IR3899AMTRPBF [INFINEON]

9 A 单输出同步降压调节器;
IR3899AMTRPBF
型号: IR3899AMTRPBF
厂家: Infineon    Infineon
描述:

9 A 单输出同步降压调节器

调节器
文件: 总38页 (文件大小:1089K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IR3899A  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Features  
Single 4.3 V to 17 V application  
Precision Reference Voltage (0.6 V +/-0.5%)  
Enhanced Fast COT engine stable with Ceramic Output Capacitors and No External Compensation  
Optional Forced Continuous Conduction Mode or Diode Emulation for Enhanced Light Load Efficiency  
Programmable Switching Frequency from 600 kHz to 2 MHz  
Enable input with Voltage Monitoring Capability & Power Good Output  
Monotonic Start-Up with 2 ms soft start time & Enhanced Pre-Bias Start up  
Thermally compensated Internal Over Current Protection with Two Selectable Settings  
Thermal Shut Down  
Operating Junction Temp: -40 oC < Tj < 125 oC  
Small Size: 4 mm x 5 mm PQFN  
Halogen-free and RoHS Compliant  
Potential applications  
Server Applications  
Storage Applications  
Telecom & Datacom Applications  
Distributed Point of Load Power Architectures  
Product validation  
Qualified for industrial applications according to the relevant tests of JEDEC47/20/22  
Description  
The IR3899A is an easy-to-use, fully integrated dc - dc Buck regulator. The onboard PWM controller and MOSFETs  
with integrated bootstrap diode make IR3899A a small footprint solution, providing high-efficiency power  
delivery. Furthermore, it uses a fast Constant On-Time (COT) control scheme, which simplifies design efforts and  
provides fast control response.  
The IR3899A has an internal low dropout voltage regulator, allowing operation with a single supply. The IR3899A  
is a versatile regulator, offering programmable switching frequency from 600 kHz to 2 MHz, two selectable current  
limits, Forced Continuous Conduction Mode (FCCM) and Diode Emulation Mode (DEM) operation.  
It also features important protection functions, such as pre-bias start-up, thermally compensated current limits,  
over voltage and under voltage protection, and thermal shutdown to give required system level security in the  
event of fault conditions.  
Final Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 38  
V 2.3  
2022-07-25  
 
 
 
 
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Ordering information  
Table of contents  
Features ........................................................................................................................................ 1  
Potential applications..................................................................................................................... 1  
Product validation.......................................................................................................................... 1  
Description .................................................................................................................................... 1  
Table of contents............................................................................................................................ 2  
1
2
3
4
5
Ordering information ............................................................................................................. 4  
Functional block diagram........................................................................................................ 5  
Typical application diagram .................................................................................................... 6  
Pin descriptions ..................................................................................................................... 7  
Absolute maximum ratings ..................................................................................................... 8  
6
6.1  
Thermal characteristics .......................................................................................................... 9  
Thermal Characteristics..........................................................................................................................9  
7
7.1  
7.2  
Electrical specifications .........................................................................................................10  
Recommended operating conditions...................................................................................................10  
Electrical characteristics.......................................................................................................................11  
8
8.1  
Typical efficiency and power loss curves..................................................................................13  
PVin = Vin = 12 V, Fsw = 600 kHz ................................................................................................................13  
9
Thermal de-rating cuves ........................................................................................................14  
RDS(ON) of MOSFET over temperature .........................................................................................15  
Typical operating characteristics (-40 °C ≤ Tj ≤ +ꢀꢁꢂ °C)..............................................................16  
10  
11  
12  
Theory of operation...............................................................................................................18  
Fast Constant On-Time Control ............................................................................................................18  
Enable ....................................................................................................................................................18  
FCCM and DEM Operation.....................................................................................................................19  
Pseudo-Constant Switching Frequency ...............................................................................................19  
Soft-start................................................................................................................................................20  
Pre-bias Start-up ...................................................................................................................................20  
Internal Low Dropout (LDO) Regulator..............................................................................................20  
Over Current Protection (OCP) .............................................................................................................21  
Under Voltage Protection (UVP) ...........................................................................................................22  
Over Voltage Protection (OVP)..............................................................................................................22  
Over Temperature Protection (OTP) ....................................................................................................23  
Power Good (Pgood) Output ................................................................................................................23  
Minimum ON Time and Minimum OFF Time...................................................................................24  
Selection of Feedforward Capacitor and Feedback Resistors.............................................................24  
Resistors for Configuration Pins ...........................................................................................................25  
12.1  
12.2  
12.3  
12.4  
12.5  
12.6  
12.7  
12.8  
12.9  
12.10  
12.11  
12.12  
12.13  
12.14  
12.15  
13  
Design example.....................................................................................................................26  
Enabling the IR3899A ............................................................................................................................26  
Programming the Switching Frequency and Operation Mode............................................................26  
Selecting Input Capacitors....................................................................................................................26  
Inductor Selection.................................................................................................................................27  
Output Capacitor Selection ..................................................................................................................27  
Output Voltage Programming...............................................................................................................28  
Feedforward Capacitor .........................................................................................................................28  
13.1  
13.2  
13.3  
13.4  
13.5  
13.6  
13.7  
Final Datasheet  
2 of 38  
V 2.3  
2022-07-25  
 
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Ordering information  
13.8  
13.9  
Bootstrap Capacitor..............................................................................................................................28  
Vin and VCC/LDO bypass Capacitor......................................................................................................28  
14  
14.1  
14.2  
Application information.........................................................................................................29  
Application Diagram..............................................................................................................................29  
Typical Operating Waveforms...............................................................................................................29  
15  
15.1  
15.2  
Layout Recommendations......................................................................................................32  
Solder mask...........................................................................................................................................32  
Stencil design ........................................................................................................................................33  
16  
16.1  
16.2  
Package ...............................................................................................................................35  
Marking Information .............................................................................................................................35  
Dimensions............................................................................................................................................35  
17  
Environmental qualifications .................................................................................................37  
Revision history.............................................................................................................................38  
 
Final Datasheet  
3 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Ordering information  
1
Ordering information  
1.  
Ordering Information  
Base Part Number  
IR3899AMTRPBF  
Package Type  
Standard Pack Form and Qty  
Orderable Part Number  
PQFN 4 mm x 5 mm  
Tape and Reel  
4000  
IR3899AMTRPBFXUMA1  
IR3899AMTRPBF  
A1  
Designator  
Packing type  
Tape & Reel  
Dry  
Moisture  
protection packing  
UM  
Packing size  
330 mm  
Halogen Free  
RoHS compliant  
Total lead free  
Yes  
Yes  
Yes  
X
PGND  
11  
13  
12  
SW  
PVIN  
BOOT 14  
VCC/LDO  
VIN  
10  
17  
15  
EN  
9
8
AGND  
16  
VSNS  
NC  
1
2
3
4
5
6
7
Figure 1 Package Top View  
Final Datasheet  
4 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Functional block diagram  
2
Functional block diagram  
VCC/LDO  
AGND  
PGood  
Vin  
AGND  
PVin  
POR  
UVP  
UVP OTP  
OVP  
+
-
Threshold  
VCC/LDO  
LDO  
Fault  
En  
AGND  
BOOT  
PVin  
+
-
OVP  
Threshold  
Turn-on Delay  
PGood  
Prebias  
Fault  
Q
Q
S
R
HDrVin  
HDrv  
+
-
PGood  
Threshold  
Hysteresis  
VSNS  
En  
POR  
POR  
+
-
VCC  
4.0 V  
Hiccup  
OVP  
GATE  
DRIVE  
LOGIC  
SW  
VCC/LDO  
OTP  
+
-
Fault  
1.2 V  
LDrVin  
LDrv  
PWM  
PWM  
COMP  
SOFT  
START  
SS  
+
-
+
ADAPTIVE  
ON-TIME  
GENERATOR  
SET  
ZC  
PGND  
Zero Cross  
DETECTION  
SW  
PGND  
FB  
RAMP  
GENERATOR  
OCP  
Floor  
GENERATOR  
+
Hiccup  
-
+
S
Q
UVP  
R
VREF  
AGND  
SW  
TON/MODE  
ILIM  
20 ms  
Delay  
OCP Limit  
Figure 2 Block diagram  
Final Datasheet  
5 of 38  
V 2.3  
2022-07-25  
 
