IR3823AMTRPBF [INFINEON]

3 A 单输出同步降压调节器;
IR3823AMTRPBF
型号: IR3823AMTRPBF
厂家: Infineon    Infineon
描述:

3 A 单输出同步降压调节器

调节器
文件: 总41页 (文件大小:1153K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IR3823A  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Features  
Single 4.3 V to 17 V application  
Precision Reference Voltage (0.6 V +/-0.5%)  
Enhanced Fast COT engine stable with Ceramic Output Capacitors and No External Compensation  
Optional Forced Continuous Conduction Mode or Diode Emulation for Enhanced Light Load Efficiency  
Programmable Switching Frequency from 600 kHz to 2 MHz  
Enable input with Voltage Monitoring Capability & Power Good Output  
Monotonic Start-Up with Two Selectable Soft Start time & Enhanced Pre-Bias Start up  
Thermally compensated Internal Over Current Protection  
Thermal Shut Down  
Operating Junction Temp: -40 °C < Tj < 125 °C  
Small Size: 3.5 mm x 3.5 mm PQFN  
Halogen-free and RoHS Compliant  
Potential applications  
Server Applications  
Storage Applications  
Telecom & Datacom Applications  
Distributed Point of Load Power Architectures  
Product validation  
Qualified for industrial applications according to the relevant tests of JEDEC47/20/22  
Description  
The IR3823A is an easy-to-use, fully integrated dc - dc Buck regulator. The onboard PWM controller and MOSFETs  
with integrated bootstrap diode make IR3823A a small footprint solution, providing high-efficiency power  
delivery. Furthermore, it uses a fast Constant On-Time (COT) control scheme, which simplifies design efforts and  
provides fast control response.  
The IR3823A has an internal low dropout voltage regulator, allowing operation with a single supply. The IR3823A  
is a versatile regulator, offering programmable switching frequency from 600 kHz to 2 MHz, two selectable soft  
start times, Forced Continuous Conduction Mode (FCCM) and Diode Emulation Mode (DEM) operation.  
It also features important protection functions, such as pre-bias start-up, thermally compensated current limit,  
over voltage and under voltage protection, and thermal shutdown to give required system level security in the  
event of fault conditions.  
Final Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 41  
V 2.4  
2022-07-25  
 
 
 
 
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Table of contents  
Table of contents  
Features ........................................................................................................................................ 1  
Potential applications..................................................................................................................... 1  
Product validation.......................................................................................................................... 1  
Description .................................................................................................................................... 1  
Table of contents............................................................................................................................ 2  
1
2
3
4
5
Ordering information ............................................................................................................. 4  
Functional block diagram........................................................................................................ 5  
Typical application diagram .................................................................................................... 6  
Pin descriptions ..................................................................................................................... 7  
Absolute maximum ratings ..................................................................................................... 8  
6
6.1  
Thermal characteristics .......................................................................................................... 9  
Thermal Characteristics..........................................................................................................................9  
7
7.1  
7.2  
Electrical specifications .........................................................................................................10  
Recommended operating conditions...................................................................................................10  
Electrical characteristics.......................................................................................................................11  
8
Typical efficiency and power loss curves..................................................................................14  
PVin = Vin = 12 V, Fsw = 600 kHz ................................................................................................................14  
PVin = Vin = 12 V, Fsw = 800 kHz ................................................................................................................15  
PVin = Vin = 12 V, Fsw = 1000 kHz...............................................................................................................16  
8.1  
8.2  
8.3  
9
Thermal de-rating cuves ........................................................................................................17  
RDS(ON) of MOSFET over temperature .........................................................................................18  
Typical operating characteristics (-40 °C ≤ Tj ≤ +ꢀꢁꢂ °C)..............................................................19  
10  
11  
12  
Theory of operation...............................................................................................................21  
Fast Constant On-Time Control ............................................................................................................21  
Enable ....................................................................................................................................................21  
FCCM and DEM Operation.....................................................................................................................22  
Pseudo-Constant Switching Frequency ...............................................................................................22  
Soft-start................................................................................................................................................23  
Pre-bias Start-up ...................................................................................................................................23  
Internal Low - Dropout (LDO) Regulator...............................................................................................24  
Over Current Protection (OCP) .............................................................................................................24  
Under Voltage Protection (UVP) ...........................................................................................................25  
Over Voltage Protection (OVP)..............................................................................................................25  
Over Temperature Protection (OTP) ....................................................................................................26  
Power Good (PGood) Output ................................................................................................................26  
Minimum ON - Time and Minimum OFF - Time ....................................................................................26  
Selection of Feedforward Capacitor and Feedback Resistors.............................................................27  
Resistors for Configuration Pins ...........................................................................................................28  
12.1  
12.2  
12.3  
12.4  
12.5  
12.6  
12.7  
12.8  
12.9  
12.10  
12.11  
12.12  
12.13  
12.14  
12.15  
13  
Design example.....................................................................................................................29  
Enabling the IR3823A ............................................................................................................................29  
Programming the Switching Frequency and Operation Mode............................................................29  
Selecting Input Capacitors....................................................................................................................29  
Inductor Selection.................................................................................................................................30  
Output Capacitor Selection ..................................................................................................................30  
13.1  
13.2  
13.3  
13.4  
13.5  
Final Datasheet  
2 of 41  
V 2.4  
2022-07-25  
 
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Table of contents  
13.6  
13.7  
13.8  
13.9  
Output Voltage Programming...............................................................................................................31  
Feedforward Capacitor .........................................................................................................................31  
Bootstrap Capacitor..............................................................................................................................31  
Vin and VCC/LDO bypass Capacitor......................................................................................................31  
14  
14.1  
14.2  
Application information.........................................................................................................32  
Application Diagram..............................................................................................................................32  
Typical Operating Waveforms...............................................................................................................32  
15  
15.1  
15.2  
Layout recommendations ......................................................................................................35  
Solder mask...........................................................................................................................................35  
Stencil design ........................................................................................................................................36  
16  
16.1  
16.2  
Package ...............................................................................................................................38  
Marking Information .............................................................................................................................38  
Dimensions............................................................................................................................................38  
17  
Environmental qualifications .................................................................................................40  
Revision history.............................................................................................................................41  
Final Datasheet  
3 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Ordering information  
1
Ordering information  
1.  
Ordering Information  
Base Part Number  
IR3823AMTRPBF  
Package Type  
Standard Pack Form and Qty Orderable Part Number  
PQFN 3.5 mm x 3.5 mm Tape and Reel  
4000  
IR3823AMTRPBFXUMA1  
IR3823AMTRPBF  
A1  
Designator  
Packing type  
Tape & Reel  
Dry  
Moisture  
protection packing  
UM  
Packing size  
330 mm  
Halogen Free  
RoHS compliant  
Total lead free  
Yes  
Yes  
Yes  
X
PVin  
12  
SW  
11  
PGND  
10  
AGND 13  
9
8
7
AGND  
VCC/ LDO  
Vin  
AGND  
16  
14  
15  
Boot  
En  
1
2
3
4
5
6
Figure 1 Package Top View  
Final Datasheet  
4 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Functional block diagram  
2
Functional block diagram  
VCC/LDO  
AGND  
AGND  
PGood  
Vin  
POR  
UVP  
Threshold  
UVP OTP  
OVP  
+
-
VCC/LDO  
LDO  
En  
Fault  
AGND  
BOOT  
PVin  
+
-
OVP  
Threshold  
Turn-on Delay  
PGood  
Q
S
R
Prebias  
Fault  
HDrVin  
HDrv  
Q
+
-
PGood  
Hysteresis  
Threshold  
POR  
Hiccup  
OVP  
POR  
+
-
VCC  
4.0 V  
GATE  
DRIVE  
LOGIC  
SW  
VCC/LDO  
OTP  
+
-
En  
SS  
Fault  
1.2 V  
LDrVin  
LDrv  
PWM  
PWM  
COMP  
SOFT  
START  
SS  
ADAPTIVE  
ON-TIME  
GENERATOR  
+
-
+
SET  
ZC  
PGND  
Zero Cross  
DETECTION  
SW  
PGND  
FB  
RAMP  
GENERATOR  
OCP  
Floor  
GENERATOR  
+
Hiccup  
-
+
Q
S
R
UVP  
VREF  
AGND  
SW  
OCP Limit  
TON/MODE  
20 ms  
Delay  
Figure 2 Block diagram  
Final Datasheet  
5 of 41  
V 2.4  
2022-07-25  
 
