IRF1404ZGPBF [INFINEON]

Power Field-Effect Transistor, 75A I(D), 40V, 0.0037ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, HALOGEN AND LEAD FREE, PLASTIC PACKAGE-3;
IRF1404ZGPBF
型号: IRF1404ZGPBF
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 75A I(D), 40V, 0.0037ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, HALOGEN AND LEAD FREE, PLASTIC PACKAGE-3

局域网 开关 脉冲 晶体管
文件: 总10页 (文件大小:283K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96236A  
IRF1404ZGPbF  
Features  
l
l
l
l
l
l
l
Advanced Process Technology  
HEXFET® Power MOSFET  
UltraLowOn-Resistance  
175°COperatingTemperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free  
D
VDSS = 40V  
RDS(on) = 3.7mΩ  
G
Halogen-Free  
Description  
ID = 75A  
S
This HEXFET® Power MOSFET utilizes the latest  
processingtechniquestoachieveextremelylowon-  
resistance per silicon area. Additional features of  
thisdesign area175°Cjunctionoperatingtemperature,  
fast switching speed and improved repetitive  
avalanche rating . These features combine to make  
thisdesignanextremelyefficientandreliabledevice  
for use in a wide variety of applications.  
TO-220AB  
IRF1404ZGPbF  
Absolute Maximum Ratings  
Parameter  
Max.  
190  
130  
75  
Units  
(Silicon Limited)  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
I
@ T = 25°C  
C
D
D
D
@ T = 100°C  
C
A
(Package Limited)  
@ T = 25°C  
C
750  
220  
DM  
P
@T = 25°C  
Power Dissipation  
C
W
D
Linear Derating Factor  
Gate-to-Source Voltage  
Single Pulse Avalanche Energy  
1.5  
± 20  
W/°C  
V
V
GS  
EAS (Thermally limited)  
320  
480  
mJ  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
E
AS (Tested )  
IAR  
See Fig.12a, 12b, 15, 16  
A
Repetitive Avalanche Energy  
EAR  
mJ  
T
J
Operating Junction and  
-55 to + 175  
T
Storage Temperature Range  
°C  
STG  
Soldering Temperature, for 10 seconds  
Mounting Torque, 6-32 or M3 screw  
300 (1.6mm from case )  
10 lbf in (1.1N m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
0.65  
–––  
62  
Units  
RθJC  
Junction-to-Case  
RθCS  
RθJA  
0.50  
–––  
°C/W  
Case-to-Sink, Flat Greased Surface  
Junction-to-Ambient  
www.irf.com  
1
07/07/10  
IRF1404ZGPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
40 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
V(BR)DSS/TJ  
RDS(on)  
V
Breakdown Voltage Temp. Coefficient ––– 0.033 ––– V/°C Reference to 25°C, ID = 1mA  
mΩ  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
2.0  
2.7  
–––  
–––  
–––  
–––  
–––  
–––  
100  
31  
3.7  
4.0  
VGS = 10V, ID = 75A  
VDS = VGS, ID = 250µA  
VDS = 25V, ID = 75A  
VGS(th)  
V
V
gfs  
Forward Transconductance  
170  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
20  
IDSS  
Drain-to-Source Leakage Current  
µA  
V
DS = 40V, VGS = 0V  
250  
200  
-200  
150  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 40V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
nA VGS = 20V  
VGS = -20V  
ID = 75A  
Qg  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
nC VDS = 32V  
VGS = 10V  
42  
18  
VDD = 20V  
Rise Time  
110  
36  
ID = 75A  
td(off)  
tf  
Turn-Off Delay Time  
ns RG = 3.0 Ω  
VGS = 10V  
Fall Time  
58  
LD  
Internal Drain Inductance  
4.5  
Between lead,  
nH 6mm (0.25in.)  
from package  
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
Ciss  
Input Capacitance  
––– 4340 –––  
––– 1030 –––  
VGS = 0V  
Coss  
Output Capacitance  
VDS = 25V  
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
–––  
––– 3300 –––  
––– 920 –––  
550  
–––  
pF ƒ = 1.0MHz  
Coss  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
Coss  
Output Capacitance  
VGS = 0V, VDS = 32V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 32V  
Coss eff.  
Effective Output Capacitance  
––– 1350 –––  
Source-Drain Ratings and Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
I
Continuous Source Current  
–––  
–––  
75  
MOSFET symbol  
S
(Body Diode)  
A
showing the  
I
Pulsed Source Current  
–––  
–––  
750  
integral reverse  
SM  
(Body Diode)  
p-n junction diode.  
V
t
Diode Forward Voltage  
–––  
–––  
–––  
–––  
28  
1.3  
42  
51  
V
T = 25°C, I = 75A, V = 0V  
SD  
J
S
GS  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
ns T = 25°C, I = 75A, VDD = 20V  
J F  
rr  
di/dt = 100A/µs  
Q
t
34  
nC  
rr  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
on  
2
www.irf.com  
IRF1404ZGPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
TOP  
TOP  
BOTTOM 4.5V  
BOTTOM 4.5V  
4.5V  
1
4.5V  
20µs PULSE WIDTH  
Tj = 25°C  
20µs PULSE WIDTH  
Tj = 175°C  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
200  
1000  
T
= 25°C  
J
T
= 175°C  
J
T
= 175°C  
J
160  
120  
80  
100  
10  
1
