IR3103 [INFINEON]

i Motion Series; 我的运动系列
IR3103
型号: IR3103
厂家: Infineon    Infineon
描述:

i Motion Series
我的运动系列

运动控制电子器件 信号电路 电动机控制
文件: 总11页 (文件大小:198K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD-96992Rev.A  
IR3103  
Series  
0.75A, 500V  
Half-Bridge FredFET  
and Integrated Driver  
Description  
The IR3103 is a gate driver IC integrated with a half bridge FredFET designed for motor drive applications  
up to 180W (heatsink-less). The sleek and compact single-in-line package is optimized for electronic motor  
control in appliance applications such as fans and compressors for refrigerators. The IR3103 offers an  
extremely compact, high performance half-bridge inverter in a single isolated package for two-phase and  
three-phase motor drivers.  
Proprietary HVIC and latch immune CMOS technologies, along with the HEXFET® power FredFET  
technology (HEXFET® MOSFET with ultra-fast recovery body diode characteristics), enable efficient and  
rugged single package construction. Propagation delays for the high and low side power FredFETs are  
matched thanks to advanced IC technology.  
Features  
• Output Power FredFET in Half-Bridge Configuration  
• High Side Gate Drive Designed for Bootstrap Operation  
• Bootstrap Diode Integrated into Package  
• Lower Power Level-Shifting Circuit  
• Lower di/dt Gate Drive for Better Noise Immunity  
• Excellent Latch Immunity on All Inputs and Outputs  
• ESD Protection on All Leads  
• Isolation 1500 VRMS min.  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage  
parameters are absolute voltages referenced to COM. Power dissipation is measured under board mounted and still air  
conditions.  
Parameter  
Description  
Max. Value  
500  
Units  
V
VDS  
Drain to Source Blocking Voltage  
DC Bus Supply Voltage (No Switching Operation)  
Continuous Output Current (1)  
Continuous Output Current (1)  
Pulsed Output Current (2)  
VDD  
500  
V
IO (TA=25°C)  
0.7  
A
IO (TA=55°C)  
0.6  
A
IO (TA=25°C)  
2.7  
A
Pd  
Package Power Dissipation @TA 55°C (3)  
Isolation Voltage (1min)  
1.4  
W
VISO  
TJ  
VRMS  
°C  
°C  
°C  
°C  
1500  
Junction Temperature (Power MOSFET)  
Storage Temperature  
-40 to +150  
-40 to +150  
300  
TS  
TL  
Lead Temperature (soldering, 10 seconds)  
Storage Temperature  
TS  
-40 to +150  
Note 1: See figure 3, fPWM=16kHz  
Note 2: TP=100ms, other conditions as per Figure 3, fPWM=16kHz  
Note 3: Single Device Operating  
www.irf.com  
1
IR3103  
Absolute Maximum Ratings (Continued)  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters  
are absolute voltages referenced to COM.  
Symbol  
Parameter  
Min  
Max  
Units Conditions  
Bootstrap Continuous Diode  
Forward Current  
IBDF  
TJ = 150°C, TA=55°C  
---  
0.3  
A
V
V
V
V
V
High Side Floating Supply  
Absolute Voltage  
VB  
-0.3  
VB - 25  
-0.3  
525  
VB +0.3  
25  
High Side Floating Supply Offset  
Voltage  
VO  
Low Side and Logic Fixed Supply  
Voltage  
VCC  
VIN  
VSS  
Input Voltage LIN, HIN  
Logic Ground  
VSS-0.3  
VCC-25  
VCC+0.3V  
VCC+0.3V  
Recommended Operating Conditions Driver Function  
For proper operation the device should be used within the recommended conditions. All voltages are absolute  
referenced to COM. The VS and VO offset are tested with all supplies biased at 15V differential.  
Symbol  
VB  
Definition  
Min  
VO+10  
Note 4  
10  
Max  
VO+20  
400  
20  
Units  
High Side Floating Supply Absolute Voltage  
High Voltage Supply  
V