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Typical application diagram  
3
Typical application diagram  
PVin  
Enable  
PVin  
Vin  
En  
BOOT  
SW  
VCC/LDO  
Vo  
PGood  
PGood  
ILIM  
IR3899A  
Float or  
GND  
RFB1  
RFB2  
Cff  
VSNS  
FB  
TON/MODE  
NC  
PGND  
AGND  
Figure 3 IR3899A basic application circuit  
Final Datasheet  
6 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Pin descriptions  
4
Pin descriptions  
Note:  
I = Input, O = Output  
Pin#  
Pin Name  
I/O  
Type  
Pin Description  
Output voltage feedback pin. Connect this pin to the  
output of the regulator via a resistor divider to set the  
output voltage.  
1
FB  
I
Analog  
Shorting to GND or floating the pin sets the Over Current  
Protection (OCP) limit. Two User selectable OCP limits are  
available.  
2
ILIM  
NC  
I
Analog  
This pin can be left floating.  
3, 6, 16  
4, 17  
-
No connect Note: Pin 6 is internally connected and should either be left  
floating or can be connected to VCC/LDO.  
Signal ground for the internal reference voltage and  
control circuitry. AGND and PGND are not internally  
connected. AGND and PGND must be connected on the  
AGND  
-
Ground  
PCB with a single ground connection.  
Multi-function pin. This pin sets the switching frequency to  
5
7
8
TON/MODE  
PGood  
I
O
I
Analog  
Analog  
Analog  
1 of 8 settings and sets the mode of operation to FCCM or  
DEM by connecting a resistor to ground.  
Power Good status output pin is open drain. Connect a pull  
up resistor from this pin to VCC/LDO or to an external bias  
voltage, e.g., 3.3 V.  
Sense pin for over voltage protection and PGood. Tie this  
pin to Vout using a resistor divider. Alternatively, tie this pin  
to the FB pin directly.  
VSNS  
Vin is the input voltage for the Internal LDO and it should  
always be connected to PVin; also forms input to the  
feedforward block. A 4.7 µF capacitor should be connected  
between this pin and PGND.  
Output of the internal LDO. A ceramic capacitor valued  
between 2.2 µF and 10 µF is recommended for use between  
VCC/LDO and the Power ground (PGND).  
Power ground. This pin should be connected to the  
systemꢀs power ground plane. Bypass capacitors between  
PVin and PGND should be connected very close to these  
pins.  
9
Vin  
I
I
-
Power  
Power  
Ground  
10  
11  
VCC/LDO  
PGND  
12  
13  
SW  
O
I
Power  
Power  
Switch node. This pin is connected to the output inductor.  
Input voltage for power stage. Bypass capacitors between  
PVin and PGND should be connected very close to these  
pins.  
PVin  
Supply voltage for the high side driver. Connect this pin to  
the SW pin through a bootstrap capacitor.  
14  
15  
BOOT  
En  
I
I
Analog  
Analog  
Enable pin to turn the IC on and off.  
Final Datasheet  
7 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Absolute maximum ratings  
5 Absolute maximum ratings  
Absolute maximum ratings  
Description  
Min  
Max  
Unit  
Conditions  
PVin, Vin, En to PGND  
-0.3  
25  
V
Note 1  
-0.3 V(dc),  
below -5 V for 5 ns  
PVin to SW  
25  
6
V
V
V
VCC/LDO to PGND  
BOOT to PGND  
-0.3  
Note 1  
Note 1  
-0.3 V(dc),  
below -0.3 V for 5 ns  
-0.3 (dc),  
29  
SW to PGND  
BOOT to SW  
ILIM, FB, PGood, TON/MODE and  
VSNS to AGND  
25  
6
V
V
V
Note 1  
below -5 V for 5 ns  
-0.3  
-0.3  
6
Note 1  
PGND to AGND  
-0.3  
-55  
-40  
0.3  
150  
150  
V
Storage Temperature Range  
Junction Temperature Range  
°C  
°C  
Note:  
1. PGND and AGND pins are connected together  
Attention:  
Stresses beyond these listed under ꢀAbsolute Maximum Ratingsꢁ may cause permanent  
damage to the device. These are stress ratings only and functional operation of the device at  
these or any other conditions beyond those indicated in the operational sections of the  
specifications are not implied.  
Final Datasheet  
8 of 38  
V 2.3  
2022-07-25  
 
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Thermal characteristics  
6
Thermal characteristics  
6.1  
Thermal Characteristics  
Description  
Symbol  
Values  
32 °C/W  
2 °C/W  
Test Conditions  
Junction to Ambient Thermal Resistance  
Junction to PCB Thermal Resistance  
θJA  
θJC-PCB  
Final Datasheet  
9 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Electrical specifications  
7
Electrical specifications  
7.1  
Recommended operating conditions  
Description  
Min  
Max  
17  
Unit  
V
Note  
Note 2, Note 3 & 6  
Note 4, Note 5  
Note 5  
PVin Voltage Range  
4.5  
0.6  
Typical Output Voltage Range  
Continuous Output Current Range  
Typical Switching Frequency  
Operating Junction Temperature  
6
V
9
A
600  
-40  
2000  
125  
kHz  
°C  
Note 6  
Note:  
2. A common practice is to have 20% margin on the maximum SW node voltage in the design. A 2resistor in series  
with the BOOT pin is recommended for PVin ꢀ ꢁꢂ.ꢃ V to ensure the maximum SW node spike voltage does not  
exceed 20 V. Alternatively, an RC snubber can be used at the SW node to reduce the SW node spike.  
3. For single-rail applications with PVin = Vin = 4.3 V-5.4 V, the internal LDO may enter dropout mode. OCP limits can  
be reduced due to the lower VCC voltage.  
4. The maximum output voltage is limited by the minimum off-time. Please refer to Section 12.13 for details. Also  
note that OCP limit may be degraded when off-time is close to the minimum off-time.  
5. Maximum output current capability can be reduced at elevated ambient temperatures. Lower VCC voltage can  
result in higher RDS (ON) and therefore require more thermal derating.  
6. The maximum LDO output current must be limited to 50 mA or less for operations requiring the full operating  
temperature range of -40 °C TJ 125 °C. Thermal derating may be needed for operation at elevated ambient  
temperatures to ensure the junction temperature remains within the recommended operating range.  
Final Datasheet  
10 of 38  
V 2.3  
2022-07-25  
 
 
 
 
 
 
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Electrical specifications  
7.2  
Electrical characteristics  
Note:  
Unless otherwise specified, the specifications apply over ꢄ.ꢅ V ꢆ Vin = PVin ꢆ ꢁ7 V, ꢇ °C < TJ < 125 °C.  
Typical values are specified at Ta = 25 °C.  
Parameter  
Symbol  
Conditions  
Min Typ Max Unit  
Power Stage  
Top Switch  
RDS (on)_Top  
RDS (on)_Bot  
VBOOT VSW = 5.0 V, Tj = 25 oC  
VCC = 5.0 V, Tj = 25 oC  
I(Boot) = 25 mA  
21  
mΩ  
9
Bottom Switch  
Bootstrap Forward Voltage  
370  
600  
300  
300  
mV  
En = 0 V  
SW float voltage  
Dead Band Time  
VSW  
Tdb  
mV  
En = high, No Switching  
SW node rising edge, Note 7  
SW node falling edge, Note 7  
10  
10  
ns  
ns  
Supply Current  
Vin Supply Current (standby)  
Vin Supply Current (static)  
Iin (Standby)  
Iin (Static)  
En = Low, No Switching  
En = 2 V, No Switching  
4
10  
4
µA  
2.3  
mA  
Soft Start  
Soft Start time  
1.4  
2
3
ms  
SS time  
VFB  
Feedback Voltage  
Feedback Voltage  
0.6  
V
0 °C < Tj < 85 °C, Note 8  
-40 °C < Tj < 125 °C, Note 8  
VFB = 0.6 V, Tj = 25 C  
-0.5  
-1  
+0.5  
1
Accuracy  
%
VFB Input Current  
-0.15  
0
+0.15  
A  
IVFB  
On-Time Timer Control  
Vin = 12 V, Vo = 1 V,  
TON/MODE = ꢁ kΩ, ꢂꢁ.ꢃ kΩ, Note 9  
Vin = 12 V, Vo = 1 V,  
TON/MODE = ꢂ.ꢃ kΩ, ꢂꢄ.ꢂ kΩ, Note 9  
Vin = 12 V, Vo =1 V,  
TON/MODE = ꢄ.ꢅꢆ kΩ, ꢂꢅ kΩ, Note 9  
Vin = 12 V, Vo = 1 V,  
TON/MODE = ꢇ.ꢅꢈ kΩ, ꢂꢉ.ꢄ kΩ, Note 9  
152  
114  
91.5  
77  
Vin = 12 V, Vo = 1 V,  
TON/MODE = ꢅ.ꢃꢇ kΩ, ꢂꢈ.ꢊ kΩ, Note 9  
Vin = 12 V, Vo = 1 V,  
TON/MODE = ꢃ.ꢊꢉ kΩ, ꢄꢂ.ꢃ kΩ, Note 9  
Vin = 12 V, Vo = 1 V,  
TON/MODE = ꢊ.ꢇꢄ kΩ, ꢄꢅ.ꢆ kΩ, Note 9  
On Time  
66.5  
58.5  
52  
ns  
Ton  
Vin = 12 V, Vo = 1 V,  
TON/MODE = ꢈ.ꢈꢊ kΩ, ꢄꢈ.ꢊ kΩ, Note 9  
47  
Vin = 12 V, Vo = 1 V,  
TON/MODE = Floating, Note 9  
114  
Minimum On-Time  
Minimum Off-Time  
Final Datasheet  
Vin = 12 V, Vo = 0 V  
Tj = 25 C, VFB = 0 V  
11 of 38  
23  
32  
ns  
ns  
Ton (Min)  
Toff (Min)  
270  
360  
V 2.3  
2022-07-25  
 
