IRF1405ZL-7PPBF [INFINEON]

HEXFET㈢ Power MOSFET ( VDSS = 55V , RDS(on) = 4.9mヘ , ID = 120A ); HEXFET㈢功率MOSFET ( VDSS = 55V , RDS ( ON) = 4.9米ヘ, ID = 120A )
IRF1405ZL-7PPBF
型号: IRF1405ZL-7PPBF
厂家: Infineon    Infineon
描述:

HEXFET㈢ Power MOSFET ( VDSS = 55V , RDS(on) = 4.9mヘ , ID = 120A )
HEXFET㈢功率MOSFET ( VDSS = 55V , RDS ( ON) = 4.9米ヘ, ID = 120A )

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总12页 (文件大小:693K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97206A  
AUTOMOTIVE MOSFET  
IRF1405ZS-7PPbF  
IRF1405ZL-7PPbF  
HEXFET® Power MOSFET  
Features  
l
l
l
l
l
l
Advanced Process Technology  
D
VDSS = 55V  
UltraLowOn-Resistance  
175°COperatingTemperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free  
‰
RDS(on) = 4.9mΩ  
G
S
ID = 120A  
S (Pin 2, 3, 5, 6, 7)  
G (Pin 1)  
Description  
SpecificallydesignedforAutomotiveapplications,  
this HEXFET® Power MOSFET utilizes the latest  
processing techniques to achieve extremely low  
on-resistancepersiliconarea. Additionalfeatures  
of this design are a 175°C junction operating  
temperature, fast switching speed and improved  
repetitiveavalancherating. Thesefeaturescom-  
bine to make this design an extremely efficient  
andreliabledeviceforuseinAutomotiveapplica-  
tions and a wide variety of other applications.  
D2Pak7Pin  
TO-263CA 7 Pin  
Absolute Maximum Ratings  
Parameter  
Max.  
150  
100  
120  
590  
230  
Units  
A
I
I
I
I
@ TC = 25°C  
@ TC = 100°C  
@ TC = 25°C  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
D
D
D
Continuous Drain Current, VGS @ 10V (See Fig. 9)  
(Package Limited)  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
DM  
P
@TC = 25°C  
W
Maximum Power Dissipation  
Linear Derating Factor  
D
1.5  
± 20  
W/°C  
V
V
Gate-to-Source Voltage  
GS  
EAS  
250  
810  
mJ  
Single Pulse Avalanche Energy (Thermally Limited)  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
EAS (tested)  
IAR  
See Fig.12a,12b,15,16  
A
EAR  
mJ  
°C  
Repetitive Avalanche Energy  
T
J
-55 to + 175  
Operating Junction and  
T
Storage Temperature Range  
STG  
Soldering Temperature, for 10 seconds  
Mounting torque, 6-32 or M3 screw  
300 (1.6mm from case )  
10 lbf•in (1.1N•m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
0.65  
–––  
62  
Units  
°C/W  
RθJC  
Junction-to-Case  
RθCS  
RθJA  
RθJA  
0.50  
–––  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
–––  
40  
Junction-to-Ambient (PCB Mount, steady state)  
HEXFET® is a registered trademark of International Rectifier.  
www.irf.com  
1
12/07/06  
IRF1405ZS/L-7PPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
55 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
∆Β  
V
V
DSS/ TJ  
Breakdown Voltage Temp. Coefficient ––– 0.054 ––– V/°C Reference to 25°C, ID = 1mA  
R
DS(on) SMD  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
2.0  
V
GS = 10V, ID = 88A  
3.7  
–––  
–––  
–––  
–––  
–––  
–––  
150  
37  
4.9  
4.0  
mΩ  
V
VGS(th)  
VDS = VGS, ID = 150µA  
gfs  
IDSS  
150  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
20  
S
VDS = 25V, ID = 88A  
Forward Transconductance  
Drain-to-Source Leakage Current  
µA  
nA  
V
V
V
V
DS = 55V, VGS = 0V  
DS = 55V, VGS = 0V, TJ = 125°C  
GS = 20V  
250  
200  
-200  
230  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
GS = -20V  
Qg  
Qgs  
Qgd  
td(on)  
tr  
nC ID = 88A  
DS = 44V  
VGS = 10V  
DD = 28V  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
V
64  
16  
ns  
V
Rise Time  
140  
170  
130  
4.5  
ID = 88A  
td(off)  
tf  
Turn-Off Delay Time  
RG = 5.0Ω  
VGS = 10V  
Fall Time  
LD  
D
S
Internal Drain Inductance  
nH Between lead,  
6mm (0.25in.)  
from package  
G
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
VGS = 0V  
Ciss  
Input Capacitance  
––– 5360 –––  
––– 1310 –––  
pF  
Coss  
Output Capacitance  
VDS = 25V  
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
–––  
––– 6080 –––  
––– 920 –––  
––– 1700 –––  
340  
–––  
ƒ = 1.0MHz, See Fig. 5  
Coss  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 44V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 44V  
Coss  
Output Capacitance  
Coss eff.  
Effective Output Capacitance  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
IS  
Continuous Source Current  
–––  
–––  
150  
MOSFET symbol  
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
G
ISM  
–––  
–––  
590  
S
(Body Diode)  
p-n junction diode.  
VSD  
T = 25°C, I = 88A, V = 0V  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
1.3  
V
J
S
GS  
trr  
Qrr  
T = 25°C, I = 88A, VDD = 28V  
–––  
–––  
63  
160  
95  
240  
ns  
nC  
J
F
di/dt = 100A/µs  
Notes:  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Limited by TJmax, starting TJ = 25°C,  
L=0.064mH, RG = 25, IAS = 88A, VGS =10V.  
Part not recommended for use above this value.  
ƒ Pulse width 1.0ms; duty cycle 2%.  
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
† This value determined from sample failure population. 100%  
tested to this value in production.  
‡ This is applied to D2Pak, when mounted on 1" square PCB  
( FR-4 or G-10 Material ). For recommended footprint and  
soldering techniques refer to application note #AN-994.  
„ Coss eff. is a fixed capacitance that gives the same  
charging time as Coss while VDS is rising from 0 to 80%  
ˆ R is measured at TJ of approximately 90°C.  
θ
VDSS  
.
‰ Solder mounted on IMS substrate.  
2
www.irf.com  
IRF1405ZS/L-7PPbF  
1000  
100  
10  
1000  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
100  
10  
1
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 175°C  
Tj = 25°C  
1
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
150  
125  
T
= 25°C  
J
100  
10  
1
100  
75  
50  
25  
0
T
= 175°C  
J
T
= 175°C  
J
T
= 25°C  
J
V
= 10V  
DS  
300µs PULSE WIDTH  
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
0
2
4
6
8
10 12  
0
25 50 75 100 125 150 175 200  
I ,Drain-to-Source Current (A)  
D
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
vs. Drain Current  
www.irf.com  
3
IRF1405ZS/L-7PPbF  
100000  
12.0  
10.0  
8.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 88A  
D
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
V
V
= 44V  
= 28V  
= C  
DS  
DS  
rss  
oss  
gd  
= C + C  
ds  
gd  
10000  
1000  
100  
C
iss  
6.0  
C
oss  
C
4.0  
rss  
2.0  
0.0  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
50  
100  
150  
200  
V
Q
Total Gate Charge (nC)  
DS  
G
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-SourceVoltage  
Drain-to-SourceVoltage  
10000  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
100µsec  
1msec  
J
T
= 25°C  
J
DC  
1
10msec  
100  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
0.1  
V
= 0V  
GS  
0.01  
1
1
10  
1000  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
V
, Drain-to-Source Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF1405ZS/L-7PPbF  
150  
125  
100  
75  
2.5  
I
= 88A  
D
V
= 10V  
GS  
2.0  
1.5  
1.0  
0.5  
50  
25  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
C
, Junction Temperature (°C)  
J
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current vs.  
vs.Temperature  
CaseTemperature  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.02  
0.01  
τ
J τJ  
τ
τ
Cτ  
0.1707  
0.1923  
0.2885  
0.000235  
0.000791  
0.008193  
0.01  
0.001  
τ
1τ1  
τ
2 τ2  
3τ3  
Ci= τi/Ri  
/
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF1405ZS/L-7PPbF  
15V  
1000  
800  
600  
400  
200  
0
I
D
TOP  
14A  
23A  
DRIVER  
+
L
V
DS  
BOTTOM 88A  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
20V  
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
vs. Drain Current  
Q
G
10 V  
Q
Q
GD  
GS  
4.5  
V
G
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
Charge  
Fig 13a. Basic Gate Charge Waveform  
I
I
I
I
= 150µA  
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
D
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
, Temperature ( °C )  
V
GS  
3mA  
T
J
I
I
D
G
Current Sampling Resistors  
Fig 14. Threshold Voltage vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF1405ZS/L-7PPbF  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
1
pulsewidth, tav, assuming Τj = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
300  
250  
200  
150  
100  
50  
TOP  
BOTTOM 1% Duty Cycle  
= 88A  
Single Pulse  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
0
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Fig 16. Maximum Avalanche Energy  
vs.Temperature  
www.irf.com  
7
IRF1405ZS/L-7PPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
CircuitLayoutConsiderations  
LowStrayInductance  
Ground Plane  
LowLeakageInductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
Reverse  
Recovery  
Current  
‚
Body Diode Forward  
„
Current  
di/dt  
-
+
-
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dtcontrolledbyRG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
PulseWidth ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRF1405ZS/L-7PPbF  
D2Pak - 7 Pin Package Outline  
Dimensions are shown in millimeters (inches)  
www.irf.com  
9
IRF1405ZS/L-7PPbF  
D2Pak - 7 Pin Part Marking Information  
D2Pak - 7 Pin Tape and Reel  
10  
www.irf.com  
IRF1405ZS/L-7PPbF  
TO-263CA 7 Pin Long Leads Package Outline  
Dimensions are shown in millimeters (inches)  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive [Q101] market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 12/06  
www.irf.com  
11  
Note: For the most current drawings please refer to the IR website at:  
http://www.irf.com/package/  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY