IR3220S [INFINEON]

FULLY PROTECTED H-BRIDGE FOR D.C. MOTOR; 全面保护H-桥直流电机
IR3220S
型号: IR3220S
厂家: Infineon    Infineon
描述:

FULLY PROTECTED H-BRIDGE FOR D.C. MOTOR
全面保护H-桥直流电机

运动控制电子器件 信号电路 光电二极管 电动机控制 电机
文件: 总15页 (文件大小:547K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No.PD60180-C  
IR3220S  
FULLY PROTECTED H-BRIDGE FOR D.C. MOTOR  
Features  
The IR3220S is a fully protected dual high side switch I.C that  
integrates an H–bridge motor controller with two very efficient  
Programmable PWM In-rush  
high side MOSFETs in a single 20-pin package. The IR3220S  
Current Limitation (e.g 18A)  
combines with the two low side IRF7484Q MOSFETs as few as  
10 external passive components to provide a complete, fully op-  
erational and fully protected H-bridge control actuator with for-  
ward, reverse, braking and non-braking modes without the need  
of a micro-controller.  
6 A Continuous Current Capability  
without Heat Sink (2 x 13 m)  
Over-Temperature (165 °C) and  
Over-Current (30A) Protections  
Functional Description  
The high side switches provide the direction capability and the H-  
bridge protection. The low side MOSFETs bring the flexibility by  
offering the high frequency switching ability. Therefore, crude  
start-up of the motor is avoided and replaced by a smooth and  
stress-less speed ramp-up.  
20 kHz PWM Oscillator Embedded  
Low & High Frequency Switching  
Operation (self adaptive dead-time)  
Easy Speed / Torque Control  
(analog duty cycle input)  
The IR3220S features shoot-through protection for each leg, H-  
bridge logic control, soft-start sequence and over-current / over-  
temperature shutdown protections. Two input signals (IN1 & IN2)  
select the operating modes while the PWM soft-start sequence  
cycles the corresponding active low side MOSFET in order to  
limit the motor in-rush current. The soft-start sequence is pro-  
grammed by an RC time constant and reset itself automatically.  
Thanks to the inner PWM oscillator, the IR3220S can also be  
the final stage of an overall torque or speed loop. If needed, an  
external clock may force the H-bridge switching operation. This  
can be combined with low frequency PWM operation through  
the IN1(2) inputs.  
Braking / Non-Braking Modes  
Sleep Mode (braking) for  
Automotive Actuator  
Packages  
The IR3220S is a Co-pack IPS product offering very low Rds(on)  
and a high level of functionality and protection. Its open architec-  
ture and programmability helps the designer to optimize each  
motor drive upon the application requirements at a very low cost.  
For automotive actuators, the motor is kept shorted even during  
the low consumption sleep mode. Shoot-through protection, over-  
temperature & over-current shutdowns, self-adaptive dead-time  
and PWM circuitries are described in details in the AN 1032  
Application Note. A general purpose method to help rating the  
soft-start sequence as well as layout and thermal considerations  
are also covered. Finally, a 6A DC motor actuator with a PCB  
size down to 1 Inch² is suggested in the document.  
8-Lead SOIC  
IRF7484Q  
20-Lead SOIC  
(wide body)  
www.irf.com  
1
IR3220S  
Functional Block Diagram (see AN-1032 for a detailed description of each block)  
SS  
Vrc  
1k  
0.5k  
5.5 V Ref.  
+
-
Soft Start duty cycle  
S S reset  
10 mA  
Gnd  
Oscillator  
VCC  
IN 2  
VCC  
IN 1  
H Bridge logic control  
& status feedback  
40 V Active Clamp  
40 V Active Clamp  
DG  
Over current  
shutdown  
Over current  
shutdown  
Over temp.  
protection  
Shoot-through  
protection  
Shoot-through  
protection  
50  
Low Side  
Driver  
Low Side  
Driver  
G 2  
G 1  
50  
M 2  
Gnd  
M 1  
Thanks to the self-adaptive dead-time circuitry, the low side MOSFET of each leg is driven in the opposite  
phase of the high side one without any conflict. Thus, the single IN1 signal turns on the leg M1 (and IN2, the  
output M2). Consequently, when both IN1 and IN2 are low, the quiescent state of the H-bridge is the Braking  
Mode (the two low side MOSFETs on). The over-temperature circuitry and the two over-current protections  
(one per leg) protect the IC and flag the DG pin. The thermal shutdown also covers the body diode over-  
heating. Fault conditions are reset by cycling the corresponding IN1(2) input. Each leg appears independent  
so that the PWM soft-start management is greatly simplified and makes the 20kHz oscillator block almost a  
separate function. The positive input of the PWM comparator is accessible on the SS pin. An external analog  
voltage or a RC network can either drive the duty cycle. It has to be said that a clock signal (< 20 kHz) applied  
on this input will directly drive the low side MOSFETs. A 5V voltage source is embedded in the I.C ( switched  
off while in the sleep mode ) so that no additional power supply is needed for the soft-start RC time constant.  
Its capacitor is discharged through the ‘ ’ SS reset ‘ ’ circuitry every time IN1 equals IN2. Thus, the soft-start  
sequence is ready to operate whichever the formerly braking mode was.  
2
WWW.IRF.COM  
IR3220S  
Soft-Start Sequence  
IN1  
(IN2)  
t
t
t
Vss+  
SS  
Vss-  
M1-M2  
(M2-M1)  
Duty cycle modulation follows SS voltage  
Tss ( approximately 1.4 x RC time constant )  
Trd  
Truth Table  
IN1 IN2  
MODES  
DG  
HS1  
OFF  
OFF  
OFF  
ON  
LSS1  
ON  
HS2  
OFF  
ON  
LSS2  
SS reset  
ON  
L
L
Stand-by with braking - sleep mode**  
Forward rotation (normal operation)  
Forward rotation (protection triggered)  
Reverse rotation (normal operation)  
Reverse rotation (protection triggered)  
Stand-by without braking  
H
H
L
H
L
ON  
L
H
H
L
ON*  
ON*  
OFF  
OFF  
OFF  
OFF  
OFF  
ON*  
ON*  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
L
OFF  
OFF  
OFF  
OFF  
H
H
H
L
OFF  
OFF  
H
H
* During Soft-start sequence, the low side part is switching.  
** Protections are reset in this mode  
The IR 3220S over-current is set at 30A which is low enough to protect the whole application. The soft-start RC  
time constant has to be designed in order to keep the maximum in-rush current below the I shutdown (application  
worst case - see AN 1032 ). The total switching sequence is about 1.4 times the RC time constant. A smoother  
start-up is even achievable by slightly increasing the RC values. However, the soft-start sequence should  
remain short enough not to trip the over-temperature protection (Tj while free-wheeling). The truth table shows  
that the soft-start sequence can be interrupted at any time. But a minimum time is needed prior to any change  
in the direction or re-start of a new SS sequence. Actually, the capacitor of the RC network has to be discharged  
and the motor fully stopped first otherwise the over-current protection might trip during the next turn-on.  
The protections turn off the high side MOSFETs so that no braking sequence follows the fault detection. Both  
IN1 and IN2 have to go low for a minimum time in order to reset the fault circuitry. When both inputs are back  
to the low level, the H-bridge is in the braking mode and the motor shorted. In this mode, no protection is  
activated and the peak current due to the braking is not monitored. After 300 ms, the I.C sleep mode is  
activated and the consumption is reduced down to few micro-amps. The low side gate drivers keep the gates  
high so the motor remains shorted. When using end switches, the I.C goes into the low consumption mode as  
soon as the mechanical stop are reached. When interfacing such switches directly to the IR 3220S, de-bounc-  
ing RC networks have to be implemented on the input pins in order to prevent false over-current detection.  
WWW.IRF.COM  
3
IR3220S  
Typical Connection  
+ 5 V  
+ Bat.  
VCC  
Vrc  
10 k  
Gnd  
DG  
IN 2  
Diagnostic  
Feedback  
IR 3220S  
SS  
IN 1  
LS gate 1  
M 2  
LS gate 2  
M 1  
1 k  
1 k  
R
Clockwise motion  
10 k  
D
S
D
S
Counter clockwise  
motion  
10 k  
G
G
SO 8 Mosfet  
SO 8 Mosfet  
C
Deboucing  
RC networks  
( e.g 10 nF )  
Micro  
Controller  
Electrical stop  
Electrical stop  
0 V  
IN1  
t
t
t
IN2  
SS  
M1  
Soft-Start sequence  
t
t
M2  
Stand-by Mode  
(M1 & M2 opened)  
Braking Mode  
(M1 & M2 grounded)  
Motor  
Current  
t
IN1(2) & M1(2) Timing Diagrams  
4
WWW.IRF.COM  
IR3220S  
The PWM generator is based on a 3V saw-tooth oscillator. The soft-start sequence takes advantage of the RC  
charge profile in order to perform a smooth duty cycle variation. When the SS pin is below 1.2V, no PWM signal  
is sent to the low side MOSFETs. When it exceeds 4.2V, they are permanently ON. By designing the proper RC  
network, the start-up can either be very slow without any in-rush current or, fast and efficient by shortening the  
PWM sequence. In addition to the quiescent braking mode, the IR 3220S is able to open the four MOSFETs  
simultaneously if the mechanical load requires its natural slow-down (stand-by mode without braking). The  
four modes and their corresponding DC motor current profiles are summarized in the Timing Diagram.  
Over-load protection is achieved thanks to the I.C temperature shutdown protection. By using the recom-  
mended part number and the proper cooling, the whole H-bridge is protected by the IR 3220S’ s inner over-  
temperature circuitry (see AN 1032). A micro-controller is able to directly drive the PWM duty cycle by forcing  
a 0 to 5V voltage on the SS pin (e.g. through a 10K resistor). Thus, closing a speed or torque control loop for  
advanced applications becomes very easy. Since the low side MOSFETs are the only ones switching, the  
IR 3220S body diodes offer the freewheeling path to the motor. The power dissipated in each body diode while  
switching may appear high enough to trip the over-temperature protection. For permanent switching operation,  
external Schottky diodes should be implemented between each output (M1 & M2) and the VCC pin.  
Permanent Switching Operation  
(without external RC time constant)  
+5V  
+Bat  
Additional  
Schottky diodes  
Over-voltage  
protection  
Additional Schottky diodes  
have to be implemented if  
the I.C temperature appears  
too high.  
Vcc  
Micro  
Controller  
Dg  
Diagnostic  
In1  
In2  
ss  
S
IR 3220  
Direction &  
Braking  
DC Motor  
A over-voltage protection  
may be needed depending  
on the power supply wire  
length  
IRF 7484  
IRF 7484  
Speed  
Gnd  
Star Connection  
0V  
-Bat  
Copper plates added to the footprints will improve the cooling.  
However, the low side MOSFETs should always remain colder  
and thermally independent from the IR 3220S. The power path  
has to be designed carefully and shall include both a decoupling  
capacitor (e.g. 100 nF ceramic) and a reservoir capacitor (e.g.  
Cres ( uF). = I pk soft-start (A) x 25). The window-lifter is a  
good example where the IR 3220S’ s PWM ability greatly en-  
hances the application. The current is monitored thanks to a  
shunt and sent back to the micro-controller which takes over  
the torque control loop (anti-pinch function).  
WWW.IRF.COM  
5
IR3220S  
In addition, the soft-start sequence pro-  
vides a smooth motion of the window.  
Torque or speed controls are also  
achievable without any micro-control-  
ler. With a few additional components,  
the IR 3220S can be the ‘ ’ power stage‘ ’  
of an overall analog control loop. The  
SS pin is then used as the PWM duty  
cycle input (continuous switching op-  
eration requires high cooling capabil-  
ity)  
When an obstacle is encountered, the uP  
controls the torque thanks to the SS pin.  
+Bat  
Dg  
In1  
In2  
ss  
IR 3220  
µP  
IRF 7484  
IRF 7484  
Shunt  
-Bat  
For actuators, the PWM Soft Start sequence helps reduce the speed before reaching the end switches. There-  
fore, the braking time is very short and the actuator final position is then accurate and repeatable as shown  
hereunder. Mechanical stops under torque control are also possible by controlling the motor current through  
the PWM duty cycle.  
speed  
braking  
braking  
Rev  
Fwd  
+ Vcc  
DG  
Soft-Start  
( PWM )  
Low Speed  
( PWM )  
motion  
Vcc Vcc Vcc Vcc  
Vrc  
SS  
DG  
R1  
IR 3220  
2
IN  
1
G2  
M2 M2 M2 Gnd IN  
M1 M1 M1  
G1  
Fwd  
Rev  
1000 uF  
C
R2  
100 nF  
D D D D  
IRF7484  
D D D D  
G
G
IRF7484  
S
S S  
S
S S  
GND  
Fwd  
Rev  
6
WWW.IRF.COM  
IR3220S  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-  
eters are referenced to Gnd lead. (T  
= 25oC unless otherwise specified). Symbols with (2) refer to M2 output.  
Ambient  
Symbol  
Parameter  
Min.  
Max.  
Units  
V
V
V
V
m1 (2)  
(2)  
Maximum M1 (M2) voltage (active clamp)  
Maximum IN 1 (IN 2) voltage  
cc-37  
-0.3  
-0.3  
-1  
cc+0.3  
5.5  
45  
in1  
V
Vcc/gnd  
I in1 (2)  
Vg1 (2)  
Vss  
Maximum Vcc pin to GND pin voltage  
Maximum IN1 (IN 2) current  
10  
mA  
Maximum Gate 1 ( Gate 2 ) voltage  
Maximum SS voltage  
-0.3  
-0.3  
-0.3  
7.5  
5.5  
5.5  
1
V
Vrc  
Maximum Vrc voltage  
Irc  
Maximum output current of the Vrc pin  
Maximum diagnostic output voltage  
Maximum diagnostic output current  
Diode max. permanent current (Rth=80°C/W) (1)  
(Rth=60°C/W) (1)  
mA  
V
Vdg  
-0.3  
5.5  
10  
Idg  
-1  
mA  
Isd cont.  
2.0  
A
3.0  
15  
Isd pulsed  
ESD 1  
ESD 2  
PD  
Diode max. pulsed current (1)  
Electrostatic discharge ( human body model C=100pF, R=1500)  
Electrostatic discharge ( machine model C=200pF, R=0Ω, L=10µH)  
Maximum power dissipation ( Rth = 80°C/W )  
Max. storage & operating junction temperature  
Lead temperature ( soldering 10 seconds )  
4
kV  
W
0.5  
1.5  
+150  
300  
60  
TJ max.  
-40  
°C  
T
L
Vcc/gnd max. Maximum Vcc to GND voltage (0.4 s - single pulse)  
V
Ig1 (2) max.  
Ig1 (2) avg.  
Maximum transient gate current (Ton < 5µS)  
100  
10  
mA  
Maximum average gate current  
(1) Limited by junction temperature.  
Thermal Characteristics  
Symbol  
Parameter  
Typ.  
80  
Max.  
Units  
R
R
1
2
Junction to ambient thermal resistance (std footprint)  
Junction to ambient thermal resistance (1" sq. footprint)  
th  
th  
°C/W  
60  
WWW.IRF.COM  
7
IR3220S  
Recommended Operating Conditions  
These values are given for a quick design. For operation outside these conditions, please consult the application notes.  
Symbol  
Parameter  
Min.  
8
Max.  
28  
Units  
V
V
V
cc  
Continuous Vcc voltage (2)  
(2)  
(2)  
High level IN 1 (IN 2) input voltage  