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Electrical specifications  
Parameter  
Symbol  
Conditions  
Min Typ Max Unit  
VCC LDO Output  
5.5 V Vin 17 V, when Icc = 50 mA,  
Cload = 2.2 µF  
Output Voltage  
VCC  
4.7  
5.0  
90  
5.3  
V
VCC Dropout  
VCC_drop Vin = 4.3 V, Icc = 50 mA, Cload = 2.2 µF  
Ishort 5.5 V Vin 17 V  
300  
mV  
mA  
Short Circuit Current  
Under Voltage Lockout  
VCC-Start Threshold  
VCC-Stop Threshold  
Enable-Start-Threshold  
Enable-Stop-Threshold  
Input Impedance  
Vcc_UVLO_Start VCC Rising Trip Level  
Vcc_UVLO_Stop VCC Falling Trip Level  
En_UVLO_Start ramping up  
En_UVLO_Stop ramping down  
REN  
3.8  
3.6  
4.0  
3.8  
4.2  
4.0  
V
1.14 1.2  
0.9  
1.36  
1.06  
V
1
500 1000 1500  
k  
Over Current Limit  
Tj = 25 °C, VCC = 5.0 V, ILIM = GND  
6.8  
10  
9.0  
10.5  
15  
Current Limit Threshold  
(Valley Current)  
Ioc  
A
Tj = 25 °C, VCC = 5.0 V, ILIM = Floating  
12.7  
Over Voltage Protection  
VSNS Rising  
115 121  
110 115  
5
125  
120  
OVP Trip Threshold  
OVP_Vth  
% Vref  
µs  
VSNS Falling, OVP hysteresis  
OVP Protection Delay  
Under Voltage Protection  
UVP Trip Threshold  
OVP_Tdly  
UVP_Vth  
UVP_Tdly  
VSNS Falling  
65  
70  
4
75 % Vref  
UVP Protection Delay  
Hiccup Blanking Time  
Power Good  
µs  
Tblk_Hiccup  
20  
ms  
Pgood Turn on Threshold  
Pgood Turn off Threshold  
Pgood Sink Current  
VPG (upper)  
VPG (lower)  
IPG  
VSNS Rising  
85  
80  
91  
84  
5
95 % Vref  
90 % Vref  
mA  
VSNS Falling  
PGood = 0.5 V, En = 2 V  
2.5  
Pgood Voltage Low  
VPG (low)  
Vin = VCC = 0 V, Rpull-up = 50 kΩ to 3.3 V  
VSNS Rising, see VPG (upper)  
VSNS < VPG (lower) or VSNS > VPG (upper)  
0.3  
2.5  
2
0.5  
V
Pgood Turn on Delay  
Pgood Comparator Delay  
VPG (on)_Dly  
VPG (comp)_Dly  
ms  
µs  
1
3.5  
1
Pgood Open Drain Leakage  
Current  
PGood = 3.3 V  
µA  
Thermal Shutdown  
Thermal Shutdown  
Hysteresis  
Note 7  
Note 7  
140  
20  
°C  
Note:  
7. Guaranteed by construction and not tested in production.  
8. Cold temperature performance is guaranteed via correlation using statistical quality control. Not tested in  
production.  
9. Ton is trimmed so that the target switching frequency is achieved at around 4 A load current.  
Final Datasheet  
12 of 38  
V 2.3  
2022-07-25  
 
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Typical efficiency and power loss curves  
8
Typical efficiency and power loss curves  
8.1  
PVin = Vin = ꢀꢁ V, Fsw = ꢃꢄꢄ kHz  
PVin = Vin = 12 V, VCC = Internal LDO, Io = 0 A - 9 A, Fsw = 600 kHz, Room Temperature, No Air Flow. Note that the  
efficiency and power loss curves include losses of the IR3899A, inductor losses, losses of the input and output  
capacitors, and PCB trace losses. The table below shows the inductors used for each of the output voltages in  
the efficiency measurement.  
Table 1  
Inductors for PVin = Vin = 12 V, Fs = 600 kHz  
Vout (V)  
Lout (nH)  
360 nH  
P/N  
DCR (m)  
0.76  
1.5  
Size (mm)  
1.0  
1.2  
1.8  
3.3  
5.0  
CMLE104T-R36MS  
CMLB104T-R47MS  
CMLE104T-R68MS  
CMLB104T-1R0MS  
CMLB104T-1R0MS  
11.15 x 10.0 x 3.8  
11.15 x 10.0 x 3.8  
11.15 x 10.0 x 3.8  
11.15 x 10.0 x 3.8  
11.15 x 10.0 x 3.8  
470 nH  
680 nH  
1.6  
1000 nH  
1000 nH  
3.3  
3.3  
PVin = Vin = 12 V, Fsw = 600 kHz - Internal LDO, Natural Convention, Ta = 25 °C  
1.0V - DEM  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
1.0V - FCCM  
1.2V - DEM  
1.2V - FCCM  
1.8V - DEM  
1.8V - FCCM  
3.3V - DEM  
3.3V - FCCM  
5.0V - DEM  
5.0V - FCCM  
0
1
2
3
4
5
5
6
7
8
9
Output current (A)  
PVin = Vin = 12 V, Fsw = 600 kHz - Internal LDO, Natural Convention, Ta = 25 °C  
1.0V - DEM  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
0.3  
0.1  
1.0V - FCCM  
1.2V - DEM  
1.2V - FCCM  
1.8V - DEM  
1.8V - FCCM  
3.3V - DEM  
3.3V - FCCM  
5.0V - DEM  
5.0V - FCCM  
0
1
2
3
4
5
6
7
8
9
Output current (A)  
Final Datasheet  
13 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Thermal de-rating cuves  
9
Thermal de-rating cuves  
Measurement is done on IR3899A Evaluation board at 200LFM. The PCB is a 4-layer board with 1.8 oz. copper for  
top and bottom layers and 2 oz. copper for the inner layers, FR4 material, size ꢄ.ꢄ” x ꢄ.ꢉ”.  
PVin = Vin = 12 V, Vout = 1.2 V, Fsw = 800 kHz  
10  
9
8
7
6
5
4
3
2
1
0
25  
25  
25  
30  
30  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
75  
75  
80  
80  
80  
85  
85  
85  
Tambinet (°C)  
PVin = Vin = 12 V, Vout = 3.3 V, Fsw = 800 kHz  
10  
9
8
7
6
5
4
3
2
1
0
35  
40  
45  
50  
55  
60  
65  
70  
Tambinet (°C)  
PVin = Vin = 12 V, Vout = 5.0 V, Fsw = 800 kHz  
10  
9
8
7
6
5
4
3
2
1
0
35  
40  
45  
50  
55  
60  
65  
70  
Tambinet (°C)  
Figure 4 Thermal derating curves, Pvin = 12 V, Vout = 1.2 V/3.3 V/5 V, fsw = 800 kHz, VCC = Internal LDO  
Final Datasheet  
14 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
RDS(ON) of MOSFET over temperature  
10  
RDSꢅONꢆ of MOSFET over temperature  
RDS(ON) of Control MOSFET  
35  
30  
25  
20  
15  
10  
5
Vcc = 5V  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature (°C)  
RDS(ON) of Synchronous MOSFET  
16  
14  
12  
10  
8
6
Vcc = 5V  
4
2
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature (°C)  
Figure 5 RDS(ON) of MOSFETs over Junction Temperature  
Final Datasheet  
15 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Typical operating characteristics (-ꢇꢄ C ≤ Tj ≤ +ꢀꢁꢂ Cꢆ  
11  
Typical operating characteristics ꢅ-ꢇꢄ °C ≤ Tj ≤ +ꢀꢁꢂ °Cꢆ  
Vin Standby Supply Current  
Vin Static Supply Current  
1.2  
1
4
3.5  
3
0.8  
0.6  
0.4  
0.2  
0
2.5  
2
1.5  
1
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
LDO Voltage at Vin = 5.5 V & 17 V, Icc = 50 mA  
LDO Voltage Drop at Vin = 4.3 V, Icc = 50 mA  
350  
5.1  
300  
250  
200  
150  
100  
50  
5.05  
5
4.95  
4.9  
Vin = 5.5 V  
Vin = 17 V  
4.85  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
Enable_Start and Stop Thresholds  
Vcc_UVLO Start and Stop Thresholds  
1.3  
1.25  
1.2  
4.2  
4.1  
4
1.15  
1.1  
3.9  
3.8  
3.7  
3.6  
1.05  
1
0.95  
0.9  
En_Start  
Vcc_UVLO_Start  
Vcc_UVLO_Stop  
En_Stop  
0.85  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
Final Datasheet  
16 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Typical operating characteristics (-ꢇꢄ C ≤ Tj ≤ +ꢀꢁꢂ Cꢆ  
VFB  
OVP Rise and Fall Thresholds  
603  
125  
120  
115  
110  
105  
602  
601  
600  
599  
598  
597  
OVP_Rise  
OVP_Fall  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
UVP_Threshold  
PGood Rise and Fall Thresholds  
74  
72  
70  
68  
66  
64  
62  
92  
90  
88  
86  
84  
82  
80  
78  
PGood_Rise  
PGood_Fall  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
OCP Limit (9 A) - 5 V Vcc  
OCP Limit (12.7 A) - 5 V Vcc  
12  
11  
10  
9
15  
14  
13  
12  
11  
10  
9
8
7
6
5
OCP (9 A) - Typ  
OCP (12.7 A) - Typ  
4
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
Figure 6 Typical operating characteristics  
Final Datasheet  
17 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Theory of operation  
12  
Theory of operation  
12.1  
Fast Constant On-Time Control  
The IR3899A features a proprietary Fast Constant On-Time (COT) Control, which can provide fast load transient  
response, good output regulation and minimize design effort. Fast COT control compares the output voltage, Vo,  
to a floor voltage combined with an internal ramp signal. When Vout drops below that signal, a PWM signal is  
initiated to turn on the high-side FET for a fixed on-time. The floor voltage is generated from an internally-  
compensated error amplifier, which compares Vout with a reference voltage. Compared to the traditional COT  
control, Fast COT control significantly improves Vout regulation.  
12.2  
Enable  
The EN pin controls the on/off state of the IR3899A. An internal Under Voltage Lock-Out (UVLO) circuit monitors  
the EN voltage. When the EN voltage is above an internal threshold, the internal LDO starts to ramp up. When the  
VCC/LDO voltage rises above the VCC_UVLO_Start threshold, the soft-start sequence starts. The EN pin can be  
configured in three ways, as shown in Figure 7. With configuration 2, the Enable signal is derived from the Pvin  
voltage by a resistor divider, REN1 and REN2. By selecting different divider ratios, users can program a UVLO  
threshold for the bus voltage. This is a very desirable feature because it prevents the IR3899A from operating until  
Pvin is higher than a desired voltage level. For some space-constrained designs, the EN pin can be directly  
connected to Pvin without using the external resistor divider, as shown in Configuration 3. The EN pin should not  
be left floating. A pull-down resistor in the range of tens of kilohms is recommended. Figure 8 illustrates the  
corresponding start-up sequences with three EN configurations.  
PVin  
PVin  
PVin  
Vin  
PVin  
PVin  
PVin  
Vin  
Vin  
REN1  
Vcc  
Vcc  
Vcc  
En  
IR3899A  
En  
En  
IR3899A  
IR3899A  
REN2  
ꢂꢃꢄ  
En = ꢁ  
× ꢇꢈꢉ  
ꢂꢃꢄ  
En = an external logic signal  
Configuration 1  
Pvin = Vin = En  
Configuration 3  
+ꢁ  
ꢂꢃꢅ  
Configuration 2  
Figure 7 Enable Configurations  
Final Datasheet  
18 of 38  
V 2.3  
2022-07-25  
 
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Theory of operation  
Pvin= Vin=12 V  
PVin=Vin=En=12V  
Pvin = Vin = 12V  
Vcc_ UVLO  
Vcc  
Vcc  
Vcc  
En Threshold  
0V  
Vcc_UVLO  
Vcc_ UVLO  
0V  
0V  
0V  
0V  
En = REN2/(REN1+REN2)*PVin  
Fb  
0V  
En>1.2V  
En Threshold  
0V  
Fb  
Fb  
0V  
Pgood Turn-on  
threshold  
2.5ms  
Pgood Turn-on  
threshold  
2.5ms  
Pgood Turn-on  
threshold  
2.5ms  
0V  
0V  
0V  
0V  
0V  
0V  
PGood  
PGood  
PGood  
Pgood stays at logic low  
Pgood stays at logic low  
Pgood stays at logic low  
ꢂꢃꢄ  
En = an external logic signal  
Configuration 1  
En = ꢁ  
× ꢇꢈꢉ  
ꢂꢃꢄ  
Pvin = Vin = En  
Configuration 3  
+ꢁ  
ꢂꢃꢅ  
Configuration 2  
Figure 8 Start-up sequence  
12.3  
FCCM and DEM Operation  
The IR3899A offers two operation modes: Forced Continuous Conduction Mode (FCCM) and Diode Emulation  
Mode (DEM). With FCCM, the IR3899A always operates as a synchronous buck converter with a pseudo-constant  
switching frequency leading to small output voltage ripple. In DEM, the synchronous FET is turned off when the  
inductor current is close to zero, reducing the switching frequency and improving efficiency at light load. At heavy  
load, both FCCM and DEM operate in the same way. The operating mode can be selected with the TON/MODE  
pin, as shown in Table 2. It should be noted that the selection of the operating mode cannot be changed on the  
fly. To load a new TON/MODE configuration, EN or VCC voltage must be cycled.  
12.4  
Pseudo-Constant Switching Frequency  
The IR3899A offers eight programmable switching frequencies, fsw, from 600 kHz to 2 MHz, by connecting an  
external resistor from the TON/MODE pin to ground. Based on the selected fsw, the IR3899A generates the  
corresponding on-time of the Control FET for a given PVin and Vo, as shown by the formula below.  
ꢍ  
ꢋꢉ  
=
×
ꢆꢌ  
ꢐꢑ  
ꢈꢉ  
Where fsw is the desired switching frequency. During operation, the IR3899A monitors PVin and Vo, and can  
automatically adjust the on-time to maintain the pre-selected fsw. As load current increases, the switching  
frequency can increase to compensate for power losses.  
Table 2 lists resistor values for the TON/MODE pin. In this table, E96 resistors with ±1% tolerance are used. To  
load a new TON/MODE configuration, En or VCC voltage must be cycled.  
Final Datasheet  
19 of 38  
V 2.3  
2022-07-25  
 
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Theory of operation  
Table 2 Configuration Resistors for TON/MODE Pin  
TON/MODE Resistor ꢅkΩꢆ  
Freq (kHz)  
Mode  
±1% Tolerance  
0
600  
800  
1.5  
2.49  
1000  
1200  
1400  
1600  
1800  
2000  
600  
3.48  
FCCM  
4.53  
5.76  
7.32  
8.87  
10.5  
12.1  
800  
14  
1000  
1200  
1400  
1600  
1800  
2000  
800  
16.2  
DEM  
18.7  
21.5  
24.9  
28.7  
TON/MODE = Floating  
FCCM  
12.5  
Soft-start  
The IR3899A has an internal digital soft-start to control the output voltage rise and to limit the current surge at  
start-up. To ensure a correct start-up, the soft-start sequence initiates when the En and VCC voltages rise above  
their respective thresholds. The internal soft-start signal linearly rises from 0 V to 0.6 V in a defined time duration.  
The soft-start time does not change with the output voltage. During soft-start, the IR3899A operates in DEM until  
1 ms after the output voltage ramps above the Pgood turn-on threshold. The IR3899A has a fixed soft-start time  
of 2 ms.  
12.6  
Pre-bias Start-up  
The IR3899A is able to start up into a pre-charged output without causing oscillations and disturbances of the  
output voltage. When the IR3899A starts up with a pre-biased output voltage, both control FET and Sync FET are  
kept off until the internal soft-start signal exceeds the FB voltage.  
12.7  
Internal Low – Dropout ꢅLDOꢆ Regulator  
The IR3899A has an integrated low-dropout LDO regulator providing the bias voltage for the internal circuitry. To  
minimize standby current, the internal LDO is disabled when the EN voltage is pulled low. The Vin pin is the input  
of the LDO. The IR3899A supports internal LDO with single rail operation, i.e., the Vin pin should always be  
connected to the Pvin pin. Figure 9 illustrates the configuration of VCC/LDO, and the Vin pin.  
Final Datasheet  
20 of 38  
V 2.3  
2022-07-25  
 
 
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Theory of operation  
PVin  
4.7 uF  
VIN  
PVin  
VCC/LDO  
IR3899A  
2.2 uF ~10 uF  
PGND  
Single rail operation with the internal LDO  
Figure 9 Configuration of using the internal LDO.  
Section 7.1 specified the recommended operating voltage range of Pvin. The following design guidelines are  
recommended when configuring the VCC/LDO.  
Place a bypass capacitor to minimize disturbances on the VCC pin. For single rail operation using the internal  
LDO, a 4.7 µF low ESR ceramic capacitor must be used between Vin pin and PGND and a low ESR ceramic  
capacitor with value between 2.2 µF and 10 µF is required to be placed close to the VCC/LDO with reference  
to PGND. 10 µF MLCC is recommended for the VCC bypass capacitor when VIN is below 5.5 V.  
For applications using the internal LDO with 4.3 V VIN ꢋ ꢃ.ꢅ V, the LDO can be in the dropout mode. It is  
important to ensure that the LDO voltage does not fall below the VCC UVLO threshold voltage. At Vin = 4.3 V,  
ICC must not exceed 50 mA under all operating conditions such as during a step-up load transient, in which the  
control loop may require the increase of fsw. OCP limits can also be reduced due to the lower VCC voltage.  
12.8  
Over Current Protection ꢅOCPꢆ  
The IR3899A offers cycle-by-cycle OCP response with two selectable current limits set by floating the ILIM pin or  
shorting it to GND. The selected OCP limit is loaded to the IC during power up and cannot be changed on the fly.  
To change the OCP limit, users must cycle the En signal or VCC voltage. Cycle-by-cycle OCP response allows the  
IR3899A to fulfill a brief high current demand, such as a high inrush current during start-up. Detailed operation is  
explained as follows:  
OCP is activated when En voltage is above its threshold. The OCP circuitry monitors the current of the  
Synchronous MOSFET through its RDS (on). When a new PWM pulse is requested by the control loop, if the current  
of the Synchronous MOSFET exceeds the OCP limit, the IR3899A skips the PWM pulse and extends the on-time of  
the Synchronous MOSFET until the current drops below the OCP limit. OCP operation is also illustrated in Figure  
10. During OCP events, the valley of the inductor current is regulated around the OCP limit. However, during the  
first switching cycle when the OCP is tripped, the valley of the inductor current can drop slightly below the OCP  
limit. It should be noted that OCP events do not pull the Pgood signal low unless the Vo drops below the Pgood  
turn-off threshold. If the OCP event persists, the output voltage can eventually drop below the Under Voltage  
Protection (UVP) threshold and trigger UVP. Then the IR3899A enters hiccup mode.  
The OCP limits are thermally compensated. The OCP limits specified in Section 7.2 refer to the valley of the  
inductor current when OCP is tripped. Therefore, the corresponding output DC current can be calculated as  
follows:  
∆ꢜꢘ  
ꢋꢓꢔ_ꢕꢖꢗ = ꢒꢘꢙꢚ  
Where: Iout_OCP = Output DC current when OCP is tripped. ILIM = OCP limit specified in the Section 7.2, which is the  
valley of inductor current. ΔiL = Peak-peak inductor ripple current.  
To avoid inductor saturation during OCP events, the following criterion is recommended for the inductor  
saturation current rating.  
ꢐꢞꢔ ꢟ ꢒꢘꢙꢚ_ꢠꢞꢡ ꢛ ∆ꢜꢘ  
Final Datasheet  
21 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Theory of operation  
Where: Isat is the inductor saturation current and ILIM_max is the maximum spec of the OCP limit.  
OCP  
Tripped  
Current  
Limit  
UVP Hiccup  
Blanking  
time  
Inductor  
Current  
Pulse  
skipped  
HDrv  
LDrv  
PGood  
UVP  
Threshold  
Vo  
PGood Turn-off  
Threshold  
Figure 10 Cycle-by-cycle OCP response  
12.9  
Under Voltage Protection ꢅUVPꢆ  
Under Voltage Protection (UVP) provides additional protection during OCP fault or other faults. UVP protection  
is enabled when the soft-start voltage rises above 100 mV. UVP circuitry monitors VSNS voltage. When VSNS is  
below the UVP threshold for 5 µs (typical), an under voltage trip signal asserts and both Control MOSFET and  
Synchronous MOSFET are turned off. The IR3899A enters hiccup mode with a blanking time of 20 ms, during  
which Control MOSFET and Synchronous MOSFET remain off. After the completion of blanking time, the IR3899A  
attempts to recover to the nominal output voltage with a soft-start, as shown in Figure 10. The IR3899A will  
repeat hiccup mode and attempt to recover until the UVP condition is removed.  
12.10  
Over Voltage Protection ꢅOVPꢆ  
Over Voltage Protection (OVP) is achieved by comparing the VSNS voltage to an OVP threshold voltage. When the  
VSNS voltage exceeds the OVP threshold, an over voltage trip signal asserts after 4 µs (typical) delay. The Control  
MOSFET is latched off immediately and Pgood flags low. The Synchronous MOSFET remains on to discharge the  
output capacitor. When VSNS voltage drops below around 115% of the reference voltage, Synchronous MOSFET  
turns off to prevent complete depletion of the output capacitors. Figure 11 illustrates the OVP operation. The  
OVP comparator becomes active when the En signal is above the start threshold.  
IR3899A has a Latched OVP response, i.e., when OVP is triggered, the Control FET remains latched off until either  
VCC voltage or En signal is cycled.  
Final Datasheet  
22 of 38  
V 2.3  
2022-07-25  
 
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Theory of operation  
HDrv  
LDrv  
120%Vref  
115%Vref  
Vref  
OVP  
91%Vref  
91%Vref  
84%Vref  
VSNS  
PGood  
Pgood turn-on  
delay =2.5 ms  
Pgood turn-on  
delay =2.5 ms  
OVP delay = 4 us  
Figure 11 Over voltage protection response and Pgood behavior.  
12.11  
Over Temperature Protection ꢅOTPꢆ  
Temperature of the controller is monitored internally. When the temperature exceeds the over temperature  
threshold, OTP circuitry turns off both Control and Synchronous MOSFETs and resets the internal soft start.  
Automatic restart is initiated when the sensed temperature drops back into the operating range. The thermal  
shutdown threshold has a hysteresis of 20 °C.  
12.12  
Power Good ꢅPgoodꢆ Output  
The Pgood pin is the open drain of an internal NFET, and must be externally pulled high through a pull-up resistor.  
The Pgood signal is high when three criteria are satisfied:  
1. En signal and VCC voltage are above their respective thresholds.  
2. No over voltage or over temperature faults occur.  
3. Vo is within regulation.  
In order to detect if VO is in regulation, the Pgood comparator continuously monitors VSNS voltage. When VSNS  
voltage ramps up above the upper threshold, the Pgood signal is pulled high after 2.5 ms. When VSNS voltage  
drops below the lower threshold, the Pgood signal is pulled low immediately. Figure 11 illustrates the Pgood  
response.  
During start-up with a pre-biased output voltage, the Pgood signal is held low before the first PWM is generated  
and is then pulled high with 2.5 ms delay after VSNS voltage rises above the Pgood threshold. IR3899A also  
integrates an additional PFET in parallel to the Pgood NFET, as shown in Figure 2. This PFET allows the Pgood  
signal to stay at logic low when the VCC voltage is not present and the Pgood pin is pulled up by an external bias  
voltage. Please refer to Figure 8. Since the Pgood PFET has relatively higher on resistance, a ꢃꢁ kΩ pull-up resistor  
is needed for a Pgood bias voltage of 3.3V to maintain the Pgood signal at logic low when Pgood PFET is on.  
Final Datasheet  
23 of 38  
V 2.3  
2022-07-25  
 
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Theory of operation  
12.13  
Minimum ON – Time and Minimum OFF – Time  
The minimum on-time refers to the shortest time for the Control MOSFET to be reliably turned on. The minimum  
off-time refers to the minimum time duration in which the Synchronous FET stays on before a new PWM pulse is  
generated. The minimum off-time is needed for IR3899A to charge the bootstrap capacitor, and to sense the  
current of the Synchronous MOSFET for OCP.  
For applications requiring a small duty cycle, it is important that the selected switching frequency results in an  
on-time larger than the maximum spec of the minimum on-time in Section 7.2. Otherwise, the resulting switching  
frequency may be lower than the desired target. The following formula should be used to check for the minimum  
on-time requirement.  
ꢍ  
> max ꢣꢤꢥꢦ ꢧꢏ ꢋꢉ ꢩiꢪ  
ꢢꢏ × ꢌ  
ꢐꢑ  
ꢈꢉ  
Where fsw is the desired switching frequency. K is the variation of the switching frequency. As a rule of thumb,  
select k = 1.25 to ensure design margin.  
For applications requiring a high duty cycle, it is important to make sure a proper switching frequency is selected  
so that the resulting off-time is longer than the maximum spec of the minimum off-time in Section 7.2, which can  
be calculated as shown below.  
ꢌ − ꢍ  
ꢈꢉ  
> max ꢣꢤꢥꢦ ꢧꢏ ꢋꢬꢬ ꢩiꢪ  
ꢢꢏ × ꢌ  
ꢐꢑ  
ꢈꢉ  
Where fsw is the desired switching frequency. K is the variation of the switching frequency. As a rule of thumb,  
select k = 1.25 to ensure design margin.  
The resulting maximum duty cycle is therefore determined by the selected on-time and minimum off-time.  
ꢋꢉ  
ꢠꢞꢡ  
=
ꢋꢉ  
ꢋꢬꢬꢨꢩiꢪꢫ  
12.14  
Selection of Feedforward Capacitor and Feedback Resistors  
Output voltage can be programmed with an external voltage divider. The FB voltage is compared to an internal  
reference voltage of 0.6 V. The divider ratio is set to provide 0.6 V at the FB pin when the output is at its desired  
value. The calculation of the feedback resistor divider is shown below.  
ꢱꢲꢳ  
= ꢌ × (ꢎ ꢛ  
)
ꢮꢯꢬ  
ꢱꢲꢴ  
Where RFB1 and RFB2 are the top and bottom feedback resistors.  
A small MLCC capacitor, Cff, is preferred in parallel with the top feedback resistor, RFB1, to provide extra phase  
boost and improve the transient load response, as shown in Figure 12. The following formula can be used to  
help select Cff and RFB1. The value of Cff is recommended to be 100 pF or higher to minimize the impact of circuit  
parasitic capacitance, where LO and CO are the output LC filter of the buck regulator. Table 3 lists the suggested  
mfor some common outputs. Cff and RFB1 may be further optimized based on the transient load tests.  
ꢶ ꢵ  
ꢱꢲꢳꢬꢬ  
=
ꢷ × 4.ꢸ  
Final Datasheet  
24 of 38  
V 2.3  
2022-07-25  
 
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Theory of operation  
Vo  
RFB1  
RFB2  
Cff  
FB  
Figure 12 Configuration of feedforward capacitor, Cff.  
Table 3 Selection of m  
Vo  
m
0.3  
0.5  
0.7  
ꢇ.ꢁ V ꢋ Vo ꢋ ꢃ.ꢁ V  
1.2 V < Vo < 3.0 V  
Vo ꢋ ꢂ.ꢄ V  
12.15  
Resistors for Configuration Pins  
To properly configure the TON/ MODE pin, E96 resistors with ±1% tolerance must be used per Table 2 and Section  
7.2. If E12 resistor values are preferred, the E96 resistors can be replaced with two or three E12 resistors in series,  
as shown in Table 4. Note that the tolerance of E12 resistors must be ±0.1%.  
Table 4 Replacement of E96 configuration resistors with E12 resistors in series  
E96 ±1%  
R ꢍkΩꢎ  
4.53  
1.50  
5.76  
2.49  
7.32  
3.45  
8.87  
10.5  
12.1  
21.5  
14  
E12 ±0.1% (R = RS1 + RS2 or RS1 + RS2 + RS3)  
RS1 ꢍkΩꢎ  
RS2 ꢍkΩꢎ  
1.8  
RS3 ꢍkΩꢎ  
2.7  
1.5  
5.6  
1.8  
6.8  
3.3  
8.2  
10  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0.18  
0.18  
0
0.15  
0.68  
0.56  
0.15  
0.68  
0.47  
0.1  
12  
18  
3.3  
10  
3.9  
24.9  
16.2  
28.7  
21.5  
24.9  
22  
2.7  
15  
1.2  
27  
1.8  
18  
3.3  
22  
2.7  
Final Datasheet  
25 of 38  
V 2.3  
2022-07-25  
 