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Typical application diagram  
3
Typical application diagram  
PVin  
Enable  
PVin  
Vin  
En  
BOOT  
SW  
VCC/LDO  
Vo  
PGood  
PGood  
SS  
IR3823A  
Cff  
RFB1  
RFB2  
Float or GND  
FB  
TON/MODE  
NC  
PGND  
AGND  
Figure 3 IR3823A basic application circuit  
Final Datasheet  
6 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Pin descriptions  
4
Pin descriptions  
Note:  
I = Input, O = Output  
Pin#  
Pin Name  
I/O  
Type  
Pin Description  
Output voltage feedback pin. Connect this pin to the  
output of the regulator via a resistor divider to set the  
output voltage.  
1
FB  
I
Analog  
Connect this pin to VCC/Float or GND to select Soft-Start  
time from 2 options (see Table 5 Configuration for SS Pin).  
This pin must be left floating.  
2
3
SS  
I
Analog  
NC  
-
No connect  
Note: Pin 3 is internally connected.  
Signal ground for the internal reference voltage and  
control circuitry. AGND and PGND are not internally  
connected. AGND and PGND must be connected on the  
PCB with a single ground connection.  
4, 9, 13, 16  
AGND  
-
Ground  
Multi-function pin. This pin sets the switching frequency to  
1 of 8 settings and sets the mode of operation to FCCM or  
DEM by connecting a resistor to ground.  
Power Good status output pin is open drain. Connect a pull  
up resistor from this pin to VCC/LDO or to an external bias  
voltage, e.g. 3.3 V.  
5
6
TON/MODE  
PGood  
I
Analog  
Analog  
O
Vin is the input voltage for the Internal LDO and it should  
always be connected to PVin; also forms input to  
feedforward block. A 4.7 µF capacitor should be connected  
between this pin and PGND.  
Output of the internal LDO. A ceramic capacitor valued  
between 2.2 µF and 10 µF is recommended for use between  
VCC/LDO and the Power ground (PGND).  
Power ground. This pin should be connected to the  
systemꢀs power ground plane. Bypass capacitors between  
PVin and PGND should be connected very close to PVin pin  
and this pin.  
7
8
Vin  
I
O
-
Power  
Power  
Ground  
VCC/LDO  
PGND  
10  
11  
12  
SW  
O
I
Power  
Power  
Switch node. This pin is connected to the output inductor.  
Input voltage for power stage. Bypass capacitors between  
PVin and PGND should be connected very close to this pin  
and PGND.  
PVin  
Supply voltage for the high side driver. Connect this pin to  
the SW pin through a bootstrap capacitor.  
14  
15  
BOOT  
En  
I
I
Analog  
Analog  
Enable pin to turn the IC on and off.  
Final Datasheet  
7 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Absolute maximum ratings  
5
Absolute maximum ratings  
Absolute maximum ratings  
Description  
Min  
Max  
Unit  
Conditions  
PVin, Vin, En to PGND  
-0.3  
25  
V
Note 1  
-0.3 V(dc),  
below -5 V for 5 ns  
PVin to SW  
25  
6
V
V
V
VCC/LDO to PGND  
BOOT to PGND  
-0.3  
Note 1  
Note 1  
-0.3 V(dc),  
below -0.3 V for 5 ns  
-0.3 (dc),  
29  
SW to PGND  
BOOT to SW  
FB, PGood, TON/MODE and SS  
to AGND  
25  
6
V
V
V
Note 1  
below -5 V for 5 ns  
-0.3  
-0.3  
6
Note 1  
PGND to AGND  
-0.3  
-55  
-40  
0.3  
150  
150  
V
Storage Temperature Range  
Junction Temperature Range  
°C  
°C  
Note:  
1. PGND and AGND pin are connected together  
Attention:  
Stresses beyond these listed under ꢀAbsolute Maximum Ratingsꢁ may cause permanent  
damage to the device. These are stress ratings only and functional operation of the device at  
these or any other conditions beyond those indicated in the operational sections of the  
specifications are not implied.  
Final Datasheet  
8 of 41  
V 2.4  
2022-07-25  
 
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Thermal characteristics  
6
Thermal characteristics  
6.1  
Thermal Characteristics  
Description  
Symbol  
Values  
37.4 °C/W  
10.1 °C/W  
120 °C/W  
Test Conditions  
Junction to Ambient Thermal Resistance  
Junction to PCB Thermal Resistance  
Junction to Case Top Thermal Resistance  
θJA  
θJC-PCB  
θJC  
Note 2  
Note:  
2. θJA is tested in still air on IR3823A evaluation board. The board uses a 4-layer ꢀ.ꢁ” x ꢀ.ꢀ” FRꢂ PCB.  
Final Datasheet  
9 of 41  
V 2.4  
2022-07-25  
 
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Electrical specifications  
7
Electrical specifications  
7.1  
Recommended operating conditions  
Description  
Min  
Max  
17  
Unit  
V
Note  
Note 3, Note 4 & 7  
Note 5, Note 6  
Note 6  
PVin Voltage Range  
4.5  
0.6  
Typical Output Voltage Range  
Continuous Output Current Range  
Typical Switching Frequency  
Operating Junction Temperature  
6
V
3
A
600  
-40  
2000  
125  
kHz  
°C  
Note 7  
Note:  
3. A common practice is to have 20% margin on the maximum SW node voltage in the design. A 2resistor in series  
with the BOOT pin is recommended for PVin ꢃ ꢄꢅ.ꢀ V to ensure the maximum SW node spike voltage does not  
exceed 20 V. Alternatively, an RC snubber can be used at the SW node to reduce the SW node spike.  
4. For single-rail applications with PVin = Vin = 4.3 V-5.4 V, the internal LDO may enter dropout mode. OCP limits can  
be reduced due to the lower VCC voltage.  
5. The maximum output voltage is limited by the minimum off-time. Please refer to Section 12.13 for details. Also  
note that OCP limit may be degraded when off-time is close to the minimum off-time.  
6. Maximum output current capability can be reduced at elevated ambient temperatures. Lower VCC voltage can  
result in higher RDS (ON) and therefore require more thermal derating.  
7. The maximum LDO output current must be limited to 50 mA or less for operations requiring the full operating  
temperature range of -40 °C TJ 125 °C. Thermal derating may be needed for operation at elevated ambient  
temperatures to ensure the junction temperature remains within the recommended operating range.  
Final Datasheet  
10 of 41  
V 2.4  
2022-07-25  
 
 
 
 
 
 
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Electrical specifications  
7.2  
Electrical characteristics  
Note:  
Unless otherwise specified, the specifications apply over ꢂ.ꢆ V ꢇ Vin = PVin ꢇ ꢄꢈ V, ꢉ °C < TJ < 125 °C.  
Typical values are specified at Ta = 25 °C.  
Parameter  
Symbol  
Conditions  
Min Typ Max Unit  
Power Stage  
RDS (on)_Top  
RDS (on)_Bot  
VBOOT VSW = 5.0 V, Tj = 25 C  
VCC = 5.0 V, Tj = 25 C  
I(Boot) = 25 mA  
43  
Top Switch  
mΩ  
29.5  
Bottom Switch  
370 600  
mV  
Bootstrap Forward Voltage  
En = 0 V  
300  
VSW  
mV  
SW float voltage  
Dead Band Time  
En = high, No Switching  
SW node rising edge, Note 8  
SW node falling edge, Note 8  
300  
10  
10  
ns  
ns  
Tdb  
Supply Current  
Iin (Standby)  
Iin (Static)  
En = Low, No Switching  
En = 2 V, No Switching  
4
10  
4
µA  
Vin Supply Current (standby)  
Vin Supply Current (static)  
Soft Start  
2.3  
mA  
0.7  
2.8  
1
4
1.5  
6
SS = GND  
ms  
Soft Start time  
SS time  
VFB  
SS = VCC/Floating  
Feedback Voltage  
0.6  
0
V
Feedback Voltage  
-0.5  
-1  
+0.5  
1
0°C < Tj < 85 °C, Note 9  
-40 °C < Tj < 125 °C, Note 9  
VFB = 0.6 V, Tj = 25 C  
%
Accuracy  
-0.15  
+0.15 A  
VFB Input Current  
IVFB  
On-Time Timer Control  
Vin = 12 V, Vo = 1 V,  
152  
114  
91.5  
77  
TON/MODE = ꢁ kΩ, ꢂꢁ.ꢃ kΩ, Note 10  
Vin = 12 V, Vo = 1 V,  
TON/MODE = ꢂ.ꢃ kΩ, ꢂꢄ.ꢂ kΩ, Note 10  
Vin = 12 V, Vo = 1 V,  
TON/MODE = ꢄ.ꢅꢆ kΩ, ꢂꢅ kΩ, Note 10  
Vin = 12 V, Vo = 1 V,  
TON/MODE = ꢇ.ꢅꢈ kΩ, ꢂꢉ.ꢄ kΩ, Note 10  
Vin = 12 V, Vo = 1 V,  
ns  
On Time  
Ton  
66.5  
58.5  
52  
TON/MODE = ꢅ.ꢃꢇ kΩ, ꢂꢈ.ꢊ kΩ, Note 10  
Vin = 12 V, Vo = 1 V,  
TON/MODE = ꢃ.ꢊꢉ kΩ, ꢄꢂ.ꢃ kΩ, Note 10  
Vin = 12 V, Vo = 1 V,  
TON/MODE = ꢊ.ꢇꢄ kΩ, ꢄꢅ.ꢆ kΩ, Note 10  
Vin = 12 V, Vo = 1 V,  
47  
TON/MODE = ꢈ.ꢈꢊ kΩ, ꢄꢈ.ꢊ kΩ, Note 10  
Final Datasheet  
11 of 41  
V 2.4  
2022-07-25  
 