V
V
V
V
VDD  
VCC  
Low Side and Logic Fixed Supply Voltage  
Logic Input Voltage  
VIN  
VSS  
VCC  
VSS  
Logic Ground  
-5  
5
Note 4: Logic operation for VO of -5 to +500V. Logic state held for VO of -5V to -VBO. (Please refer to the Design Tip  
DT97-3 for more details).  
2
www.irf.com  
IR3103  
Half Bridge Electrical Characteristics @TJ= 25°C  
VCC=VBO=15V and TJ=25°C unless otherwise specified. VDD and VIN parameters referenced to COM  
Conditions  
Max Units  
Symbol  
Parameter  
Min  
Typ  
Drain-to-Source Breakdown  
Voltage  
V(BR)DSS  
VIN=0V, IDD/IO=250µA  
500  
---  
---  
V
VDS=500V, VIN=0V  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
5
80  
5
50  
---  
IHS-LK  
Low Side Leakage Current  
Low Side Leakage Current  
µA  
VDS=500V, VIN=0V, TJ=150°C  
VDS=500V, VIN=0V  
105  
---  
ILS-LK  
µA  
VDS=500V, VIN=0V, TJ=150°C  
IO = 0.75A, VIN=5V  
100  
1.9  
0.8  
4.3  
0.6  
---  
---  
55  
4
RDS(ON)  
VSD  
RDS(ON)  
VSD  
Drain-to-Source ON Resistance  
Diode Forward Voltage  
2.5  
0.9  
6.5  
0.75  
1.25  
1.10  
75  
V
V
IO = 0.75A, VIN=0V  
IO = 0.75A, VIN=5V, TJ=150°C  
IO = 0.75A, VIN=0V, TJ=150°C  
IF=1A  
Drain-to-Source ON Resistance  
Diode Forward Voltage  
Bootstrap Diode Forward  
Voltage Drop  
VBDFM  
V
IF=1A, TJ=125°C  
EON  
Turn-On Energy Losses  
Turn-Off Energy Losses  
Total Energy Losses  
µJ  
µJ  
µJ  
IDD/IO = 0.75A, VDD=300V,  
VBO/VCC=15V, L= 6.3mH  
EOFF  
ETOT  
10  
59  
85  
Body-Diode Reverse Recovery  
Losses  
EREC  
---  
2
5
µJ  
Energy Losses include Body-Diode  
Reverse Recovery  
tRR  
Reverse Recovery Time  
Turn-On Energy Losses  
Turn-Off Energy Losses  
Total Energy Losses  
---  
---  
---  
---  
70  
85  
5
---  
115  
11  
ns  
µJ  
µJ  
µJ  
EON  
EOFF  
ETOT  
IDD/IO = 0.75A, VDD=300V,  
VBO/VCC=15V, L=6.3mH  
TJ=150°C  
90  
126  
Body-Diode Reverse Recovery  
Losses  
EREC  
---  
6
11  
µJ  
Energy Losses include Body-Diode  
Reverse Recovery  
tRR  
Reverse Recovery Time  
Turn-ON MOSFET Gate Charge  
Output Capacitance  
---  
---  
---  
---  
90  
15  
12  
30  
---  
21  
---  
---  
ns  
nC  
pF  
pF  
V
DD=250V, IO=3.2A. Note 5  
DD=400V, f=1MHz. Note 5  
QG  
V
COSS  
VDD=0V to 400V. Note 5,6  
COSS eff.  
Effective Output Capacitance  
TJ=150°C, VP=450V,  
V+= 320V,VCC=+15V  
Short Circuit Safe Operating  
Area  
SCSOA  
ISC  
10  
---  
---  
---  
---  
µs  
A
TJ=150°C, VP=450V, tSC<10µs  
V+= 320V, VGE=15V, VCC=+15V  
Short Circuit Drain Current  
18.5  
Note 5: Characterized on FREDFET die level, not measured at EOL  
Note 6: COSS eff. is a fixed capacitance that gives same charging time as COSS while VDS is rising from 0 to 80% VDSS  
.
www.irf.com  
3
IR3103  
Thermal Resistance  
Thermal Resistance is measured under board mounted and still air conditions.  
Symbol  
Parameter  
Min  
Typ  
Max Units Conditions  
Self Thermal resistance,  
junction to ambient (note 7,8)  
RthJA self  
---  
---  
70  
45  
°C/W  
°C/W  
No airflow  
Mutual Thermal resistance,  
junction to ambient (note 7,8)  
RthJA mutual  
---  
---  
Note 7: under normal operational conditions: both power devices working, no heatsink  
Note 8: TJ=RthJA_self*PA+RthJA_mutual*PB  
Static Electrical Characteristics Driver Function  
VBIAS (VCC, VO)=15V, VSS=COM and TA=25°C, unless otherwise specified. VDD and VIN parameters are referenced to COM.  
Symbol  
VIN,th  
Definition  
Min  
2.9  
---  
Typ  
---  
Max Units  
Conditions  
Logic "1" Input Voltage  
