2
1
2
RFB1 = * RFB = *324 = 162Ω  
Choose RFB1=162Ÿ  
1
1
CFB  
=
=
= 12.3nF  
Choose CFB=10nF  
4π * 40*103 *162  
4π * fC * RFB1  
Choose CCP1=100pF to reduce high frequency noise.  
Page 39 of 45  
10/30/2006  
IR3084A  
CURRENT SHARE LOOP COMPENSATION  
The crossover frequency of the current share loop (fCI) should be at least one decade lower than that of the  
voltage loop fC. Choose the crossover frequency of current share loop fCI =4kHz, and calculate FMI and CSCOMP  
using Equations (34) and (35);  
15.8*103 * 220*1012 * 400*103 *0.8  
RPWMRMP *CPWMRMP * fSW *V PWMRMP  
FMI  
=
=
= 0.0105  
(VI VPWMRMP VDAC )*(VI VDAC  
)
(12 0.8 1.30)*(12 1.30)  
0.65* RPWMRMP *VI * IO *GCS _ ROOM * RLE *[1+ 2π * fCI *CE *(VO IO )]* FMI  
VO *2π * fCI *1.05*106  
CSCOMP  
=
0.65*15.8*103 *12*130*34*(0.47*103 7)*[1+ 2π *4*103 *5600*106 *(1.30 130*1.0*103 ) 130]*0.0105  
(1.30 130*1.0*103 )*2π *4*103 *1.05*106  
=
36574*[2.266]*0.0105  
30.859*109  
=
= 28.2nF  
Choose CSCOMP=22nF with 5% tolerance for best current sharing between phases.  
Page 40 of 45  
10/30/2006  
IR3084A  
LAYOUT GUIDELINES  
The following layout guidelines are recommended to reduce the parasitic inductance and resistance of the PCB  
layout, therefore minimizing the noise coupled to the IC.  
Dedicate at least one middle layer for a ground plane LGND.  
Connect the ground tab under the control IC to LGND plane through a via.  
Place the following critical components on the same layer as control IC and position them as close as  
possible to the respective pins, ROSC, ROCSET, RVDAC, CVDAC, CVCC, CSS/DEL and RCC/DEL. Avoid using any  
via for the connection.  
Place the compensation components on the same layer as control IC and position them as close as possible  
to EAOUT, FB and VDRP pins. Avoid using any via for the connection.  
Use Kelvin connections for the remote voltage sense signals, VOSNS+ and VOSNSí, and avoid crossing  
over the fast transition nodes, i.e. switching nodes, gate drive signals and bootstrap nodes.  
Control bus signals, VDAC, RMPOUT, IIN, VBIAS, and especially EAOUT, should not cross over the fast  
transition nodes.  
LGND PLANE  
CVCC  
RSETPT  
ROCSET  
RVDAC  
ROSC  
To VIN  
LGND  
REGFB  
VSETPT  
OCSET  
VDAC  
RVCC  
REGDRV  
GND  
GND  
REGSET  
SS/DEL  
ROSC  
VOSNS-  
VID0  
RREGSET  
CSS/DEL  
VRRDY  
ENABLE  
VID1  
CVDAC  
To Voltage  
Remote Sense  
To SYSTEM  
Page 41 of 45  
10/30/2006  
IR3084A  
METAL AND SOLDER RESIST  
The solder resist should be pulled away from the metal lead lands by a minimum of 0.06mm. The  
solder resist misíalignment is a maximum of 0.05mm and it is recommended that the lead lands are  
all Non Solder Mask Defined (NSMD). Therefore pulling the S/R 0.06mm will always ensure NSMD  
pads.  
The minimum solder resist width is 0.13mm, therefore it is recommended that the solder resist is  
completely removed from between the lead lands forming a single opening for each “group” of lead  
lands.  
At the inside corner of the solder resist where the lead land groups meet, it is recommended to  
provide a fillet so a solder resist width of •ꢂꢀꢄꢅꢐPPꢂUHPDLQVꢄ  
The land pad should be Solder Mask Defined (SMD), with a minimum overlap of the solder resist onto  
the copper of 0.06mm to accommodate solder resist misíalignment. In 0.5mm pitch cases it is  
allowable to have the solder resist opening for the land pad to be smaller than the part pad.  
Ensure that the solder resist iníbetween the lead lands and the pad land is •ꢂꢀꢄꢅꢈPPꢂGXHꢂWRꢂWKHꢂKLJKꢂ  
aspect ratio of the solder resist strip separating the lead lands from the pad land.  
The single via in the land pad should be tented with solder resist 0.4mm diameter, or 0.1mm larger  
than the diameter of the via.  
Page 42 of 45  
10/30/2006  
IR3084  
PCB METAL AND COMPONENT PLACEMENT  
Lead land width should be equal to nominal part lead width. The minimum lead to lead spacing  
should be •ꢂꢀꢄꢌPPꢂWRꢂPLQLPL]HꢂVKRUWLQg.  
Lead land length should be equal to maximum part lead length + 0.2 mm outboard extension +  
0.05mm inboard extension. The outboard extension ensures a large and inspectable toe fillet, and  
the inboard extension will accommodate any part misalignment and ensure a fillet.  
Center pad land length and width should be equal to maximum part pad length and width. However,  
the minimum metal to metal spacing should be •ꢂꢀꢄꢅꢐPPꢂfor 2 oz. Copper (•ꢂꢀꢄꢅPPꢂIRUꢂꢅꢂR]ꢄꢂ&RSSHUꢂ  
and •ꢂꢀꢄꢌꢋPPꢂIRUꢂꢋꢂR]ꢄꢂ&RSSHUꢇ  
A single 0.30mm diameter via shall be placed in the center of the pad land and connected to ground  
to minimize the noise effect on the IC.  
Page 43 of 45  
10/30/2006  
IR3084  
STENCIL DESIGN  
The stencil apertures for the lead lands should be approximately 80% of the area of the lead lands.  
Reducing the amount of solder deposited will minimize the occurrence of lead shorts. Since for  
0.5mm pitch devices the leads are only 0.25mm wide, the stencil apertures should not be made  
narrower; openings in stencils < 0.25mm wide are difficult to maintain repeatable solder release.  
The stencil lead land apertures should therefore be shortened in length by 80% and centered on the  
lead land.  
The land pad aperture should be striped with 0.25mm wide openings and spaces to deposit  
approximately 50% area of solder on the center pad. If too much solder is deposited on the center  
pad the part will float and the lead lands will be open.  
The maximum length and width of the land pad stencil aperture should be equal to the solder resist  
opening minus an annular 0.2mm pull back to decrease the incidence of shorting the center land to  
the lead lands when the part is pushed into the solder paste.  
Page 44 of 45  
10/30/2006  
IR3084  
PACKAGE INFORMATION  
28L MLPQ (5 x 5 mm Body) JA = 30o&ꢀ:ꢁꢂ JC = 3oC/W  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252í7105  
TAC Fax: (310) 252í7903  
Visit us at www.irf.com for sales contact information.  
www.irf.com  
Page 45 of 45  
10/30/2006  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY