IRDCIP2003A-C [INFINEON]

1MHz, 160A, Synchronous Buck Converter Using iP2003A; 为1MHz , 160A ,同步降压转换器使用iP2003A
IRDCIP2003A-C
型号: IRDCIP2003A-C
厂家: Infineon    Infineon
描述:

1MHz, 160A, Synchronous Buck Converter Using iP2003A
为1MHz , 160A ,同步降压转换器使用iP2003A

转换器
文件: 总8页 (文件大小:1418K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
R
EFERENCE  
D
ESIGN IRDCiP2003A-C  
International Rectifier 233 Kansas Street, El Segundo, CA 90245 USA  
IRDCiP2003A-C: 1MHz, 160A, Synchronous Buck  
Converter Using iP2003A  
Overview  
This reference design is capable of delivering up to a current of  
160A with the enclosed heatsink attached at an ambient  
temperature of 60ºC with 400LFM or an ambient temperature of  
45ºC with 200LFM of airflow. Performance graphs and waveforms  
are provided in figures 1–9. The figures and table in pages 5 – 8  
are provided as a reference design to enable engineers to very  
quickly and easily design a 4-phase converter. Refer to the data  
sheet for the controller listed in the bill of materials in order to  
optimize this design to your specific requirements. A variety of other  
controllers may also be used, but the design will require layout and  
control circuit modifications.  
Demoboard Quick Start Guide  
Initial Settings:  
The output is set to 1.3V, but can be adjusted from 0.8V to 3.3V by changing the voltage divider values of R3 and R32 according  
to the following formula:  
R3 = R32 = (24.9k x 0.8) / (VOUT - 0.8)  
The switching frequency per phase is set to 1MHz with the frequency set resistor R4. This creates an effective output frequency of  
4MHz. The graph in figure 11 shows the relationship between R4 and the switching frequency per phase. The frequency may be  
adjusted by changing R4 as indicated; however, extreme changes from the 1MHz set point may require redesigning the control  
loop and adjusting the values of input and output capacitors. Refer to the SOA graph in the iP2003A datasheet for maximum  
operating current at different conditions.  
Procedure for Connecting and Powering Up Demoboard:  
1. Apply input voltage across (+12V) across VIN and PGND.  
2. Apply load across VOUT pads and PGND pads.  
3. Adjust load to desired level. See recommendations below.  
IRDCiP2003A-C Recommended Operating Conditions  
(refer to the iP2003A datasheet for maximum operating conditions)  
Input voltage:  
Output voltage:  
Switching Freq:  
Output current:  
5V - 12V1  
0.8 - 3.3V  
1MHz per phase, 4MHz effective output frequency.  
This reference design is capable of delivering up to 160A with the enclosed heatsink attached, at an  
ambient temperature of 60ºC with 400LFM of airflow, or an ambient temperature of 45ºC with 200LFM of  
airflow.  
1Note: If Vin = 5V, then connect Vin to test point TP3 and Terminal T1 and remove jumper J1. Refer to schematic for details.  
Additionally, the threshold of the POR circuit should be adjusted to allow the supply to sequence properly.  
12/03/04  
IRDCiP2003A-C_ ____  
_  
55.0  
86%  
85%  
84%  
83%  
82%  
81%  
80%  
79%  
78%  
77%  
76%  
75%  
74%  
73%  
72%  
71%  
70%  
50.0  
VIN = 12V  
45.0  
VOUT = 1.3V  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
fSW = 1MHz  
TA = 25°C  
VIN = 12V  
OUT = 1.3V  
fSW = 1MHz  
TA = 25°C  
V
0.0  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
20  
40  
60  
80  
100  
120  
140  
160  
Output Current (A)  
Output Current (A)  
Fig. 1: Power Loss vs. Current  
Fig. 2: Efficiency vs. Current  
Phase Margin = 61°  
Cross-Over Freq. = 106kHz  
VIN = 12V  
OUT = 1.3V  
V
IOUT = 160A  
fSW = 1MHz  
TA = 25°C  
Fig. 3: Bode Plot  
VIN = 12V,  
VOUT = 1.3V  
IOUT = 160A,  
VIN = 12V,  
VOUT = 1.3V  
IOUT = 160A,  
fSW = 1MHz  
fSW = 1MHz  
TA = 25°C  
TA = 25°C  
Ripple = 90mVp-p  
Ripple = 7.0mVp-p  
Fig. 4: Input Voltage Ripple Waveform  
Fig. 5: Output Voltage Ripple Waveform  
www.irf.com  
2
_____  
__IRDCiP2003A-C  
100.0%  
99.8%  
99.6%  
99.4%  
99.2%  
99.0%  
98.8%  
98.6%  
98.4%  
98.2%  
98.0%  
VIN = 12V  
VOUT = 1.3V  
fSW = 1MHz  
TA = 25°C  
0
20  
40  
60  
80  
100  
120  
140  
160  
Output Current (A)  
Fig. 6: Output Voltage Accuracy vs. Current  
VIN = 12V  
VOUT = 1.3V  
IOUT = 160A  
fSW = 1MHz  
TA = 25°C  
VIN = 12V  
VOUT = 1.3V  
IOUT = 160A  
fSW = 1MHz  
TA = 25°C  
Ch. 1: VIN  
2V/div  
Ch. 1: VIN  
2V/div  
Ch. 2: VOUT  
0.5V/div  
Ch. 2: VOUT  
0.5V/div  
Fig. 7: Power Up Waveform  
Fig. 8: Power Down Waveform  
VIN = 12V  
VOUT = 1.3V  
fSW = 1MHz  
TA = 25°C  
Ch. 1: VOUT  
1V/div  
Hiccups  
until short  
circuit is  
removed  
Short  
circuit at  
start-up  
Ch. 2: IOUT  
50A/div  
Fig. 9: Short Circuit Condition Waveform  
3
www.irf.com  
IRDCiP2003A-C_ ____  
_  
VIN = 12V  
VOUT = 1.3V  
IOUT = 160A  
*>120.0°C  
Max  
70.7°C  
Board Temperature @ 1mm  
from edge of module:  
120.0  
100.0  
80.0  
f
SW = 1MHz  
TA = 45°C  
Airflow = 200LFM  
T
PCB (U2): 83.4°C  
TPCB (U3): 82.7°C  
PCB (U4): 82.3°C  
T
TPCB (U5): 79.2°C  
60.0  
40.0  
Airflow direction  
*<21.3°C  
VIN = 12V  
VOUT = 1.3V  
IOUT = 160A  
fSW = 1MHz  
TA = 60°C  
*>120.0°C  
120.0  
Max  
78.5°C  
Board Temperature @ 1mm  
from edge of module:  
Airflow = 400LFM  
100.0  
80.0  
60.0  
40.0  
T
PCB (U2): 88.9°C  
TPCB (U3): 87.5°C  
TPCB (U4): 87.3°C  
TPCB (U5): 85.1°C  
Airflow direction  
*<21.3°C  
Fig. 10: Thermal Images With Board and Heatsink Temperatures  
www.irf.com  
4
_____  
__IRDCiP2003A-C  
Adjusting the Over-Current Limit  
R5, R7, R8, and R9 are the resistors used to adjust the over-current trip point. The trip point is a function of the controller and  
corresponds to the per phase output current indicated on the x-axis of Fig. 11. For example, selecting 3.65k resistors will set the  
trip point of each phase to 66A. (Note: Fig. 11 is based on iP2003A, TJ = 125  
reference board is cool and is being used for short circuit testing.)  
°
C. The trip point will be higher than expected if the  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
43  
45  
47  
49  
51  
53  
55  
57  
59  
61  
63  
65  
67  
Over-Current Trip Point (per Phase)  
Fig. 11: RISEN vs. Current (per Phase)  
100  
10  
100  
1000  
Output Frequency (kHz) (per Phase)  
Fig. 12: R4 vs. Frequency (per Phase)  
5
www.irf.com  
IRDCiP2003A-C_ ____  
_  
Fig. 13: Component Placement Top Layer  
Heatsink Notes:  
1) Always use the supplied Berquist Gap PadTM A3000 thermal interface material with heatsink.  
2) Torque 5 x #2-56 machine screws to 15 +/-1 in-oz.  
3) The heatsink is optimized for 400 LFM with unconfined airflow. Performance will improve with more airflow or confined  
airflow.  
4) Airflow direction should be parallel to fins for maximum performance.  
Fig. 14: Heatsink Specification  
www.irf.com  
6
_____  
__IRDCiP2003A-C  
n e o p  
n e o p  
0 1 0 u  
n e o p  
F u 0 1 0  
F u 0 1 0  
F u 0 1 0  
n e o p  
F
F
F
0 u 1 0  
0 u 1 0  
0 u 1 0  
F
F
F
F u 1 0 0  
F u 1 0 0  
F u 1 0 0  
0 1 0 u  
0 1 0 u  
n e o p  
n e o p  
F u 1 0  
F u 1 0  
F u 1 0  
F u 1 0  
n e o p  
n e o p  
n e o p  
n e o p  
n e o p  
n e o p  
F u 1 0  
F u 1 0  
F u 1 0  
F u 1 0  
F u 2 2 .  
F u 2 2 .  
F
F
F
F
1 0 u  
F
F
F
F
1 0 u  
1 0 u  
1 0 u  
1 0 u  
1 0 u  
1 0 u  
1 0 u  
F
2 u 2 .  
2 u 2 .  
F
2 u 2 .  
F 2 u 2 .  
F
F
2 u 2 .  
F 2 u 2 .  
2 S  
1 S  
W
W
V S  
V S  
2 S  
1 S  
W
W
V S  
V S  
2 S  
1 S  
W
W
V S  
V S  
2 S  
1 S  
W
W
V S  
V S  
1 0  
1 0  
9
1 0  
9
1 0  
9
9
2
3
1
2
P
M C O  
3
4
5
O O D P R  
F B  
d n j / d G A  
1
Fig. 15: Reference Design Schematic  
7
www.irf.com  
IRDCiP2003A-C_ ____  
_  
Table 1: Reference Design Bill of Materials  
Refer to the following application notes for detailed guidelines and suggestions when  
implementing iPOWIR Technology products:  
AN-1028: Recommended Design, Integration and Rework Guidelines for International Rectifier’s  
iPowIR Technology BGA and LGA and Packages  
This paper discusses optimization of the layout design for mounting iPowIR BGA and LGA packages on  
printed circuit boards, accounting for thermal and electrical performance and assembly considerations.  
Topics discussed includes PCB layout placement, and via interconnect suggestions, as well as soldering,  
pick and place, reflow, inspection, cleaning and reworking recommendations.  
AN-1030: Applying iPOWIR Products in Your Thermal Environment  
This paper explains how to use the Power Loss and SOA curves in the data sheet to validate if the  
operating conditions and thermal environment are within the Safe Operating Area of the iPOWIR product.  
AN-1047: Graphical solution for two branch heatsinking Safe Operating Area  
Detailed explanation of the dual axis SOA graph and how it is derived.  
Use of this design for any application should be fully verified by the customer. International Rectifier  
cannot guarantee suitability for your applications, and is not liable for any result of usage for such  
applications including, without limitation, personal or property damage or violation of third party  
intellectual property rights.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
www.irf.com  
8

相关型号:

IRDM982

Dynamic overcurrent limit per temperature
INFINEON

IRDM982-025MB

AC Motor Controller,
INFINEON

IRDM982-035MB

AC Motor Controller,
INFINEON

IRDM982_15

Dynamic overcurrent limit per temperature
INFINEON

IRDM983

iMOTION™ Motion Controller Module for PM AC Fan
INFINEON

IRDM983-025MB

iMOTION™ Motion Controller Module for PM AC Fan
INFINEON

IRDM983-035MB

iMOTION™ Motion Controller Module for PM AC Fan
INFINEON

IRE-12/10-Q12-N-C

Power Supply Module,
MURATA

IRE-12/10-Q12-PF-C

Power Supply Module,
MURATA

IRE-12/10-Q12N-C

民用设备,工业设备
MURATA

IRE-12/10-Q12NF-C

民用设备,工业设备
MURATA

IRE-12/10-Q12P-C

民用设备,工业设备
MURATA