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Electrical specifications  
Parameter  
Symbol  
Conditions  
Min Typ Max Unit  
Vin = 12 V, Vo = 1 V,  
114  
TON/MODE = Floating, Note 10  
Vin = 12 V, Vo = 0 V  
23  
32  
ns  
ns  
Minimum On-Time  
Minimum Off-Time  
VCC LDO Output  
Ton (Min)  
Toff (Min)  
270 360  
Tj = 25 C, VFB = 0 V  
5.5 V Vin 17 V, when Icc = 50 mA,  
Cload = 2.2 µF  
VCC  
4.7 5.0  
5.3  
V
Output Voltage  
VCC_drop Vin = 4.3 V, Icc = 50 mA, Cload = 2.2 µF  
Ishort  
300  
mV  
mA  
VCC Dropout  
90  
Short Circuit Current  
Under Voltage Lockout  
VCC-Start Threshold  
VCC-Stop Threshold  
Enable-Start-Threshold  
Enable-Stop-Threshold  
Input Impedance  
5.5 V Vin 17 V  
Vcc_UVLO_Start VCC Rising Trip Level  
Vcc_UVLO_Stop VCC Falling Trip Level  
En_UVLO_Start ramping up  
En_UVLO_Stop ramping down  
REN  
3.8 4.0  
3.6 3.8  
4.2  
4.0  
V
1.14 1.2 1.36  
0.9 1.06  
500 915 1500  
V
1
k  
Over Current Limit  
Current Limit Threshold  
(Valley Current)  
Ioc  
Tj = 25 °C, VCC = 5.0 V  
3.3 4.5  
5.4  
A
Over Voltage Protection  
FB Rising  
115 121 125  
110 115 120  
4.0  
OVP_Vth  
% Vref  
µs  
OVP Trip Threshold  
FB Falling, OVP hysteresis  
OVP_Tdly  
OVP Protection Delay  
Under Voltage Protection  
UVP Trip Threshold  
UVP_Vth  
FB Falling  
65  
70  
5
75 % Vref  
µs  
UVP_Tdly  
UVP Protection Delay  
Hiccup Blanking Time  
Tblk_Hiccup  
20  
ms  
Power Good  
VPG (upper)  
VPG (lower)  
IPG  
FB Rising  
85  
80  
91  
84  
5
95 % Vref  
90 % Vref  
mA  
Pgood Turn on Threshold  
Pgood Turn off Threshold  
Pgood Sink Current  
Pgood Voltage Low  
FB Falling  
PGood = 0.5 V, En = 2 V  
Vin = VCC = 0 V, Rpull-up = ꢃꢁ kΩ to 3.3 V  
FB Rising, see VPG (upper)  
FB < VPG (lower) or FB > VPG (upper)  
2.5  
VPG (low)  
0.3  
2.5  
2
0.5  
V
VPG (on)_Dly  
VPG (comp)_Dly  
ms  
µs  
Pgood Turn on Delay  
Pgood Comparator Delay  
1
3.5  
1
Pgood Open Drain Leakage  
Current  
PGood = 3.3 V  
µA  
Thermal Shutdown  
Thermal Shutdown  
Hysteresis  
140  
20  
Note 8  
Note 8  
°C  
Final Datasheet  
12 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Electrical specifications  
Note:  
8. Guaranteed by construction and not tested in production.  
9. Cold temperature performance is guaranteed via correlation using statistical quality control. Not tested in  
production.  
10. Ton is trimmed so that the target switching frequency is achieved at around 1.5 A load current.  
Final Datasheet  
13 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Typical efficiency and power loss curves  
8
Typical efficiency and power loss curves  
8.1  
PVin = Vin = ꢀꢁ V, Fsw = ꢃꢄꢄ kHz  
PVin = Vin = 12 V, VCC = Internal LDO, Io = 0 A - 3 A, Fsw = 600 kHz, Room Temperature, No Air Flow. Note that the  
efficiency and power loss curves include losses of the IR3823A, inductor losses, losses of the input and output  
capacitors, and PCB trace losses. The table below shows the inductors used for each of the output voltages in  
the efficiency measurement.  
Table 1  
Vout (V)  
Inductors for PVin = Vin = 12 V, Fs = 600 kHz  
Lout (nH)  
1000  
P/N  
Size (mm)  
4.0 x 4.0 x 2.1  
4.0 x 4.0 x 2.1  
4.0 x 4.0 x 2.1  
4.0 x 4.0 x 2.1  
4.0 x 4.0 x 2.1  
DCR (m)  
10.8  
XFL4020-102ME  
XFL4020-152ME  
XFL4020-152ME  
XFL4020-222ME  
XFL4020-222ME  
1.0  
1.2  
1.8  
3.3  
5.0  
1500  
14.4  
1500  
14.4  
2200  
21.35  
21.35  
2200  
PVin = Vin = 12V, Fsw = 600kHz - Internal LDO, Natural Convention, Ta = 25°C  
100  
95  
90  
85  
80  
75  
70  
65  
60  
1.0V - DEM  
1.0V - FCCM  
1.2V - DEM  
1.2V - FCCM  
1.8V - DEM  
1.8V - FCCM  
3.3V - DEM  
3.3V - FCCM  
5.0V - DEM  
5.0V - FCCM  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Io (A)  
PVin = Vin = 12V, Fsw = 600kHz - Internal LDO, Natural Convention, Ta = 25°C  
1.0V - DEM  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.0V - FCCM  
1.2V - DEM  
1.2V - FCCM  
1.8V - DEM  
1.8V - FCCM  
3.3V - DEM  
3.3V - FCCM  
5.0V - DEM  
5.0V - FCCM  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Io (A)  
Final Datasheet  
14 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Typical efficiency and power loss curves  
8.2  
PVin = Vin = ꢀꢁ V, Fsw = 8ꢄꢄ kHz  
PVin = Vin = 12 V, VCC = Internal LDO, Io = 0 A - 3 A, Fsw = 800 kHz, Room Temperature, No Air Flow. Note that the  
efficiency and power loss curves include losses of the IR3823A, inductor losses, losses of the input and output  
capacitors, and PCB trace losses. The table below shows the inductors used for each of the output voltages in  
the efficiency measurement.  
Table 2  
Inductors for PVin = Vin = 12 V, Fsw = 800 kHz  
Vout (V)  
Lout (nH)  
1000  
P/N  
Size (mm)  
4.0 x 4.0 x 2.1  
4.0 x 4.0 x 2.1  
4.0 x 4.0 x 2.1  
4.0 x 4.0 x 2.1  
4.0 x 4.0 x 2.1  
DCR (m)  
10.8  
XFL4020-102ME  
XFL4020-152ME  
XFL4020-152ME  
XFL4020-222ME  
XFL4020-222ME  
1.0  
1.2  
1.8  
3.3  
5.0  
1500  
14.4  
1500  
14.4  
2200  
21.35  
21.35  
2200  
PVin = Vin = 12V, Fsw = 800kHz - Internal LDO, Natural Convention, Ta = 25°C  
100  
95  
90  
85  
80  
75  
70  
65  
60  
1.0V - DEM  
1.0V - FCCM  
1.2V - DEM  
1.2V - FCCM  
1.8V - DEM  
1.8V - FCCM  
3.3V - DEM  
3.3V - FCCM  
5.0V - DEM  
5.0V - FCCM  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Io (A)  
PVin = Vin = 12V, Fsw = 800kHz - Internal LDO, Natural Convention, Ta = 25°C  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.0V - DEM  
1.0V - FCCM  
1.2V - DEM  
1.2V - FCCM  
1.8V - DEM  
1.8V - FCCM  
3.3V - DEM  
3.3V - FCCM  
5.0V - DEM  
5.0V - FCCM  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Io (A)  
Final Datasheet  
15 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Typical efficiency and power loss curves  
8.3  
PVin = Vin = ꢀꢁ V, Fsw = ꢀꢄꢄꢄ kHz  
PVin = Vin = 12 V, VCC = Internal LDO, Io = 0 A - 3 A, Fsw = 1000 kHz, Room Temperature, No Air Flow. Note that the  
efficiency and power loss curves include losses of the IR3823A, inductor losses, losses of the input and output  
capacitors, and PCB trace losses. The table below shows the inductors used for each of the output voltages in  
the efficiency measurement.  
Table 3  
Inductors for PVin = Vin = 12 V, Fsw = 1000 kHz  
Vout (V)  
Lout (nH)  
1000  
P/N  
Size (mm)  
4.0 x 4.0 x 2.1  
4.0 x 4.0 x 2.1  
4.0 x 4.0 x 2.1  
4.0 x 4.0 x 2.1  
4.0 x 4.0 x 2.1  
DCR (m)  
10.8  
XFL4020-102ME  
XFL4020-152ME  
XFL4020-152ME  
XFL4020-222ME  
XFL4020-222ME  
1.0  
1.2  
1.8  
3.3  
5.0  
1500  
14.4  
1500  
14.4  
2200  
21.35  
21.35  
2200  
PVin=Vin=12V, Fsw = 1000kHz - Internal LDO, Natural Convention, Ta = 25°C  
100  
95  
90  
85  
80  
75  
70  
65  
60  
1.0V - DEM  
1.0V - FCCM  
1.2V - DEM  
1.2V - FCCM  
1.8V - DEM  
1.8V - FCCM  
3.3V - DEM  
3.3V - FCCM  
5.0V - DEM  
5.0V - FCCM  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Io (A)  
PVin=Vin=12V, Fsw = 1000kHz - Internal LDO, Natural Convention, Ta = 25°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.0V - DEM  
1.0V - FCCM  
1.2V - DEM  
1.2V - FCCM  
1.8V - DEM  
1.8V - FCCM  
3.3V - DEM  
3.3V - FCCM  
5.0V - DEM  
5.0V - FCCM  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Io (A)  
Final Datasheet  
16 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Thermal de-rating cuves  
9
Thermal de-rating cuves  
Measurement is done on IR3823A evaluation board at 200 LFM. The PCB is a 4-layer board with 1.8 oz. copper for  
top and bottom layers and 2 oz. copper for the inner layers, FR4 material, size 2.2x 2.6”.  
PVin = Vin = 12V, Vout = 1.2V, Fsw = 800 kHz  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
25  
25  
25  
35  
45  
55  
65  
75  
75  
75  
85  
85  
85  
Ambient Temperature (oC)  
PVin = Vin = 12V, Vout = 3.3V, Fsw = 800 kHz  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
35  
45  
55  
65  
Ambient Temperature (oC)  
PVin = Vin = 12V, Vout = 5.0V, Fsw = 800 kHz  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
35  
45  
55  
65  
Ambient Temperature (oC)  
Figure 4 Thermal derating curves, PVin = 12 V, Vout = 1.2 V/3.3 V/5 V, fsw = 800 kHz, VCC = Internal LDO  
Final Datasheet  
17 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
RDS(ON) of MOSFET over temperature  
10  
RDSꢅONꢆ of MOSFET over temperature  
Rds(on) of Control MOSFET  
65  
60  
55  
50  
45  
40  
35  
30  
25  
Vcc = 5V  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
140  
Temperature (°C)  
Rds(on) of Synchronous MOSFET  
50  
45  
40  
35  
30  
25  
20  
15  
10  
Vcc = 5V  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
140  
Temperature (°C)  
Figure 5 Rds(on) of MOSFETs over Junction Temperature  
Final Datasheet  
18 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Typical operating characteristics (-ꢇꢄ C ≤ Tj ≤ +ꢀꢁꢂ Cꢆ  
11  
Typical operating characteristics ꢅ-ꢇꢄ °C ≤ Tj ≤ +ꢀꢁꢂ °Cꢆ  
Vin Standby Supply Current  
Vin Static Supply Current  
4
3.5  
3
7
6
5
4
3
2
2.5  
2
1.5  
1
0.5  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
LDO Voltage at Vin = 5.5 V & 17 V, Icc = 50 mA  
LDO Voltage Drop at Vin = 4.3 V, Icc = 50 mA  
5.1  
300  
250  
200  
150  
100  
50  
5.05  
5
4.95  
Vin = 5.5 V  
4.9  
Vin = 17 V  
4.85  
0
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
Enable_Start and Stop Thresholds  
Vcc_UVLO Start and Stop Thresholds  
1.3  
1.25  
1.2  
4.2  
4.1  
4
1.15  
1.1  
3.9  
3.8  
3.7  
3.6  
1.05  
1
En_Start  
Vcc_UVLO_Start  
Vcc_UVLO_Stop  
0.95  
0.9  
En_Stop  
0.85  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
Final Datasheet  
19 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Typical operating characteristics (-ꢇꢄ C ≤ Tj ≤ +ꢀꢁꢂ Cꢆ  
VFB  
OVP Rise and Fall Thresholds  
603  
125  
120  
115  
110  
105  
602  
601  
600  
599  
598  
597  
OVP_Rise  
OVP_Fall  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
UVP_Threshold  
PGood Rise and Fall Thresholds  
74  
72  
70  
68  
66  
64  
62  
92  
90  
88  
86  
84  
82  
80  
78  
PGood_Rise  
PGood_Fall  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
OCP Limit (4.5 A) - 5 V Vcc  
5.5  
5
4.5  
4
3.5  
3
OCP - Typ  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
Figure 6 Typical operating characteristics  
Final Datasheet  
20 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Theory of operation  
12  
Theory of operation  
12.1  
Fast Constant On-Time Control  
The IR3823A features a proprietary fast Constant On-Time (COT) Control, which can provide fast load transient  
response, good output regulation and minimize design effort. Fast COT control compares the output voltage, Vo,  
to a floor voltage combined with an internal ramp signal. When Vo drops below that signal, a PWM signal is  
initiated to turn on the high-side FET for a fixed on-time. The floor voltage is generated from an internally-  
compensated error amplifier, which compares Vout with a reference voltage. Compared to the traditional COT  
control, fast COT control significantly improves Vout regulation.  
12.2  
Enable  
En pin controls the on/off state of the IR3823A. An internal Under Voltage Lock-Out (UVLO) circuit monitors the  
En voltage. When the En voltage is above an internal threshold, the internal LDO starts to ramp up. When the  
VCC/LDO voltage rises above the VCC_UVLO_Start threshold, the soft-start sequence starts. The En pin can be  
configured in three ways, as shown in Figure 7. With configuration 2, the Enable signal is derived from the PVin  
voltage by a resistor divider, REN1 and REN2. By selecting different divider ratios, users can program a UVLO  
threshold for the bus voltage. This is a very desirable feature because it prevents the IR3823A from operating until  
PVin is higher than a desired voltage level. For some space-constrained designs, the En pin can be directly  
connected to PVin without using the external resistor divider, as shown in Configuration 3. The EN pin should not  
be left floating. A pull-down resistor in the range of tens of kilohms is recommended. Figure 8 illustrates the  
corresponding start-up sequences with three EN configurations.  
PVin  
PVin  
PVin  
Vin  
PVin  
PVin  
PVin  
Vin  
Vin  
REN1  
Vcc  
Vcc  
Vcc  
En  
IR3823A  
En  
En  
IR3823A  
IR3823A  
REN2  
ꢂꢃꢄ  
En = ꢁ  
× ꢆꢇ  
ꢈꢉ  
En = an external logic signal  
Configuration 1  
PVin = Vin = En  
Configuration 3  
+ꢁ  
ꢂꢃꢅ  
ꢂꢃꢄ  
Configuration 2  
Figure 7 Enable Configurations  
Final Datasheet  
21 of 41  
V 2.4  
2022-07-25  
 
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Theory of operation  
Pvin= Vin=12V  
PVin=Vin=En=12V  
Pvin = Vin = 12V  
Vcc_ UVLO  
Vcc  
Vcc  
Vcc  
Vcc_UVLO  
En Threshold  
0V  
Vcc_ UVLO  
0V  
0V  
0V  
0V  
En = REN2/(REN1+REN2)*PVin  
Fb  
0V  
En>1.2V  
En Threshold  
Fb  
0V  
Fb  
0V  
Pgood Turn-on  
threshold  
2.5ms  
Pgood Turn-on  
threshold  
2.5ms  
Pgood Turn-on  
threshold  
2.5ms  
0V  
0V  
0V  
0V  
0V  
0V  
PGood  
PGood  
PGood  
Pgood stays at logic low  
Pgood stays at logic low  
Pgood stays at logic low  
ꢂꢃꢄ  
En = an external logic signal  
Configuration 1  
En = ꢁ  
× ꢆꢇ  
ꢂꢃꢄ  
Pvin = Vin = En  
Configuration 3  
ꢈꢉ  
+ꢁ  
ꢂꢃꢅ  
Configuration 2  
Figure 8 Start-up sequence  
12.3  
FCCM and DEM Operation  
The IR3823A offers two operation modes: Forced Continuous Conduction Mode (FCCM) and Diode Emulation  
Mode (DEM). With FCCM, the IR3823A always operates as a synchronous buck converter with a pseudo-constant  
switching frequency leading to small output voltage ripple. In DEM, the synchronous FET is turned off when the  
inductor current is close to zero, reducing the switching frequency and improving efficiency at light load. At heavy  
load, both FCCM and DEM operate in the same way. The operation mode can be selected with the TON/MODE  
pin, as shown in Table 4. It should be noted that the selection of the operation mode cannot be changed on the  
fly. To load a new TON/MODE configuration, En or VCC voltage must be cycled.  
12.4  
Pseudo-Constant Switching Frequency  
The IR3823A offers eight programmable switching frequencies, fsw, from 600 kHz to 2 MHz, by connecting an  
external resistor from the TON/MODE pin to ground. Based on the selected fsw, the IR3823A generates the  
corresponding on-time of the Control FET for a given PVin and Vo, as shown by the formula below.  
ꢌ  
ꢋꢉ  
=
×
ꢆꢇ  
ꢏꢐ  
ꢈꢉ  
Where fsw is the desired switching frequency. During operation, the IR3823A monitors PVin and Vo, and can  
automatically adjust the on-time to maintain the pre-selected fsw. As load current increases, the switching  
frequency can increase to compensate for power losses.  
Table 4 lists resistor values for the TON/MODE pin. In this table, E96 resistors with ±1% tolerance are used. To  
load a new TON/MODE configuration, En or VCC voltage must be cycled.  
Final Datasheet  
22 of 41  
V 2.4  
2022-07-25  
 
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Theory of operation  
Table 4 Configuration Resistors for TON/MODE Pin  
TON/MODE Resistor ꢅkΩꢆ  
Freq (kHz)  
Mode  
±1% Tolerance  
0
600  
800  
1.5  
2.49  
1000  
1200  
1400  
1600  
1800  
2000  
600  
3.48  
FCCM  
4.53  
5.76  
7.32  
8.87  
10.5  
12.1  
800  
14  
1000  
1200  
1400  
1600  
1800  
2000  
800  
16.2  
DEM  
18.7  
21.5  
24.9  
28.7  
TON/MODE = Floating  
FCCM  
12.5  
Soft-start  
The IR3823A has an internal digital soft-start to control the output voltage rise and to limit the current surge at  
start-up. To ensure a correct start-up, the soft-start sequence initiates when the En and VCC voltages rise above  
their respective thresholds. The internal soft-start signal linearly rises from 0 V to 0.6 V in a defined time duration.  
The soft-start time does not change with the output voltage. During soft-start, the IR3823A operates in DEM until  
1 ms after the output voltage ramps above the PGood turn-on threshold. The IR3823A has two soft-start time  
options selected by floating or connecting to VCC the SS pin and shorting it to ground. Table 5 lists the  
corresponding soft-start times. To load a new SS selection, En or VCC voltage must be cycled.  
Table 5 Configuration for SS Pin  
SS  
Soft-Start Time (ms)  
SS = GND  
1
4
SS = VCC/Floating  
12.6  
Pre-bias Start-up  
The IR3823A is able to start up into a pre-charged output without causing oscillations and disturbances of the  
output voltage. When the IR3823A starts up with a pre-biased output voltage, both control FET and Sync FET are  
kept off until the internal soft-start signal exceeds the FB voltage.  
Final Datasheet  
23 of 41  
V 2.4  
2022-07-25  
 
 
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Theory of operation  
12.7  
Internal Low - Dropout ꢅLDOꢆ Regulator  
The IR3823A has an integrated low-dropout LDO regulator providing the bias voltage for the internal circuitry. To  
minimize standby current, the internal LDO is disabled when the En voltage is pulled low. The Vin pin is the input  
of the LDO. IR3823A supports the internal LDO with single rail operation, i.e., the Vin pin should always be  
connected to the PVin pin. Figure 9 illustrates the configuration of VCC/LDO, and the Vin pin.  
PVin  
4.7 uF  
Vin  
PVin  
VCC/LDO  
IR3823A  
2.2 uF ~10 uF  
PGND  
Single rail operation with the internal LDO  
Figure 9 Configuration of using the internal LDO.  
Section 7.1 specified the recommended operating voltage range of PVin. The following design guidelines are  
recommended when configuring the VCC/LDO.  
Place a bypass capacitor to minimize disturbances on the VCC pin. For single rail operation using the internal  
LDO, a 4.7 µF low ESR ceramic capacitor must be used between the Vin pin and PGND and a low ESR ceramic  
capacitor with value between 2.2 µF and 10 µF is required to be placed close to the VCC/LDO pin with reference  
to PGND. A 10 µF MLCC is recommended for the VCC bypass capacitor when VIN is below 5.5 V.  
For applications using the internal LDO with ꢅ.ꢇ V ꢋ VIN ꢋ ꢃ.ꢅ V, the LDO can be in the dropout mode. It is  
important to ensure that the LDO voltage does not fall below the VCC UVLO threshold voltage. At Vin = 4.3 V,  
ICC must not exceed 50 mA under all operating conditions such as during a step-up load transient, in which the  
control loop may require the increase of fsw. OCP limits can also be reduced due to the lower VCC voltage.  
12.8  
Over Current Protection ꢅOCPꢆ  
The IR3823A offers cycle-by-cycle OCP response with a fixed OCP limit of 4.5 A. Cycle-by-cycle OCP response  
allows the IR3823A to fulfill a brief high current demand, such as a high inrush current during start-up. Detailed  
operation is explained as follows:  
OCP is activated when En voltage is above its threshold. The OCP circuitry monitors the current of the  
Synchronous MOSFET through its RDS (ON). When a new PWM pulse is requested by the control loop, if the current  
of the Synchronous MOSFET exceeds the OCP limit, the IR3823A skips the PWM pulse and extends the on-time of  
the Synchronous MOSFET until the current drops below the OCP limit. OCP operation is also illustrated in Figure  
10. During OCP events, the valley of the inductor current is regulated around the OCP limit. However, during the  
first switching cycle when the OCP is tripped, the valley of the inductor current can drop slightly below the OCP  
limit. It should be noted that OCP events do not pull the PGood signal low unless Vo drops below the PGood turn-  
off threshold. If the OCP event persists, the output voltage can eventually drop below the Under Voltage  
Protection (UVP) threshold and trigger UVP. Then the IR3823A enters hiccup mode.  
The OCP limit is thermally compensated. The OCP limit specified in Section 7.2 refers to the valley of the inductor  
current when OCP is tripped. Therefore, the corresponding output dc current can be calculated as follows:  
∆ꢛꢗ  
ꢋꢒꢓ_ꢔꢕꢖ = ꢑꢗꢘꢙ  
Where: Iout_OCP = Output dc current when OCP is tripped. ILIM = OCP limit specified in the Section 7.2, which is the  
valley of inductor current. ΔiL = Peak-peak inductor ripple current.  
Final Datasheet  
24 of 41  
V 2.4  
2022-07-25  
 
 
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Theory of operation  
To avoid inductor saturation during OCP events, the following criterion is recommended for the inductor  
saturation current rating.  
ꢏꢝꢓ ꢞ ꢑꢗꢘꢙ_ꢟꢝꢠ ꢚ ∆ꢛꢗ  
Where: Isat is the inductor saturation current and ILIM_max is the maximum spec of the OCP limit.  
OCP Tripped  
Current  
Limit  
UVP Hiccup  
Blanking  
time  
Inductor  
Current  
Pulse  
skipped  
HDrv  
LDrv  
PGood  
UVP  
Threshold  
Vo  
PGood Turn-off  
Threshold  
Figure 10 Cycle-by-cycle OCP response  
12.9  
Under Voltage Protection ꢅUVPꢆ  
Under Voltage Protection (UVP) provides additional protection during OCP fault or other faults. UVP protection  
is enabled when the soft-start voltage rises above 100 mV. UVP circuitry monitors FB voltage. When FB is below  
the UVP threshold for 5 µs (typical), an under voltage trip signal asserts and both Control MOSFET and  
Synchronous MOSFET are turned off. The IR3823A enters hiccup mode with a blanking time of 20 ms, during  
which the Control MOSFET and the Synchronous MOSFET remain off. After the completion of blanking time, the  
IR3823A attempts to recover to the nominal output voltage with a soft-start, as shown in Figure 10. The IR3823A  
will repeat hiccup mode and attempt to recover until the UVP condition is removed.  
12.10  
Over Voltage Protection ꢅOVPꢆ  
Over Voltage Protection (OVP) is achieved by comparing the FB voltage to an OVP threshold voltage. When the  
FB voltage exceeds the OVP threshold, an over voltage trip signal asserts after 4 µs (typical) delay. The Control  
MOSFET is latched off immediately and PGood flags low. The Synchronous MOSFET remains on to discharge the  
output capacitor. When FB voltage drops below around 115% of the reference voltage, Synchronous MOSFET  
turns off to prevent complete depletion of the output capacitors. Figure 11 illustrates the OVP operation. The  
OVP comparator becomes active when the EN signal is above the start threshold.  
IR3823A has a Latched OVP response, i.e., when OVP is triggered, the Control FET remains latched off until either  
VCC voltage or the En signal is cycled.  
Final Datasheet  
25 of 41  
V 2.4  
2022-07-25  
 
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Theory of operation  
HDrv  
LDrv  
120%Vref  
115%Vref  
Vref  
91%Vref  
OVP  
91%Vref  
84%Vref  
VFB  
PGood  
Pgood turn-on  
delay =2.5 ms  
Pgood turn-on  
delay =2.5 ms  
OVP delay = 4 us  
Figure 11 Over voltage protection response and PGood behavior.  
12.11  
Over Temperature Protection ꢅOTPꢆ  
Temperature of the controller is monitored internally. When the temperature exceeds the over temperature  
threshold, OTP circuitry turns off both Control and Synchronous MOSFETs and resets the internal soft start.  
Automatic restart is initiated when the sensed temperature drops back into the operating range. The thermal  
shutdown threshold has a hysteresis of 20 °C.  
12.12  
Power Good ꢅPGoodꢆ Output  
The PGood pin is the open drain of an internal NFET, and must be externally pulled high through a pull-up  
resistor. The PGood signal is high when three criteria are satisfied:  
1. En signal and VCC voltage are above their respective thresholds.  
2. No over voltage or over temperature faults occur.  
3. Vo is within regulation.  
In order to detect if Vo is in regulation, the PGood comparator continuously monitors FB voltage. When FB voltage  
ramps up above the upper threshold, the PGood signal is pulled high after 2.5 ms. When FB voltage drops below  
the lower threshold, the PGood signal is pulled low immediately. Figure 11 illustrates the PGood response.  
During start-up with a pre-biased output voltage, the PGood signal is held low before the first PWM is generated  
and is then pulled high with 2.5 ms delay after FB voltage rises above the PGood threshold. IR3823A also  
integrates an additional PFET in parallel to the PGood NFET, as shown in Figure 2. This PFET allows the PGood  
signal to stay at logic low when the VCC voltage is not present and the PGood pin is pulled up by an external bias  
voltage. Please refer to Figure 8. Since the PGood PFET has relatively higher on resistance, a ꢃꢁ kΩ pull-up  
resistor is needed for a Pgood bias voltage of 3.3V to maintain the PGood signal at logic low when the PGood  
PFET is on.  
12.13  
Minimum ON - Time and Minimum OFF - Time  
The minimum on-time refers to the shortest time for the Control MOSFET to be reliably turned on. The minimum  
off-time refers to the minimum time duration in which the Synchronous FET stays on before a new PWM pulse is  
generated. The minimum off-time is needed for IR3823A to charge the bootstrap capacitor, and to sense the  
current of the Synchronous MOSFET for OCP.  
Final Datasheet  
26 of 41  
V 2.4  
2022-07-25  
 
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Theory of operation  
For applications requiring a small duty cycle, it is important that the selected switching frequency results in an  
on-time larger than the maximum spec of the minimum on-time in Section 7.2. Otherwise, the resulting switching  
frequency may be lower than the desired target. The following formula should be used to check for the minimum  
on-time requirement.  
ꢌ  
> max ꢢꢣꢤꢥ ꢦꢎ ꢋꢉ ꢨiꢩ  
ꢡꢎ × ꢇ  
ꢏꢐ  
ꢈꢉ  
Where fsw is the desired switching frequency. k is the variation of the switching frequency. As a rule of thumb,  
select k = 1.25 to ensure design margin.  
For applications requiring a high duty cycle, it is important to make sure a proper switching frequency is selected  
so that the resulting off-time is longer than the maximum spec of the minimum off-time in Section 7.2, which can  
be calculated as shown below.  
ꢇ − ꢌ  
ꢈꢉ  
> max ꢢꢣꢤꢥ ꢦꢎ ꢋꢫꢫ ꢨiꢩ  
ꢡꢎ × ꢇ  
ꢏꢐ  
ꢈꢉ  
Where fsw is the desired switching frequency. k is the variation of the switching frequency. As a rule of thumb,  
select k = 1.25 to ensure design margin.  
The resulting maximum duty cycle is therefore determined by the selected on-time and minimum off-time.  
ꢋꢉ  
ꢟꢝꢠ  
=
ꢋꢉ  
ꢋꢫꢫꢧꢨiꢩꢪ  
12.14  
Selection of Feedforward Capacitor and Feedback Resistors  
Output voltage can be programmed with an external voltage divider. The FB voltage is compared to an internal  
reference voltage of 0.6 V. The divider ratio is set to provide 0.6 V at the FB pin when the output is at its desired  
value. The calculation of the feedback resistor divider is shown below.  
ꢰꢱꢲ  
= ꢇ × (ꢍ ꢚ  
)
ꢭꢮꢫ  
ꢰꢱꢳ  
Where RFB1 and RFB2 are the top and bottom feedback resistors.  
A small MLCC capacitor, Cff, is preferred in parallel with the top feedback resistor, RFB1, to provide extra phase  
boost and improve the transient load response, as shown in Figure 12. The following formula can be used to  
help select Cff and RFB1. The value of Cff is recommended to be 100 pF or higher to minimize the impact of circuit  
parasitic capacitance, where LO and CO are the output LC filter of the buck regulator. Table 6 lists the suggested  
mfor some common outputs. Cff and RFB1 may be further optimized based on the transient load tests.  
ꢵ ꢴ  
ꢰꢱꢲꢫꢫ  
=
ꢶ × 4.ꢷ  
Final Datasheet  
27 of 41  
V 2.4  
2022-07-25  
 
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Theory of operation  
Vo  
RFB 1  
RFB 2  
Cff  
FB  
Figure 12 Configuration of feedforward capacitor, Cff.  
Table 6 Selection of m  
Vo  
m
0.3  
0.5  
0.7  
ꢇ.ꢁ V ꢋ Vo ꢋ 6.0 V  
1.2 V < Vo < 3.0 V  
Vo ꢋ ꢂ.ꢄ V  
12.15  
Resistors for Configuration Pins  
To properly configure the TON/ MODE pin, E96 resistors with ±1% tolerance must be used per Table 4 and Section  
7.2. If E12 resistor values are preferred, the E96 resistors can be replaced with two or three E12 resistors in series,  
as shown in Table 7. Note that the tolerance of E12 resistors must be ±0.1%.  
Table 7 Replacement of E96 configuration resistors with E12 resistors in series  
E96 ±1%  
R ꢍkΩꢎ  
4.53  
1.50  
5.76  
2.49  
7.32  
3.45  
8.87  
10.5  
12.1  
21.5  
14  
E12 ±0.1% (R = RS1 + RS2 or RS1 + RS2 + RS3)  
RS1 ꢍkΩꢎ  
RS2 ꢍkΩꢎ  
1.8  
RS3 ꢍkΩꢎ  
2.7  
1.5  
5.6  
1.8  
6.8  
3.3  
8.2  
10  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0.18  
0.18  
0
0.15  
0.68  
0.56  
0.15  
0.68  
0.47  
0.1  
12  
18  
3.3  
10  
3.9  
24.9  
16.2  
28.7  
21.5  
24.9  
22  
2.7  
15  
1.2  
27  
1.8  
18  
3.3  
22  
2.7  
Final Datasheet  
28 of 41  
V 2.4  
2022-07-25  
 
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Design example  
13 Design example  
In this section, an example is used to demonstrate how to design a buck regulator with the IR3823A. The  
application circuit is shown in Figure 13. The design specifications are given below:  
PVin = 12 V (±10%)  
VO = 1.2 V  
IO = 3 A  
VO ripple voltage = ± 1% of Vo  
Load transient response = ± 3% of VO with a step load current = 1 A and slew rate = 2.5 A/µs  
13.1  
Enabling the IRꢈ8ꢁꢈA  
The IR3823A has a precise Enable threshold voltage, which can be used to implement a UVLO of the input bus  
voltage by connecting the En pin to Pvin with a resistor divider, as shown in Configuration 2 of Figure 7. The  
Enable feedback resistor, REN1 and REN2, can be calculated as follows.  
ꢸꢹꢳ  
ꢆꢇ  
×
ꢸꢹꢧꢨꢺꢻꢪ  
ꢈꢉꢧꢨiꢩꢪ  
ꢸꢹꢲ ꢚ ꢯꢸꢹꢳ  
ꢸꢹꢧꢨꢺꢻꢪ  
ꢈꢉꢧꢨiꢩꢪ ꢸꢹꢧꢨꢺꢻꢪ  
ꢸꢹꢳ ꢞ ꢯꢸꢹꢲ  
×
Where VEN (max) is the maximum spec of the Enable-start-threshold as defined in Section 7.2. For Pvin(min) =10.8 V,  
select REN1 = ꢅꢆ.ꢆ kΩ and REN2 = ꢊ.ꢃ kΩ.  
13.2  
Programming the Switching Frequency and Operation Mode  
The IR3823A has very good efficiency performance and is suitable for high switching frequency operation. In this  
case, 1000 kHz is selected to achieve a good compromise between efficiency, passive component size and  
dynamic response. In addition, FCCM operation is selected to ensure a small output ripple voltage over the entire  
load range. To select 1000 kHz and FCCM operation, the TON/MODE pin is connected to a 2.49 kΩ resistor to GND  
per Table 4.  
13.3  
Selecting Input Capacitors  
Without input capacitors, the pulse current of the Control MOSFET is provided directly from the input supply.  
Due to the impedance of the cable, the pulse current can cause disturbance on the input voltage and potential  
EMI issues. The input capacitors filter the pulse current, resulting in almost constant current from the input  
supply. The input capacitors should be selected to tolerate the input pulse current, and to reduce the input  
voltage ripple. The RMS value of the input ripple current can be expressed by:  
ꢁꢙꢼ = ꢑ × ꢬ × ꢧꢍ − ꢬꢪ  
ꢬ =  
ꢆꢇ  
ꢈꢉ  
Where IRMS is the RMS value of the input capacitor current. Io is the output current and D is the Duty Cycle. For IO  
= 3 A and D(max) = 0.1, the resulting RMS current flowing into the input capacitor is Irms = 0.9 A.  
To meet the requirement of the input ripple voltage, the minimum input capacitance can be calculated as  
follows.  
Final Datasheet  
29 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Design example  
× ꢧꢍ − ꢬꢪ × ꢬ  
ꢈꢉꢧꢨiꢩꢪ  
>
ꢎ × ꢧ∆ꢆꢇ − ꢽꢾꢯ × ꢑ× ꢍ − ꢬ ꢪ  
ꢏꢐ  
ꢈꢉ  
Where ∆Pvin is the maximum allowable peak-to-peak input ripple voltage, and ESR is the equivalent series  
resistance of the input capacitors. Ceramic capacitors are recommended due to low ESR, ESL and high RMS  
current capability. For Io = 3 A, fsw = 10ꢁꢁ kHz, ESR = ꢇ mΩ, and ∆Pvin = 240 mV, Cin(min) > 2.0 µF. To account for the  
derating of ceramic capacitors under a bias voltage, two 22 µF/0805/25V MLCC are used for the input capacitor.  
In addition, a bulk capacitor is recommended if the input supply is not located close to the voltage regulator.  
13.4  
Inductor Selection  
The inductor is selected based on output power, operating frequency and efficiency requirements. A low inductor  
value results in a large ripple current, lower efficiency and high output noise, but helps with size reduction and  
transient load response. Generally, the desired peak-to-peak ripple current in the inductor ꢍ∆iꢎ is found between  
20% and 50% of the output current.  
The inductor saturation current must be higher than the maximum spec of the OCP limit plus the peak-to-peak  
inductor ripple current. For some core material, inductor saturation current may decrease with increasing  
temperature. It is important to check the inductor saturation current at the maximum operating temperature.  
The inductor value for the desired operating ripple current can be determined using the following relations:  
ꢟꢈꢉ  
ꢵ = ꢧꢆꢈꢉꢧꢨꢺꢻꢪ − ꢇ ꢪ ×  
∆ꢛꢗꢧꢨꢺꢻꢪ × ꢿ  
ꢏꢐ  
ꢟꢈꢉ  
=
ꢆꢇ  
ꢈꢉꢧꢨꢺꢻꢪ  
ꢏꢝꢓ ꢞ ꣀꢴꢟꢝꢠ ꢚ ∆ꢛꢗꢧꢨꢺꢻꢪ  
Where: PVin (max) = Maximum input voltage; ∆iLmax = Maximum peak-to-peak inductor ripple current; OCPmax  
=
maximum spec of the OCP limit as defined in Section 7.2; and Isat = inductor saturation current. In this case, select  
inductor L = 1.0 µH to achieve ∆iLmax = 35% of Iomax. The Isat should be no less than 6.0 A.  
13.5  
Output Capacitor Selection  
The output capacitor selection is mainly determined by the output voltage ripple and transient requirements.  
To satisfy the Vo ripple requirement, Co should satisfy the following criterion:  
∆ꢛꢗꢟꢝꢠ  
>  
ꣁ × ∆ꢇ × ꢎ  
ꢋꢭ  
ꢏꢐ  
Where ∆Vor is the desired peak-to-peak output ripple voltage. For ∆iLmax = 1 A, ∆Vor = 12 mV, fsw = 1000 kHz, Co must  
be larger than 12 µF. The ESR and ESL of the output capacitors, as well as the parasitic resistance or inductance  
due to PCB layout, can also contribute to the output voltage ripple. It is suggested to use Multi-Layer Ceramic  
Capacitor (MLCC) for their low ESR, ESL and small size.  
To meet the transient response requirements, the output capacitors should also meet the following criterion:  
ꢵ × ∆ꢑꢧꢨꢺꢻꢪ  
>  
ꢜ × ∆ꢇ × ꢇ  
ꢋꢗ  
Where ∆VOL is the allowable Vo deviation during the load transient. ∆Io(max) is the maximum step load current.  
Please note that the impact of ESL, ESR, control loop response, transient load slew rate, and PWM latency is not  
considered in the calculation shown above. Extra capacitance is usually needed to meet the transient  
requirements. As a rule of thumb, we can triple the Co that is calculated above as a starting point, and then  
Final Datasheet  
30 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Design example  
optimize the design based on bench measurement. In this case, to meet the transient load requirement ꢍi.e. ∆VOL=  
36 mV, ∆Io(max) = 1 A), select Co = ~36 µF. For more accurate estimation of Co, simulation tools should be used to aid  
the design.  
13.6  
Output Voltage Programming  
Output voltage can be programmed with an external voltage divider. The FB voltage is compared to an internal  
reference voltage of 0.6 V. The divider ratio is set to provide 0.6 V at the FB pin when the output is at its desired  
value. The calculation of the feedback resistor divider is shown below.  
ꢰꢱꢲ  
ꢇ = ꢇ × ꢧꢍ ꢚ  
ꢭꢮꢫ  
ꢰꢱꢳ  
Where RFB1 and RFB2 are the top and bottom feedback resistors. Select RFB1 = 10 kΩ and RFB2 = 10 kΩ, to achieve Vo  
= 1.2 V.  
13.7  
Feedforward Capacitor  
A small MLCC capacitor, Cff, can be placed in parallel with the top feedback resistor, RFB1, to improve the transient  
response. Based on Section 12.14, Cff can be selected using the following formula.  
ꢵ ꢴ  
ꢰꢱꢲꢫꢫ  
=
ꣂ.ꣃ × 4.ꢷ  
With Lo = 1.0 µH, Co = 36 µF and RFB1 = 10 kΩ, Cff = ~150 pF. Cff can be further optimized based on bench testing of  
transient load response.  
13.8  
Bootstrap Capacitor  
For most applications, a 0.1 µF ceramic capacitor is recommended for bootstrap capacitor placed between SW  
and BOOT. For applications requiring Pvin equal to or above 14 V, a small resistor between 1 Ω and 2 Ω can be  
used in series with the BOOT pin to ensure the maximum SW node spike voltage does not exceed 20 V.  
13.9  
Vin and VCC/LDO bypass Capacitor  
Please see the recommendation in Section 12.7. A 10 µF MLCC is selected for the VCC/LDO bypass capacitor and  
a 4.7 µF MLCC is selected for the Vin bypass capacitor.  
Final Datasheet  
31 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Application information  
14 Application information  
14.1  
Application Diagram  
Cin2  
2 x 22 uF  
CinHF Cin1  
0.1 nF 4.7 uF  
Vin = 12 V ± 10%  
+
REN1  
REN2  
Optional  
49.9 k ꢀ  
7.5 k ꢀ  
Cvin  
4.7 uF  
RBoot  
0  ꢀ  
PVin  
Vin  
En  
BOOT  
SW  
CBoot  
0.1 uF  
VCC/LDO  
Vo = 1.2 V  
RPG  
49.9 k ꢀ  
Cvcc  
10 uF  
L
PGood  
1.0 uH  
CoHF  
1x0.1 uF  
Co1  
Co2  
1x 4.7 uF  
PGood  
SS  
IR3823A  
1x 47 uF  
RFB1  
10 k ꢀ  
Cff  
150 pF  
Float (4 ms)  
TON/MODE  
FB  
RTon  
2.49 k ꢀ  
RFB2  
10 k ꢀ  
NC  
PGND  
AGND  
Figure 13 Application diagram of IR3823A. Pvin = 12 V, Vo = 1.2 V, Io = 3 A, fsw = 1000 kHz.  
14.2  
Typical Operating Waveforms  
PVin = Vin = 12.0 V, Vo = 1.2 V, Io = 0 3 A, fsw = 1000 kHz, Room Temperature, no airflow  
Figure 14  
Start up at 3 A Load, (Ch1: Pvin, Ch2: Pgood, Ch3: Enable, Ch4: Vout)  
Final Datasheet  
32 of 41  
V 2.4  
2022-07-25  
 
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Application information  
Figure 15  
Pre-bias Start up at 0 A Load, (Ch1: Pvin, Ch2: Pgood, Ch3: Enable, Ch4: Vout)  
Figure 16  
Vout ripple at 3 A Load, fsw = 1000 kHz, (Ch4: Vo)  
Figure 17  
SW node, 3 A load, fsw = 1000 kHz, (Ch2: SW)  
Final Datasheet  
33 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Application information  
Figure 18  
Short circuit and UVP (Hiccup), (Ch2: Vo, Ch3: Pgood)  
Load step up: 2 A to 3 A  
Load step down: 3 A to 2 A  
Figure 19  
Transient response at 1 A step load current: Io= 2 A 3 A, (Ch1: Io, Ch4: Vo), pk-pk: 30.96 mV,  
fsw = 1000 kHz  
Final Datasheet  
34 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Layout recommendations  
15 Layout recommendations  
PCB layout is very important when designing high frequency switching converters. Layout will affect noise pickup  
and can cause a good design to perform with less than expected results. The following design guidelines are  
recommended to achieve the best performance.  
Bypass capacitors, including input/output capacitors, Vin and VCC bypass capacitors, should be placed as  
close to the corresponding pins as possible.  
Place bypass capacitors from IR3823A power input (Drain of Control MOSFET) to PGND (Source of Synchronous  
MOSFET) to reduce noise and ringing in the system. The output capacitors should be terminated to a ground  
plane that is away from the input PGND to mitigate switching spikes on the Vout. The Vin and VCC bypass  
capacitors should be terminated to PGND.  
Place a boot strap capacitor as close as possible to IR3823A BOOT and SW pins to minimize loop inductance.  
SW node copper should only be routed on the top layer to minimize the impact of switching noise.  
Connect the AGND pin to the PGND pad through a single point connection. On the IR3823A demo board, AGND  
pin is connected to the exposed AGND pad (Pin 4) and then connected to the internal PGND layer through  
thermal via holes.  
Via holes can be placed on Pvin and PGND pads to aid thermal dissipation.  
Wide copper polygons are desired for Pvin and PGND connections in favor of power loss reduction and thermal  
dissipation. Sufficient via holes should be used to connect power traces between different layers.  
To implement the Vo sensing, the following design guidelines should be followed, as illustrated in Figure 13.  
o
The output voltage can be sensed from a high-frequency bypass capacitor of 0.1 µF or higher, through  
a 15 mil PCB trace.  
o
o
Keep the Vout sense line away from any noise sources and shield the sense line with ground planes.  
The sense trace is connected to a feedback resistor divider with the lower resistor terminated at the  
AGND pin.  
The EN pin and configuration pins including TON/MODE and SS should be terminated to a quiet ground. On the  
IR3823A standard demo board, they are terminated to the PGND copper plane away from the power current flow.  
Alternatively, they can be terminated to a dedicated AGND PCB trace.  
15.1  
Solder mask  
Evaluation has shown that the best overall performance is achieved using the substrate/PCB layout as shown in  
the following figures. PQFN devices should be placed to an accuracy of 0.050 mm on both X and Y axes. Self-  
centering behavior is highly dependent on solders and processes, and experiments should be run to confirm the  
limits of self-centering on specific processes.  
Infineon recommends that larger Power or Land Area pads are Solder Mask Defined (SMD). This allows the  
underlying copper traces to be as large as possible, which helps in terms of current carrying capability and device  
cooling capability. When using SMD pads, the underlying copper traces should be at least 0.05 mm larger (on  
each edge) than the openings in the solder mask. This allows for layers to be misaligned by up to 0.1 mm on both  
axes. Ensure that the solder resist between the smaller signal lead areas is at least 0.15 mm wide due to the high  
x/y aspect ratio of the solder mask strip.  
Final Datasheet  
35 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Layout recommendations  
PCB METAL PAD SPACING  
1.280  
1.510  
1.635  
1.490  
0.770  
1.600  
0.280  
1.450  
1.050  
1.400  
1.730  
0.500  
0.300  
0.650  
0.750  
0.500  
0.450  
2.400  
1.700  
1.700  
SOLDER MASK DESIGN  
1.180  
1.410  
0.350  
0.350  
0.350  
1.410  
1.270  
0.710  
0.780  
1.060  
0.670  
0.550  
0.475  
1.500  
0.400  
0.400  
0.950  
0.350  
0.575  
0.350  
0.350  
0.450  
0.440  
1.455  
1.450  
0.500  
1.300  
0.700  
0.750  
0.500  
0.450  
1.700  
2.300  
1.700  
Figure 20  
PCB metal pad spacing and Solder mask (all dimensions in mm)  
15.2  
Stencil design  
Stencils for PQFN packages can be used with thicknesses of 0.100-0.250 mm (0.004-ꢁ.ꢁꢂꢁ”ꢎ. Stencils thinner than  
0.100 mm are unsuitable because they deposit insufficient solder paste to make good solder joints with the  
ground pad; high reductions sometimes create similar problems. Stencils in the range of 0.125 mm-0.200 mm  
(0.005-ꢁ.ꢁꢁꢈ”ꢎ, with suitable reductions, give the best results. A recommended stencil design is shown below.  
This design is for a stencil thickness of ꢁ.ꢂꢄꢊ mm ꢍꢁ.ꢁꢁꢃ”ꢎ. The reduction should be adjusted for stencils of other  
thicknesses.  
Final Datasheet  
36 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Layout recommendations  
SOLDER PASTE STENCIL  
0.320  
0.690  
1.060  
0.570  
0.345  
0.925  
0.300  
1.000  
0.450  
0.455  
0.370  
0.370  
0.850  
0.580  
0.575  
0.500  
0.320  
0.280  
0.320  
0.520  
0.320  
0.800  
0.650  
0.655  
0.740  
0.040  
0.680  
0.790  
0.440  
0.600  
0.620  
0.280  
Figure 21  
Stencil pad size and spacing (all dimensions in mm)  
Final Datasheet  
37 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Package  
16  
Package  
This section includes mechanical and packaging information for the IR3823A.  
16.1  
Marking Information  
3823A  
PRODUCT MARKING  
ASSEMBLY SITE CODE  
X
X
DATE CODE (YWW)  
XXXX  
LOT CODE  
PIN 1 MARKER  
Figure 22  
Package Marking  
16.2  
Dimensions  
Dimension Table  
SIDE VIEW (Back)  
Millimeters  
D
MINIMUM  
NOMINALMAXIMUM  
B
A
A1  
b1  
0.80  
0.00  
0.20  
0.25  
0.30  
1.10  
0.90  
0.02  
1.00  
0.05  
0.30  
0.35  
0.40  
1.35  
19  
0.25  
1
b2  
b3  
D1  
E1  
0.30  
0.35  
1.25  
2.10  
0.75  
0.526  
0.75  
1.21  
2.25  
2.35  
1.00  
D2  
E2  
D3  
E3  
L
0.90  
0.676  
0.90  
0.776  
1.00  
1.36  
1.46  
0.45  
0.25  
0.35  
D
3.50 BSC  
3.50 BSC  
0.50 BSC  
0.05  
E
e
aaa  
C
2x  
TOP VIEW  
SIDE VIEW (Left)  
SIDE VIEW (Right)  
aaa  
ccc  
eee  
0.10  
0.08  
ccc C  
N
19  
C
SEATING  
PLANE  
eee  
C
SIDE VIEW (Front)  
Final Datasheet  
38 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Package  
D
1
(b2)  
b3  
2x  
b1  
12x  
3.500  
3.312  
3.125  
2.875  
2.625  
2.325  
D3  
1.565  
1.265  
0.875  
0.575  
0.625  
0.199  
0.000  
b2  
5x  
(b3)  
D2  
BOTTOM METALIZATION  
BOTTOM DETAIL VIEW  
Figure 23  
Package Dimensions (all dimensions in mm)  
Final Datasheet  
39 of 41  
V 2.4  
2022-07-25  
IR3823A IPOL  
3 A single-voltage synchronous Buck regulator  
Environmental qualifications  
17  
Environmental qualifications  
Qualification Level  
Industrial  
Moisture Sensitivity  
PQFN Package  
JEDEC Level 2 @ 260 °C  
Human Body Model  
Charged Device Model  
ANSI/ESDA/JEDEC JS-001, Level 2 (2000 V to < 4000 V)  
ANSI/ESDA/JEDEC JS-002, Level Cꢇ ꢍꢏ 1000 V)  
Yes  
ESD  
RoHS Compliant  
Final Datasheet  
40 of 41  
V 2.4  
2022-07-25  
IR3823AꢀIPOL  
IR3823A  
RevisionꢀHistory  
IR3823A  
Revision:ꢀ2022-07-28,ꢀRev.ꢀ2.4  
Previous Revision  
Revision Date  
Subjects (major changes since last revision)  
2.0  
2.1  
2.2  
Release of final version  
Updated Note 3.  
2021-01-15  
2021-04-01  
(1) Max. Vout updated to 6V in recommended operating conditions; (2) Update to Note 5  
and added Note 6; (3) Fixed Typo in Fig. 1 – pad 16 name corrected to AGND.  
2021-04-29  
2.3  
2.4  
(1) Updated Ordering Information; (2) Fixed typo in 12.9 - UVP enabled after soft start  
reaches 100mV.  
2021-08-03  
2022-07-28  
Updated Orderable Part Number  
Trademarks  
Allꢀreferencedꢀproductꢀorꢀserviceꢀnamesꢀandꢀtrademarksꢀareꢀtheꢀpropertyꢀofꢀtheirꢀrespectiveꢀowners.  
WeꢀListenꢀtoꢀYourꢀComments  
Anyꢀinformationꢀwithinꢀthisꢀdocumentꢀthatꢀyouꢀfeelꢀisꢀwrong,ꢀunclearꢀorꢀmissingꢀatꢀall?ꢀYourꢀfeedbackꢀwillꢀhelpꢀusꢀtoꢀcontinuously  
improveꢀtheꢀqualityꢀofꢀthisꢀdocument.ꢀPleaseꢀsendꢀyourꢀproposalꢀ(includingꢀaꢀreferenceꢀtoꢀthisꢀdocument)ꢀto:  
erratum@infineon.com  
Publishedꢀby  
InfineonꢀTechnologiesꢀAG  
81726ꢀMünchen,ꢀGermany  
©ꢀ2022ꢀInfineonꢀTechnologiesꢀAG  
AllꢀRightsꢀReserved.  
LegalꢀDisclaimer  
Theꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀshallꢀinꢀnoꢀeventꢀbeꢀregardedꢀasꢀaꢀguaranteeꢀofꢀconditionsꢀorꢀcharacteristicsꢀ  
(“Beschaffenheitsgarantie”)ꢀ.  
Withꢀrespectꢀtoꢀanyꢀexamples,ꢀhintsꢀorꢀanyꢀtypicalꢀvaluesꢀstatedꢀhereinꢀand/orꢀanyꢀinformationꢀregardingꢀtheꢀapplicationꢀofꢀthe  
product,ꢀInfineonꢀTechnologiesꢀherebyꢀdisclaimsꢀanyꢀandꢀallꢀwarrantiesꢀandꢀliabilitiesꢀofꢀanyꢀkind,ꢀincludingꢀwithoutꢀlimitation  
warrantiesꢀofꢀnon-infringementꢀofꢀintellectualꢀpropertyꢀrightsꢀofꢀanyꢀthirdꢀparty.  
Inꢀaddition,ꢀanyꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀisꢀsubjectꢀtoꢀcustomer’sꢀcomplianceꢀwithꢀitsꢀobligationsꢀstatedꢀinꢀthis  
documentꢀandꢀanyꢀapplicableꢀlegalꢀrequirements,ꢀnormsꢀandꢀstandardsꢀconcerningꢀcustomer’sꢀproductsꢀandꢀanyꢀuseꢀofꢀthe  
productꢀofꢀInfineonꢀTechnologiesꢀinꢀcustomer’sꢀapplications.  
Theꢀdataꢀcontainedꢀinꢀthisꢀdocumentꢀisꢀexclusivelyꢀintendedꢀforꢀtechnicallyꢀtrainedꢀstaff.ꢀItꢀisꢀtheꢀresponsibilityꢀofꢀcustomer’s  
technicalꢀdepartmentsꢀtoꢀevaluateꢀtheꢀsuitabilityꢀofꢀtheꢀproductꢀforꢀtheꢀintendedꢀapplicationꢀandꢀtheꢀcompletenessꢀofꢀtheꢀproduct  
informationꢀgivenꢀinꢀthisꢀdocumentꢀwithꢀrespectꢀtoꢀsuchꢀapplication.  
Information  
Forꢀfurtherꢀinformationꢀonꢀtechnology,ꢀdeliveryꢀtermsꢀandꢀconditionsꢀandꢀpricesꢀpleaseꢀcontactꢀyourꢀnearestꢀInfineon  
TechnologiesꢀOfficeꢀ(www.infineon.com).  
Warnings  
Dueꢀtoꢀtechnicalꢀrequirements,ꢀcomponentsꢀmayꢀcontainꢀdangerousꢀsubstances.ꢀForꢀinformationꢀonꢀtheꢀtypesꢀinꢀquestion,  
pleaseꢀcontactꢀtheꢀnearestꢀInfineonꢀTechnologiesꢀOffice.  
TheꢀInfineonꢀTechnologiesꢀcomponentꢀdescribedꢀinꢀthisꢀDataꢀSheetꢀmayꢀbeꢀusedꢀinꢀlife-supportꢀdevicesꢀorꢀsystemsꢀand/or  
automotive,ꢀaviationꢀandꢀaerospaceꢀapplicationsꢀorꢀsystemsꢀonlyꢀwithꢀtheꢀexpressꢀwrittenꢀapprovalꢀofꢀInfineonꢀTechnologies,ꢀifꢀa  
failureꢀofꢀsuchꢀcomponentsꢀcanꢀreasonablyꢀbeꢀexpectedꢀtoꢀcauseꢀtheꢀfailureꢀofꢀthatꢀlife-support,ꢀautomotive,ꢀaviationꢀand  
aerospaceꢀdeviceꢀorꢀsystemꢀorꢀtoꢀaffectꢀtheꢀsafetyꢀorꢀeffectivenessꢀofꢀthatꢀdeviceꢀorꢀsystem.ꢀLifeꢀsupportꢀdevicesꢀorꢀsystemsꢀare  
intendedꢀtoꢀbeꢀimplantedꢀinꢀtheꢀhumanꢀbodyꢀorꢀtoꢀsupportꢀand/orꢀmaintainꢀandꢀsustainꢀand/orꢀprotectꢀhumanꢀlife.ꢀIfꢀtheyꢀfail,ꢀitꢀis  
reasonableꢀtoꢀassumeꢀthatꢀtheꢀhealthꢀofꢀtheꢀuserꢀorꢀotherꢀpersonsꢀmayꢀbeꢀendangered.  
41  
Rev.ꢀ2.4,ꢀꢀ2022-07-28  