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Design example  
13 Design example  
In this section, an example is used to demonstrate how to design a buck regulator with the IR3899A. The  
application circuit is shown in Figure 13. The design specifications are given below:  
PVin = 12 V (±10%)  
VO = 1.2 V  
IO = 9 A  
VO ripple voltage = ± 1% of VO  
Load transient response = ± 3% of VO with a step load current = 4.5 A and slew rate = 5 A/µs  
13.1  
Enabling the IRꢈꢉꢊꢊA  
The IR3899A has a precise Enable threshold voltage, which can be used to implement a UVLO of the input bus  
voltage by connecting the En pin to Pvin with a resistor divider, as shown in Configuration 2 of Figure 7. The  
Enable feedback resistor, REN1 and REN2, can be calculated as follows.  
ꢹꢺꢴ  
ꢆꢌ  
×
ꢹꢺꢨꢩꢻꢼꢫ  
ꢈꢉꢨꢩiꢪꢫ  
ꢹꢺꢳ ꢛ ꢰꢹꢺꢴ  
ꢹꢺꢨꢩꢻꢼꢫ  
ꢈꢉꢨꢩiꢪꢫ ꢹꢺꢨꢩꢻꢼꢫ  
ꢹꢺꢴ ꢟ ꢰꢹꢺꢳ  
×
Where VEN (max) is the maximum spec of the Enable-start-threshold as defined in Section 7.2. For Pvin (min) =10.8 V,  
select REN1 = 49.9 kand REN2 = 7.5 k.  
13.2  
Programming the Switching Frequency and Operation Mode  
The IR3899A has very good efficiency performance and is suitable for high switching frequency operation. In this  
case, 600 kHz is selected to achieve a good compromise between efficiency, passive component size and  
dynamic response. In addition, FCCM operation is selected to ensure a small output ripple voltage over the entire  
load range. To select 600 kHz and FCCM operation, the TON/MODE pin is connected to a 0 kΩ resistor to GND per  
Table 2.  
13.3  
Selecting Input Capacitors  
Without input capacitors, the pulse current of the Control MOSFET is provided directly from the input supply.  
Due to the impedance of the cable, the pulse current can cause disturbance on the input voltage and potential  
EMI issues. The input capacitors filter the pulse current, resulting in almost constant current from the input  
supply. The input capacitors should be selected to tolerate the input pulse current, and to reduce the input  
voltage ripple. The RMS value of the input ripple current can be expressed by:  
ꢁꢚꢽ = ꢒ × ꢭ × ꢨꢎ − ꢭꢫ  
ꢭ =  
ꢆꢌ  
ꢈꢉ  
Where IRMS is the RMS value of the input capacitor current. Io is the output current and D is the Duty Cycle. For Io =  
9 A and D(max) = 0.1, the resulting RMS current flowing into the input capacitor is Irms = 2.7 A.  
Final Datasheet  
26 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Design example  
To meet the requirement of the input ripple voltage, the minimum input capacitance can be calculated as  
follows.  
× ꢨꢎ − ꢭꢫ × ꢭ  
ꢈꢉꢨꢩiꢪꢫ  
>
ꢏ × ꢨ∆ꢆꢌ − ꢾꢿꢰ × ꢒ× ꢎ − ꢭ ꢫ  
ꢐꢑ  
ꢈꢉ  
Where ∆Pvin is the maximum allowable peak-to-peak input ripple voltage, and ESR is the equivalent series  
resistance of the input capacitors. Ceramic capacitors are recommended due to low ESR, ESL and high RMS  
current capability. For Io = 9 A, fsw = 6ꢁꢁ kHz, ESR = ꢇ mΩ, and ∆Pvin = 240 mV, Cin(min) > 11.0 µF. To account for the  
derating of ceramic capacitors under a bias voltage, four 22 µF/0805/25V MLCC are used for the input capacitor.  
In addition, a bulk capacitor is recommended if the input supply is not located close to the voltage regulator.  
13.4  
Inductor Selection  
The inductor is selected based on output power, operating frequency and efficiency requirements. A low inductor  
value results in a large ripple current, lower efficiency and high output noise, but helps with size reduction and  
transient load response. Generally, the desired peak-to-peak ripple current in the inductor ꢍ∆iꢎ is found between  
20% and 50% of the output current.  
The inductor saturation current must be higher than the maximum spec of the OCP limit plus the peak-to-peak  
inductor ripple current. For some core material, inductor saturation current may decrease with increasing  
temperature. It is important to check the inductor saturation current at the maximum operating temperature.  
The inductor value for the desired operating ripple current can be determined using the following relations:  
ꢠꢈꢉ  
ꢶ = ꢨꢆꢈꢉꢨꢩꢻꢼꢫ − ꢌ ꢫ ×  
∆ꢜꢘꢨꢩꢻꢼꢫ × ꣀ  
ꢐꢑ  
ꢠꢈꢉ  
=
ꢆꢌ  
ꢈꢉꢨꢩꢻꢼꢫ  
ꢐꢞꢔ ꢟ ꣁꢵꢠꢞꢡ ꢛ ∆ꢜꢘꢨꢩꢻꢼꢫ  
Where: PVin (max) = Maximum input voltage; ∆iLmax = Maximum peak-to-peak inductor ripple current; OCPmax  
=
maximum spec of the OCP limit as defined in Section 7.2; and Isat = inductor saturation current. In this case, select  
inductor L = 470 nH to achieve ∆iLmax = 43% of Iomax. The Isat should be no less than 19.0 A.  
13.5  
Output Capacitor Selection  
The output capacitor selection is mainly determined by the output voltage ripple and transient requirements.  
To satisfy the Vo ripple requirement, Co should satisfy the following criterion:  
∆ꢜꢘꢠꢞꢡ  
>  
ꣂ × ∆ꢌ × ꢏ  
ꢋꢮ  
ꢐꢑ  
Where ∆Vor is the desired peak-to-peak output ripple voltage. For ∆iLmax = 3.8 A, ∆Vor = 24 mV, fsw = 600 kHz, Co must  
be larger than 33 µF. The ESR and ESL of the output capacitors, as well as the parasitic resistance or inductance  
due to PCB layout, can also contribute to the output voltage ripple. It is suggested to use Multi-Layer Ceramic  
Capacitor (MLCC) for their low ESR, ESL and small size.  
To meet the transient response requirements, the output capacitors should also meet the following criterion:  
ꢶ × ∆ꢒꢨꢩꢻꢼꢫ  
>  
ꢝ × ∆ꢌ × ꢌ  
ꢋꢘ  
Where ∆VOL is the allowable Vo deviation during the load transient. ∆Io(max) is the maximum step load current.  
Please note that the impact of ESL, ESR, control loop response, transient load slew rate, and PWM latency is not  
Final Datasheet  
27 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Design example  
considered in the calculation shown above. Extra capacitance is usually needed to meet the transient  
requirements. As a rule of thumb, we can triple the Co that is calculated above as a starting point, and then  
optimize the design based on bench measurement. In this case, to meet the transient load requirement ꢍi.e. ∆VOL=  
54 mV, ∆Io(max) = 4.5 A), select Co = ~110 µF. For more accurate estimation of Co, simulation tools should be used to  
aid the design.  
13.6  
Output Voltage Programming  
Output voltage can be programmed with an external voltage divider. The FB voltage is compared to an internal  
reference voltage of 0.6 V. The divider ratio is set to provide 0.6 V at the FB pin when the output is at its desired  
value. The calculation of the feedback resistor divider is shown below.  
ꢱꢲꢳ  
ꢌ = ꢌ × ꢨꢎ ꢛ  
ꢮꢯꢬ  
ꢱꢲꢴ  
Where RFB1 and RFB2 are the top and bottom feedback resistors. Select RFB1 = ꢂꢁ kΩ and RFB2 = ꢂꢁ kΩ, to achieve Vo  
= 1.2 V. The same resistor divider can be used at the VSNS pin to achieve the same voltage scaling factor.  
13.7  
Feedforward Capacitor  
A small MLCC capacitor, Cff, can be placed in parallel with the top feedback resistor, RFB1, to improve the transient  
response. Based on Section 12.14, Cff can be selected using the following formula.  
ꢶ ꢵ  
ꢱꢲꢳꢬꢬ  
=
ꣃ.꣄ × 4.ꢸ  
With Lo = 470 nH, Co = 114 µF and RFB1 = ꢂꢁ kΩ, Cff = ~220 pF. Cff can be further optimized based on bench testing  
of transient load response.  
13.8  
Bootstrap Capacitor  
For most applications, a 0.1 µF ceramic capacitor is recommended for bootstrap capacitor placed between SW  
and BOOT. For applications requiring Pvin equal to or above ꢂꢅ V, a small resistor between ꢂ Ω and ꢄ Ω can be  
used in series with the BOOT pin to ensure the maximum SW node spike voltage does not exceed 20 V.  
13.9  
Vin and VCC/LDO bypass Capacitor  
Please see the recommendation in Section 12.7. A 10 µF MLCC is selected for the VCC/LDO bypass capacitor and  
a 4.7 µF MLCC is selected for the Vin bypass capacitor.  
Final Datasheet  
28 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Application information  
14 Application information  
14.1  
Application Diagram  
Cin2  
4 x 22 uF  
Cin1  
4.7 uF  
CinHF  
0.1 uF  
Vin = 12 V ±10%  
+
Optional  
REN1  
REN2  
49.9 k ꢀ  
7.5 k ꢀ  
Cvin  
4.7 uF  
RBoot  
0  ꢀ  
PVin  
Vin  
En  
BOOT  
SW  
VCC/LDO  
CBoot  
0.1 uF  
Vo = 1.2 V  
RPG  
Cvcc  
10 uF  
49.9 k ꢀ  
L
PGood  
470 nH  
CoHF  
0.1uF  
Co  
3 x 47 uF  
PGood  
ILIM  
IR3899A  
RFB1  
10 k ꢀ  
Cff  
220 pF  
Float  
VSNS  
FB  
(OCP = 12.7 A)  
TON/MODE  
RTon  
0  ꢀ  
RFB2  
10 k ꢀ  
NC  
PGND  
AGND  
Figure 13 Application diagram of IR3899A. Pvin = 12 V, Vo = 1.2 V, Io = 9 A, fsw = 600 kHz.  
14.2  
Typical Operating Waveforms  
PVin = Vin = 12.0 V, Vo = 1.2 V, Io = 0 9 A, fsw = 600 kHz, Room Temperature, no airflow  
Figure 14  
Start up at 9 A Load, (Ch1: Pgood, Ch2: Vout, Ch3: Pvin, Ch4: Enable)  
Final Datasheet  
29 of 38  
V 2.3  
2022-07-25  
 