Low level IN 1 (IN 2) input voltage  
Continuous output current (Std footprint - Tj = 150°C)  
4
5.5  
V
in1  
in1  
-0.3  
0.9  
Iout Ta=85°C  
6.0  
5.0  
A
Iout Ta=105°C Continuous output current (Std footprint - Tj = 150°C)  
R in  
Recommended resistor in series with IN pin  
Recommended pull-up resistor on DG pin  
Soft-Start resistor  
0.5  
10  
20  
0.1  
0
5
20  
R dg  
R
kΩ  
200  
3.3  
50  
C
Soft-Start capacitor  
µF  
R gate  
Lm min.  
Recommended gate resistor for Low Side Switch  
Minimum motor inductance required  
10  
µH  
Static Electrical Characteristics  
(T = 25oC, V = 14V unless otherwise specified.)  
j
cc  
Symbol  
Parameter  
Min. Typ. Max. Units Test Conditions  
o
Rds1 on  
Rds2 on  
Vcc oper.  
Vclamp1 (2)  
Vf1 (2)  
ON state resistance Tj =  
ON state resistance Tj =  
Functional voltage range  
5.5  
37  
1.0  
0.8  
0.2  
11  
18  
13  
22  
35  
48  
25 C  
mΩ  
Vin1,2 = 5V,1m1,2 = 5A  
o
150 C  
Vcc to M1 (M2) clamp voltage  
Body diode 1 (2) forward voltage  
40  
0.9  
10  
10  
8
Id =10mA see Figs.1,2  
Id = 5A, Vin1,2 = 0V  
V
IM1 (2) leakage M1 (M2) output leakage current  
50  
50  
12  
Vm1, 2 = 0V; Tj = 25°C  
Vin1(2) = 0V, Vcc=12V  
µA  
Icc off  
Supply current when off (sleep mode)  
Supply current when on  
Icc on  
mA  
V
Vin1 = 5V  
Vdgl  
Low level diagnostic output voltage  
Diagnostic output leakage current  
IN1 (IN2) high threshold voltage  
IN1 (IN2) low threshold voltage  
ON state IN1 (IN2) positive current  
Vcc UVLO positive going threshold  
Vcc UVLO negative going threshold  
SS high level threshold  
0.4  
2.6  
2.0  
30  
5
Idg = 1.0mA  
Vdg = 4.5V  
Idg leakage  
Vih1 (2) th.  
Vil1 (2) th.  
Iin1 (2)  
Vccuv+  
Vccuv-  
Vss+  
10  
3.4  
µA  
V
80  
µA  
Vin1, 2 = 5V  
4
V
4.2  
1.2  
0.1  
5.3  
0.7  
4.8  
Vss-  
SS low level threshold  
Iss leakage  
Vrc  
IN1(2) hys  
SS pin leakage current  
10  
1.5  
µA  
Vss = 5V  
Typical voltage of the Vrc pin  
IN1 (2) input hysteresis  
Irc = 0.25mA  
Iin = 1mA  
V
8
WWW.IRF.COM  
IR3220S  
Switching Electrical Characteristics  
V
= 14V, Resistive Load = 3.0, T = 25oC, (unless otherwise specified).  
j
cc  
Symbol  
Parameter  
Min. Typ. Max. Units Test Conditions  
Td  
Turn-on delay time  
55  
100  
30  
on  
T
µs  
Rise time to Vout = Vcc -5V  
Rise time from the end of Tr1 to  
3
r1  
see figure 3  
see figure 4  
Tr2  
V
= 90% of V  
cc  
40  
3
200  
out  
Turn ON d  
d
V/µs  
µs  
V/dt (on)  
V/dt  
Tdoff  
Tf  
dV/dt (off)  
Turn-off delay time  
30  
16  
2
80  
50  
Fall time to Vout = 10% of Vcc  
Turn OFF dV/dt  
V/µs  
IN1 (2) max. freq. Max. frequency on IN1 (IN2)  
500  
Hz  
dt=0.5  
none braking mode(2)  
Soft-Start freq.  
Soft-Start oscillator frequency  
15  
50  
22  
80  
30  
kHz  
mA  
ms  
V
Ig1 (2) min.  
Trd  
Vg1  
Min. Gate 1 (Gate 2) current  
low side driver  
Min. IN1 (2) OFF time to reset SS  
Gate 1 (gate 2) voltage  
8.0  
7
C=3.3µF, IN1 = IN2  
µs  
V
Tin1 (2)  
Vst  
Minimum IN1 (2) ON state for operation  
Shoot-through protection threshold  
200  
1.1  
350  
2.3  
550  
3.3  
See AN-1032  
Protection Characteristics  
Symbol Parameter  
Min. Typ. Max. Units Test Conditions  
Tsd  
Over-temperature threshold  
Over-current threshold  
Reset time  
24  
165  
30  
38  
oC  
See figure 2  
See figure 2  
IN1 = IN2 = 0V  
Isd  
A
Treset  
100  
µS  
Note 1: The low side switches present sufficient cooling capability in order to have the whole H Bridge function protected  
by the IR3220S inner temperature sensor.  
Note 2: Switching in the none braking mode consists in cycling one of the inputs while the other one is held at the high logic  