T
= 25°C  
J
40  
V
= 15V  
V
= 15V  
DS  
20µs PULSE WIDTH  
DS  
20µs PULSE WIDTH  
0
4.0  
5.0  
V
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
0
40  
80  
120  
160  
, Gate-to-Source Voltage (V)  
I
Drain-to-Source Current (A)  
GS  
D,  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
Vs. Drain Current  
www.irf.com  
3
IRF1404ZGPbF  
8000  
20  
16  
12  
8
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 75A  
D
= C + C , C SHORTED  
iss  
gs gd ds  
V
= 32V  
DS  
VDS= 20V  
C
= C  
rss  
gd  
C
= C + C  
oss  
ds  
gd  
6000  
4000  
2000  
0
Ciss  
4
Coss  
Crss  
0
0
40  
G
80  
120  
160  
1
10  
100  
Q
Total Gate Charge (nC)  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
10000  
1000  
100  
10  
1000.0  
100.0  
10.0  
1.0  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
100µsec  
1msec  
T
= 25°C  
J
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
10msec  
100  
GS  
1
0.1  
0
1
10  
1000  
0.2  
0.6  
1.0  
1.4  
1.8  
V
, Drain-toSource Voltage (V)  
V
, Source-toDrain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF1404ZGPbF  
200  
160  
120  
80  
2.0  
1.5  
1.0  
0.5  
I
= 75A  
LIMITED BY PACKAGE  
D
V
= 10V  
GS  
40  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
C
, Junction Temperature (°C)  
J
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current Vs.  
Vs. Temperature  
Case Temperature  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
0.02  
0.01  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF1404ZGPbF  
600  
500  
400  
300  
200  
100  
0
15V  
ID  
31A  
53A  
TOP  
BOTTOM 75A  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
2
V0GVS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
Vs. Drain Current  
Q
G
10 V  
Q
Q
4.0  
3.0  
2.0  
1.0  
GS  
GD  
V
G
I
= 250µA  
D
Charge  
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
V
GS  
T
3mA  
J
I
I
D
G
Current Sampling Resistors  
Fig 14. Threshold Voltage Vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF1404ZGPbF  
10000  
1000  
100  
10  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
Duty Cycle = Single Pulse  
assuming  
Tj = 25°C due to  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
0.01  
0.05  
0.10  
1
1.0E-08  
1.0E-07  
1.0E-06  
1.0E-05  
tav (sec)  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
400  
TOP  
BOTTOM 10% Duty Cycle  
= 75A  
Single Pulse  
I
D
300  
200  
100  
0
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Fig 16. Maximum Avalanche Energy  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
www.irf.com  
7
IRF1404ZGPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRF1404ZGPbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
Notes:  
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/  
2. For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
IRF1404ZGPbF  
TO-220AB Part Marking Information  
EXAMPLE: THIS IS AN IRFB4310GPBF  
PART NUMBER  
DATE CODE:  
INTERNATIONAL  
RECTIFIER  
LOGO  
Note: "G" suffix in part number  
indicates "Halogen - F ree"  
Y= LAST DIGIT OF  
CAL E NDAR YE AR  
Note: "P" in assembly line position  
indicates "L ead - F ree"  
AS S E MB L Y  
LOT CODE  
WW= WORK WE E K  
X= FACTORY CODE  
Notes:  
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/  
2. For the most current drawing please refer to IR website at http://www.irf.com/package/  
Notes:  
†
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.11mH  
This value determined from sample failure population. 100%  
tested to this value in production.  
R
G = 25, IAS = 75A, VGS =10V. Part not  
recommended for use above this value.  
ƒ Pulse width 1.0ms; duty cycle 2%.  
„ Coss eff. is a fixed capacitance that gives the  
same charging time as Coss while VDS is rising  
‡ This is only applied to TO-220AB pakcage.  
from 0 to 80% VDSS  
.
TO-220AB package is not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.07/2010  
10  
www.irf.com  

相关型号:

IRF1404ZL

Advanced Process Technology
INFINEON

IRF1404ZLPBF

AUTOMOTIVE MOSFET
INFINEON

IRF1404ZPBF

AUTOMOTIVE MOSFET
INFINEON

IRF1404ZS

Advanced Process Technology
INFINEON

IRF1404ZSPBF

AUTOMOTIVE MOSFET
INFINEON

IRF1404ZSTRLPBF

Power Field-Effect Transistor, 75A I(D), 40V, 0.0037ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF1404ZSTRRPBF

Power Field-Effect Transistor, 75A I(D), 40V, 0.0037ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF1404ZS_L

AUTOMOTIVE MOSFET Advanced Process Technology
KERSEMI

IRF1405

Power MOSFET(Vdss=55V, Rds(on)=5.3mohm, Id=169A)
INFINEON

IRF1405

Electric Power Steering (EPS)
KERSEMI

IRF1405L

Power MOSFET(Vdss=55V, Rds(on)=5.3mohm, Id=131A)
INFINEON

IRF1405L

AUTOMOTIVE MOSFET
KERSEMI