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Application information  
Figure 15  
Pre-bias Start up at 0 A Load, (Ch1: Pgood, Ch2: Vout, Ch3: Pvin, Ch4: Enable)  
Figure 16  
Vout ripple at 9 A Load, fsw = 600 kHz, (Ch2: Vo)  
Figure 17  
SW node, 9 A load, fsw = 600 kHz, (Ch4: SW)  
Final Datasheet  
30 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Application information  
Figure 18  
Short circuit and UVP (Hiccup), (Ch1: Pgood, Ch2: Vo)  
Load step up: 4.5 A to 9 A  
Load step down: 9 A to 4.5 A  
Figure 19 Transient response at 4.5 A step load current: Io= 4.5 A 9 A, (Ch2: Vo, Ch4: Io), pk-pk: 50.2 mV,  
fsw = 600 kHz  
Final Datasheet  
31 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Layout Recommendations  
15 Layout Recommendations  
PCB layout is very important when designing high frequency switching converters. Layout will affect noise pickup  
and can cause a good design to perform with less than expected results. The following design guidelines are  
recommended to achieve the best performance.  
Bypass capacitors, including input/output capacitors, Vin and VCC bypass capacitors, should be placed as  
close to the corresponding pins as possible.  
Place bypass capacitors from IR3899A power input (Drain of Control MOSFET) to PGND (Source of Synchronous  
MOSFET) to reduce noise and ringing in the system. The output capacitors should be terminated to a ground  
plane that is away from the input PGND to mitigate switching spikes on the Vout. The Vin and VCC bypass  
capacitors should be terminated to PGND.  
Place a boot strap capacitor as close as possible to IR3899A BOOT and SW pins to minimize loop inductance.  
SW node copper should only be routed on the top layer to minimize the impact of switching noise.  
Connect the AGND pin to the PGND pad through a single point connection. On the IR3899A demo board, AGND  
pin is connected to the exposed AGND pad (Pin 4) and then connected to the internal PGND layer through  
thermal via holes.  
Via holes can be placed on Pvin and PGND pads to aid thermal dissipation.  
Wide copper polygons are desired for Pvin and PGND connections in favor of power loss reduction and thermal  
dissipation. Sufficient via holes should be used to connect power traces between different layers.  
To implement the Vo sensing, the following design guidelines should be followed, as illustrated in Figure 13.  
o
The output voltage can be sensed from a high-frequency bypass capacitor of 0.1 µF or higher, through  
a 15 mil PCB trace.  
o
o
Keep the Vout sense line away from any noise sources and shield the sense line with ground planes.  
The sense trace is connected to a feedback resistor divider with the lower resistor terminated at the  
AGND pin.  
The EN pin and configuration pins including TON/MODE and ILIM should be terminated to a quiet ground. On the  
IR3899A standard demo board, they are terminated to the PGND copper plane away from the power current flow.  
Alternatively, they can be terminated to a dedicated AGND PCB trace.  
15.1  
Solder mask  
Evaluation has shown that the best overall performance is achieved using the substrate/PCB layout as shown in  
the following figures. PQFN devices should be placed to an accuracy of 0.050 mm on both X and Y axes. Self-  
centering behavior is highly dependent on solders and processes, and experiments should be run to confirm the  
limits of self-centering on specific processes.  
Infineon recommends that larger Power or Land Area pads are Solder Mask Defined (SMD). This allows the  
underlying copper traces to be as large as possible, which helps in terms of current carrying capability and device  
cooling capability. When using SMD pads, the underlying copper traces should be at least 0.05 mm larger (on  
each edge) than the openings in the solder mask. This allows for layers to be misaligned by up to 0.1 mm on both  
axes. Ensure that the solder resist between the smaller signal lead areas is at least 0.15 mm wide due to the high  
x/y aspect ratio of the solder mask strip.  
Final Datasheet  
32 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Layout Recommendations  
PCB PAD  
1.45  
1.77  
0.87  
1.86  
1.57  
0.15  
2.00  
2.10  
0.25  
2.10  
0.15  
0.35  
0.75  
1.925  
1.925  
0.75  
0.25  
2.35  
0.42  
0.50  
SOLDER MASK DESIGN  
0.35  
1.86  
1.57  
0.31  
0.53  
0.35  
0.52  
0.20  
0.55  
0.15  
2.00  
2.00  
0.15  
0.20  
0.30  
0.35  
1.35  
0.35  
1.67  
0.77  
1.925  
1.925  
0.80  
2.25  
0.80  
0.42  
0.50  
0.30  
Figure 20  
PCB Metal and Solder mask (all dimensions in mm)  
15.2  
Stencil design  
Stencils for PQFN packages can be used with thicknesses of 0.100-0.250 mm (0.004-ꢁ.ꢁꢂꢁ”ꢎ. Stencils thinner than  
0.100 mm are unsuitable because they deposit insufficient solder paste to make good solder joints with the  
ground pad; high reductions sometimes create similar problems. Stencils in the range of 0.125 mm-0.200 mm  
(0.005-ꢁ.ꢁꢁꢈ”ꢎ, with suitable reductions, give the best results. A recommended stencil design is shown below.  
This design is for a stencil thickness of ꢁ.ꢂꢄꢊ mm ꢍꢁ.ꢁꢁꢃ”ꢎ. The reduction should be adjusted for stencils of other  
thicknesses.  
Final Datasheet  
33 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Layout Recommendations  
SOLDER PASTE STENCIL  
1.58  
0.21  
0.91  
0.27  
0.27  
0.66  
0.57  
0.50  
0.41  
0.55  
0.41  
0.55  
0.73  
0.27  
0.27  
0.34  
1.92  
0.55  
0.72  
0.33  
0.50  
0.73  
1.03  
0.92  
0.50  
0.69  
0.60  
0.92  
0.90  
0.10  
0.70  
0.55  
0.22  
0.60  
0.36  
0.72  
0.15  
0.46  
0.80  
0.72  
0.60  
0.36  
0.50  
0.36  
0.22  
1.06  
Figure 21  
Stencil pad size and spacing (all dimensions in mm)  
Final Datasheet  
34 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Package  
16  
Package  
This section includes mechanical and packaging information for the IR3899A.  
16.1  
Marking Information  
PRODUCT MARKING  
ASSEMBLY SITE CODE  
DATE CODE (YWW)  
LOT CODE  
PIN 1 MARKER  
Figure 22  
Package Marking  
16.2  
Dimensions  
SIDE VIEW (Back)  
D
Dimension Table  
Millimeter  
B
A
A3  
MINIMUM NOMINAL MAXIMUM  
A
A1  
A3  
b1  
b2  
D
0.80  
0.90  
0.02  
1.00  
0.00  
---  
0.05  
---  
0.20 Ref  
0.20  
0.15  
0.25  
0.25  
0.35  
0.30  
4.00 BSC  
5.00 BSC  
0.50 BSC  
0.55 BSC  
0.659 BSC  
2.188  
E
e1  
e2  
e3  
D1  
E1  
D2  
E2  
L
24  
2.038  
1.05  
2.288  
1.30  
1
1.20  
A1  
0.05 C  
2x  
1.467  
2.05  
0.30  
1.617  
1.717  
2.30  
0.50  
2.20  
SIDE VIEW (Left)  
SIDE VIEW (Right)  
TOP VIEW  
0.40  
(Bottom View Flip Line)  
N
24  
0.10 C  
SEATING  
PLANE  
4
Nx  
0.08 C  
Final Datasheet  
35 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Package  
D1  
b1  
e1  
13x  
10x  
7
2.500  
1
1
7
2.100  
1.747  
1.747  
1.547  
24  
8
24  
8
1.147  
0.647  
0.020  
0.547  
0.000  
0.230  
0.230  
0.530  
0.530  
0.930  
0.930  
1.480  
1.480  
2.030  
2.180  
2.500  
2.030  
2.180  
14  
18  
14  
18  
15  
17  
15  
17  
b2  
e3  
11x  
2x  
D2  
BOTTOM VIEW  
Figure 23  
Package Dimensions (all dimensions in mm)  
Final Datasheet  
36 of 38  
V 2.3  
2022-07-25  
IR3899A IPOL  
9 A single-voltage synchronous Buck regulator  
Environmental qualifications  
17  
Environmental qualifications  
Qualification Level  
Industrial  
Moisture Sensitivity  
PQFN Package  
JEDEC Level 2 @ 260 °C  
Human Body Model  
Charged Device Model  
ANSI/ESDA/JEDEC JS-001, Level 1C (1000 V to < 2000 V)  
ANSI/ESDA/JEDEC JS-002, Level Cꢇ ꢍꢏ 1000 V)  
Yes  
ESD  
RoHS Compliant  
Final Datasheet  
37 of 38  
V 2.3  
2022-07-25  
IR3899AꢀIPOL  
IR3899A  
RevisionꢀHistory  
IR3899A  
Revision:ꢀ2022-07-28,ꢀRev.ꢀ2.3  
Previous Revision  
Revision Date  
Subjects (major changes since last revision)  
2.0  
2.1  
Release of final version  
2021-01-15  
2021-05-05  
(1) Max. Vout updated to 6V in recommended operating conditions; (2) Update to Note  
2, 4 and added Note 5.  
2.2  
2.3  
(1) Updated Ordering Information; (2) Fixed typo in 12.9 - UVP enabled after soft start  
reaches 100mV.  
2021-08-03  
2022-07-28  
Updated Orderable Part Number.  
Trademarks  
Allꢀreferencedꢀproductꢀorꢀserviceꢀnamesꢀandꢀtrademarksꢀareꢀtheꢀpropertyꢀofꢀtheirꢀrespectiveꢀowners.  
WeꢀListenꢀtoꢀYourꢀComments  
Anyꢀinformationꢀwithinꢀthisꢀdocumentꢀthatꢀyouꢀfeelꢀisꢀwrong,ꢀunclearꢀorꢀmissingꢀatꢀall?ꢀYourꢀfeedbackꢀwillꢀhelpꢀusꢀtoꢀcontinuously  
improveꢀtheꢀqualityꢀofꢀthisꢀdocument.ꢀPleaseꢀsendꢀyourꢀproposalꢀ(includingꢀaꢀreferenceꢀtoꢀthisꢀdocument)ꢀto:  
erratum@infineon.com  
Publishedꢀby  
InfineonꢀTechnologiesꢀAG  
81726ꢀMünchen,ꢀGermany  
©ꢀ2022ꢀInfineonꢀTechnologiesꢀAG  
AllꢀRightsꢀReserved.  
LegalꢀDisclaimer  
Theꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀshallꢀinꢀnoꢀeventꢀbeꢀregardedꢀasꢀaꢀguaranteeꢀofꢀconditionsꢀorꢀcharacteristicsꢀ  
(“Beschaffenheitsgarantie”)ꢀ.  
Withꢀrespectꢀtoꢀanyꢀexamples,ꢀhintsꢀorꢀanyꢀtypicalꢀvaluesꢀstatedꢀhereinꢀand/orꢀanyꢀinformationꢀregardingꢀtheꢀapplicationꢀofꢀthe  
product,ꢀInfineonꢀTechnologiesꢀherebyꢀdisclaimsꢀanyꢀandꢀallꢀwarrantiesꢀandꢀliabilitiesꢀofꢀanyꢀkind,ꢀincludingꢀwithoutꢀlimitation  
warrantiesꢀofꢀnon-infringementꢀofꢀintellectualꢀpropertyꢀrightsꢀofꢀanyꢀthirdꢀparty.  
Inꢀaddition,ꢀanyꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀisꢀsubjectꢀtoꢀcustomer’sꢀcomplianceꢀwithꢀitsꢀobligationsꢀstatedꢀinꢀthis  
documentꢀandꢀanyꢀapplicableꢀlegalꢀrequirements,ꢀnormsꢀandꢀstandardsꢀconcerningꢀcustomer’sꢀproductsꢀandꢀanyꢀuseꢀofꢀthe  
productꢀofꢀInfineonꢀTechnologiesꢀinꢀcustomer’sꢀapplications.  
Theꢀdataꢀcontainedꢀinꢀthisꢀdocumentꢀisꢀexclusivelyꢀintendedꢀforꢀtechnicallyꢀtrainedꢀstaff.ꢀItꢀisꢀtheꢀresponsibilityꢀofꢀcustomer’s  
technicalꢀdepartmentsꢀtoꢀevaluateꢀtheꢀsuitabilityꢀofꢀtheꢀproductꢀforꢀtheꢀintendedꢀapplicationꢀandꢀtheꢀcompletenessꢀofꢀtheꢀproduct  
informationꢀgivenꢀinꢀthisꢀdocumentꢀwithꢀrespectꢀtoꢀsuchꢀapplication.  
Information  
Forꢀfurtherꢀinformationꢀonꢀtechnology,ꢀdeliveryꢀtermsꢀandꢀconditionsꢀandꢀpricesꢀpleaseꢀcontactꢀyourꢀnearestꢀInfineon  
TechnologiesꢀOfficeꢀ(www.infineon.com).  
Warnings  
Dueꢀtoꢀtechnicalꢀrequirements,ꢀcomponentsꢀmayꢀcontainꢀdangerousꢀsubstances.ꢀForꢀinformationꢀonꢀtheꢀtypesꢀinꢀquestion,  
pleaseꢀcontactꢀtheꢀnearestꢀInfineonꢀTechnologiesꢀOffice.  
TheꢀInfineonꢀTechnologiesꢀcomponentꢀdescribedꢀinꢀthisꢀDataꢀSheetꢀmayꢀbeꢀusedꢀinꢀlife-supportꢀdevicesꢀorꢀsystemsꢀand/or  
automotive,ꢀaviationꢀandꢀaerospaceꢀapplicationsꢀorꢀsystemsꢀonlyꢀwithꢀtheꢀexpressꢀwrittenꢀapprovalꢀofꢀInfineonꢀTechnologies,ꢀifꢀa  
failureꢀofꢀsuchꢀcomponentsꢀcanꢀreasonablyꢀbeꢀexpectedꢀtoꢀcauseꢀtheꢀfailureꢀofꢀthatꢀlife-support,ꢀautomotive,ꢀaviationꢀand  
aerospaceꢀdeviceꢀorꢀsystemꢀorꢀtoꢀaffectꢀtheꢀsafetyꢀorꢀeffectivenessꢀofꢀthatꢀdeviceꢀorꢀsystem.ꢀLifeꢀsupportꢀdevicesꢀorꢀsystemsꢀare  
intendedꢀtoꢀbeꢀimplantedꢀinꢀtheꢀhumanꢀbodyꢀorꢀtoꢀsupportꢀand/orꢀmaintainꢀandꢀsustainꢀand/orꢀprotectꢀhumanꢀlife.ꢀIfꢀtheyꢀfail,ꢀitꢀis  
reasonableꢀtoꢀassumeꢀthatꢀtheꢀhealthꢀofꢀtheꢀuserꢀorꢀotherꢀpersonsꢀmayꢀbeꢀendangered.  
38  
Rev.ꢀ2.3,ꢀꢀ2022-07-28  

相关型号:

IR3899M

Single‐Input Voltage, Synchronous Buck Regulator
INFINEON

IR3899MPBF

USER GUIDE FOR IR3899 EVALUATION BOARD
INFINEON

IR3899MTR1PBF

9A Highly Integrated SupIRBuck Single.Input Voltage
INFINEON

IR3899MTRPBF

9A Highly Integrated SupIRBuck Single.Input Voltage
INFINEON

IR3899M_15

Single‐Input Voltage, Synchronous Buck Regulator
INFINEON

IR3899_13

9A Highly Integrated SupIRBuck Single.Input Voltage
INFINEON

IR38ESR12M

Silicon Controlled Rectifier, 1200V V(DRM), 1200V V(RRM), 1 Element
VISHAY

IR38ESR14M

Silicon Controlled Rectifier, 1400V V(DRM), 1400V V(RRM), 1 Element
VISHAY

IR38ESR16M

Silicon Controlled Rectifier, 1600V V(DRM), 1600V V(RRM), 1 Element
VISHAY

IR38ESR18M

Silicon Controlled Rectifier, 1800V V(DRM), 1800V V(RRM), 1 Element
VISHAY

IR390LM06CS02

Rectifier Diode, 1 Phase, 1 Element, 600V V(RRM), Silicon, 4 INCH, WAFER
VISHAY

IR390LM06CS02

Rectifier Diode, 1 Element, 600V V(RRM)
INFINEON