Logic "0" Input Voltage  
---  
V
V
VIN,th  
---  
0.8  
VCCUV+  
VBO  
VCC and VBO Supply Undervoltage  
Positive Going Threshold  
8.0  
7.4  
0.3  
8.9  
8.2  
0.7  
9.8  
9.0  
---  
V
V
V
VCCUV-  
VBO  
VCC and VBO Supply Undervoltage  
Negative Going Threshold  
VCCUVH  
VBO  
VCC and VBO Supply Undervoltage  
Lock-Out Hysteresis  
ILK  
VB=VO=600V  
Offset Supply Leakage Current  
Quiescent VBO Supply Current  
Quiescent VCC Supply current  
Input Bias Current  
---  
---  
---  
---  
---  
---  
75  
120  
5
50  
130  
180  
20  
µA  
µA  
mA  
µA  
µA  
IQBS  
IQCC  
IIN+  
IIN-  
VIN=0V to 5V  
VIN=0V to 5V  
VIN=0V to 5V  
VIN=0V  
Input Bias Current  
---  
2
Dynamic Electrical Characteristics Driver Function  
Driver only timing unless otherwise specified.  
Symbol  
Definition  
Min  
Typ  
Max Units Conditions  
Input to Output Propagation Turn-  
on Delay Time (see fig. 2)  
TON  
---  
300  
---  
---  
30  
ns  
ns  
ns  
VCC=VBO= 15V, IO=0.75A,  
DD=300V  
V
Input to Output Propagation Turn-  
off Delay Time (see fig. 2)  
TOFF  
MT  
---  
---  
400  
0
Matching Propagation Delay Time  
(On & Off)  
VCC= VBO= 15V  
4
www.irf.com  
IR3103  
Pin-Out Description  
Pin  
Name  
VCC  
HIN  
LIN  
Description  
1
Logic and Internal Gate Drive Supply  
Logic Input for High Side Gate Output  
Logic Input For Low Side Gate Output  
Not Connected  
2
3
4
NC  
VSS  
COM  
NC  
5
Logic Ground  
6
Low Side MOSFET Gate Return  
Not Connected  
7
VB  
8
High Side Gate Drive Floating Supply  
Half Bridge Output  
VO  
9
10  
11  
NC  
Not Connected  
VDD  
High Voltage Supply  
1
VB  
VDD  
8
11  
11  
1
2
3
5
VCC  
HIN  
LIN  
9
Vo  
IC Driver  
HIN  
0
LIN  
1
VO  
0
VSS  
1
0
VDD  
Shoot-Through  
condition  
1
X
1
X
6
X
COM  
Figure 1: Driver Input/Output relation  
www.irf.com  
5
IR3103  
Typical Application Connection IR3103  
M
V+  
BUS  
VBUS  
11  
VBUS  
11  
VBUS  
11  
IR3103  
IR3103  
IR3103  
8
8
8
VCC  
HIN  
VCC  
HIN  
VCC  
1
1
1
9
9
HIN  
LIN  
9
2
3
2
3
2
3
IC Driver  
IC Driver  
IC Driver  
LIN  
LIN  
VSS  
VSS  
VSS  
4
4
4
6
6
6
COM  
COM  
COM  
V-BUS  
1. Electrolytic bus capacitors should be mounted as close as possible to the module bus terminals to reduce ringing and  
EMI problems. High frequency ceramic capacitors mounted close to the module pins will further improve performance.  
2. In order to provide good decoupling between Vcc-VSS and VB-VO terminals, a capacitor connected between these  
terminals is recommended and should be located very close to the module pins. Additional high frequency capacitors,  
typically 0.1mF, are strongly recommended.  
3. Low inductance shunt resistor should be used for phase leg current sensing. Similarly, the length of the traces from  
the pin to the corresponding shunt resistor should be kept as small as possible.  
4. Value of the bootstrap capacitors depends upon the switching frequency. Their selection should be made based on  
IR design tip DN 98-2a or Figure 8.  
5. Application conditions should guarantee minimum dead-time of 400ns  
IC  
VCE  
90% IC  
VCE  
IC  
90% IC  
50% HIN/LIN  
HIN/LIN  
50%  
HIN/LIN  
50% VCE  
HIN/LIN  
50% VCE  
10% IC  
10% IC  
tr  
TOFF  
tf  
TON  
Figure 2. TON and TOFF Definitions.  
6
www.irf.com  
IR3103  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
TJ = 150°C  
Trapezoidal Modulation  
TA = 25°C  
TA = 55°C  
TA = 75°C  
HS  
LS  
IO  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