level.  
WWW.IRF.COM  
9
IR3220S  
Lead Definitions  
Vcc  
M1  
M2  
G1  
Positive power supply  
IN1  
IN2  
Dg  
Vrc  
SS  
Logic input 1 ( Leg 1 Cdt. / mode )  
Logic input 2 ( Leg 2 Cdt. / mode )  
Diagnostic output ( open drain )  
Voltage ref. output ( soft-start RC )  
RC soft-start input ( the voltage on this input  
drives the switching duty cycle )  
Motor 1 output ( high side source - leg 1 )  
Motor 2 output ( high side source - leg 2 )  
Gate 1 drive output ( low side gate - leg 1 )  
Gate 2 drive output ( low side gate - leg 2 )  
Power supply return  
G2  
Gnd  
Lead Assignments  
Vcc Vcc m1 m1 m1 nc g1 Gnd In1Vrc  
D D D D  
S S S G  
Vcc Vcc m2 m2 m2 nc g2 In2 Dg SS  
20 Lead - SOIC (wide body)  
8 Lead - SOIC  
IR3220S  
IRF7484Q  
Part Number  
10  
WWW.IRF.COM  
IR3220S  
T clamp  
5 V  
0 V  
IN1 (2)  
t > T reset  
t < T reset  
IN1 (2)  
I shutdown  
I M1(2)  
I M1(2)  
M1(2)  
( + Vcc )  
T shutdown  
Tsd  
Tj  
0 V  
5 V  
V clamp  
DG  
0 V  
(
see IPS Appl . Notes to evaluate power dissipation )  
Figure 2 - Protection Timing diagram  
Figure 1 - Active clamp waveforms  
IN 1(2)  
IN1(2)  
Vcc  
90%  
90%  
Vcc - 5 V  
M1(2)  
dV/dt off  
M1 (2)  
dV/dt on  
Tr 1  
10%  
10%  
Tf  
Td off  
Td on  
Tr 2  
Figure 3 - Switching Time Definitions (turn-on)  
Figure 4 - Switching Time Definitions (turn-off)  
WWW.IRF.COM  
11  
IR3220S  
5
4
3
2
1
50  
40  
30  
20  
10  
0
----- IN1h(2)  
-- -- IN1l(2)  
- - - -IN1(2) hysteresis  
0
-50 -25  
0
25  
50  
75  
100 125 150  
-50 -25  
0
25 50 75 100 125 150  
Figure 5 - IN1 (2) thresholds (V) vs Tj (oC)  
Figure 6 - IN1 (2) current (µA) vs Tj (oC)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
Figure 8 - Typ. I shutdown (A) vs Tj (oC)  
Figure 7 - Iccoff (µA) vs Tj (oC)  
12  
WWW.IRF.COM  
IR3220S  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
20  
15  
10  
5
Vf@ 25°C  
Vf@ 150°C  
6
4
2
0
0
0
2
4
6
8
10 12 14 16 18 20  
0,0  
0,2  
0,4  
0,6  
0,8  
1,0  
1,2  
Figure 9 - Body diode : Ids (A) vs Vds (V)  
Figure 10 - Rds(on) (m) vs Vcc (V)  
30  
20  
10  
0
15  
12,5  
10  
- - - 1’’ square footprint  
------- standard footprint  
7,5  
5
2,5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
0
50  
100  
150  
200  
Figure 11 - Rdson (m) vs Tj (oC)  
Figure 12 - Max. Cont. current (A) vs Amb. Temp. (oC)  
WWW.IRF.COM  
13  
IR3220S  
1000  
100  
10  
1
100  
0,1  
0,01  
rth std footprint  
10  
1,E-06  
1,E-05  
1,E-04  
1,E-03  
1,E-02  
1,E-01  
1,E+00  
1,E+01  
1,E+02  
Figure 13 - Transient Rth (oC/W) vs Time (S)  
Figure 14 - Isd (A) vs Time (s)  
Case Outline - 8 Lead SOIC  
(MS-012AA) 01-0021 09  
14  
WWW.IRF.COM  
IR3220S  
Case Outline  
20 Lead SOIC (wide body)  
(MS-013AC) 01-3080 00  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105  
Data and specifications subject to change without notice. 9/18/2003  
WWW.IRF.COM  
15  

相关型号:

IR3220SPBF

暂无描述
INFINEON

IR3221

FULLY PROTECTED H-BRIDGE for DC MOTOR
INFINEON

IR3221PBF

暂无描述
INFINEON

IR323

5mm Infrared LED , T-1 3/4
EVERLIGHT

IR323-H0-A

5mm Infrared LED , T-1 3/4
EVERLIGHT

IR323/H0

Infrared LED
EVERLIGHT

IR323/H0-A

5mm Infrared LED , T-1 3/4
EVERLIGHT

IR3230SPBF

The IR3230 is a three-phase brushless DC motor controller/driver with many integrated features.
INFINEON

IR3230STRPBF

The IR3230 is a three-phase brushless DC motor controller/driver with many integrated features.
INFINEON

IR323C

Infrared LED,
EVERLIGHT

IR323C/H0

Infrared LED
EVERLIGHT

IR32A00000

DIGITAL TEMPERATURE & PROCESS CONTROLLERS
ETC