相关型号:

IR3823M

Single input voltage range from 5V to 21V
INFINEON

IR3823MTR1PBF

3A Highly Integrated SupIRBuck Single-Input Voltage, Synchronous Buck Regulator
INFINEON

IR3823MTRPBF

3A Highly Integrated SupIRBuck Single-Input Voltage, Synchronous Buck Regulator
INFINEON

IR3823M_15

Single input voltage range from 5V to 21V
INFINEON

IR3824

15A Highly Integrated Single-Input Synchchrous SupIRBuck® Regulator
INFINEON

IR3824MTRPBF

15A Highly Integrated Single-Input Synchchrous SupIRBuck® Regulator
INFINEON

IR3825

20A Highly Integrated Single-Input Synchronous SupIRBuck® Regulator
INFINEON

IR3825MTRPBF

20A Highly Integrated Single-Input Synchronous SupIRBuck® Regulator
INFINEON

IR38263

Single-input Voltage, 30A Buck Regulators with PVID
INFINEON

IR38263MTRPbF

Single-input Voltage, 30A Buck Regulators with PVID
INFINEON

IR38263MTRPBFAUMA1

Switching Regulator, Voltage-mode, 30A, 1500kHz Switching Freq-Max, PQCC26, QFN-26
INFINEON

IR38265M

OptiMOS™ IPOL DC-DC转换器,单输入电压,30A降压稳压器,配备PVID
INFINEON