PWM Frequency - kHz  
Figure 3. Maximum RMS Phase Current vs. PWM Switching Frequency  
VDD=300V , TJ=150°C, Modulation Depth=0.5, PF=0.99  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
TJ = 150°C  
HS  
Trapezoidal Modulation  
LS  
IOUT = 0.75 ARMS  
IO  
IOUT = 0.60 ARMS  
IOUT = 0.45 ARMS  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
PWM Switching Frequency - kHz  
Figure 4. Total Power Losses as Function of Switching Frequency  
VDD=300V, TJ=150°C, Modulation Depth=0.5, PF=0.99  
www.irf.com  
7
IR3103  
10  
9
8
7
6
5
4
3
2
1
0
FPWM = 12 kHz  
PWM = 16 kHz  
FPWM = 20 kHz  
TJ = 150°C  
F
Trapezoidal Modulation  
HS  
LS  
IO  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
Output Phase Current - ARMS  
Figure 5. Total Power Losses as Function of Output Phase Current  
VDD=300V, TJ=150°C, Modulation Depth=0.5, PF=0.99  
150  
140  
130  
120  
110  
100  
90  
TJ = 150°C  
HS  
Trapezoidal Modulation  
LS  
IO  
80  
70  
60  
50  
40  
30  
20  
FPWM = 12 kHz  
F
F
PWM = 16 kHz  
PWM = 20 kHz  
10  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
Output Phase Current - ARMS  
Figure 6. Maximum Allowable Ambient Temperature vs. Output Phase Current  
VDD=300V, TJ=150°C, Modulation Depth=0.5, PF=0.99  
8
www.irf.com  
IR3103  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
TJ - Junction Temperature (°C)  
Figure 7. Normalized Drain to Source Resistance vs Junction Temperature  
10000  
1000  
100  
10  
TJ=-40°C  
TJ=25°C  
TJ=150°C  
1
5
6
7
8
9
10  
11  
12  
13  
14  
15  
VGS (V)  
Figure 8. Normalized Drain to Source Resistance vs Gate Source Voltage  
www.irf.com  
9
IR3103  
75.0  
70.0  
65.0  
60.0  
55.0  
50.0  
45.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
Z
Z
th(J-A) self  
th(J-A) mutual  
0.0  
1E-4  
1E-3  
0.01  
0.1  
1
10  
100  
1000  
10000  
Time - s  
Figure 9. Thermal Impedance vs. Time  
12.0  
11.0  
10.0  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
VDD  
10µF  
DBS  
CBS  
v
B
+15V  
VCC  
H
O
H
H
IN  
IN  
Vo  
VS  
L
L
IN  
IN  
6.8µF  
LO  
VSS  
COM  
VSS  
COM  
4.7µF  
3.3µF  
2.2µF  
1.0µF  
0
5
10  
PWM Frequency - kHz  
15  
20  
Figure 10. Recommended Bootstrap Capacitor Value vs. Switching Frequency  
10  
www.irf.com  
IR3103  
Package Outline  
-B-  
-A-  
27  
3.35  
3.15  
8.6  
-C-  
1
11  
1.80  
0.25  
1.20  
1.35  
1.05  
9X  
0.40  
0.20  
2.54 [0.10]  
10X  
0.65  
0.45  
C A S  
0.25 M  
B
9X  
Note 1: Marking for pin 1 identification  
Note 2: Product Part Number  
Note 3: Lot and Date code marking  
Dimensioning and Tolerancing per ANSY Y14.5M-1992  
Controlling Dimensions: INCH  
Dimensions are shown in millimeters [inches]  
Data and Specifications are subject to change without notice  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information  
04/05  
www.irf.com  
11  

相关型号:

IR311

REFLECTIVE NON FOCUSING SENSOR PCB MOUNT
FAIRCHILD

IR313

Technical Data Sheet 4.7mm Round Non-flange Infrared LED
EVERLIGHT

IR3220

FULLY PROTECTED H-BRIDGE FOR D.C. MOTOR
INFINEON

IR3220PBF

Brush DC Motor Controller, 15A, PDSO20, SOIC-20
INFINEON

IR3220S

FULLY PROTECTED H-BRIDGE FOR D.C. MOTOR
INFINEON

IR3220SPBF

暂无描述
INFINEON

IR3221

FULLY PROTECTED H-BRIDGE for DC MOTOR
INFINEON

IR3221PBF

暂无描述
INFINEON

IR323

5mm Infrared LED , T-1 3/4
EVERLIGHT

IR323-H0-A

5mm Infrared LED , T-1 3/4
EVERLIGHT

IR323/H0

Infrared LED
EVERLIGHT

IR323/H0-A

5mm Infrared LED , T-1 3/4
EVERLIGHT