IRF1407STRLPBF [INFINEON]

Power Field-Effect Transistor, 75A I(D), 75V, 0.0078ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, PLASTIC, D2PAK-3;
IRF1407STRLPBF
型号: IRF1407STRLPBF
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 75A I(D), 75V, 0.0078ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, PLASTIC, D2PAK-3

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总9页 (文件大小:129K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 93907  
AUTOMOTIVE MOSFET  
IRF1407  
HEXFET® Power MOSFET  
Typical Applications  
Integrated Starter Alternator  
D
42 Volts Automotive Electrical Systems  
VDSS = 75V  
Benefits  
Advanced Process Technology  
R
DS(on) = 0.0078Ω  
Ultra Low On-Resistance  
Dynamic dv/dt Rating  
175°C Operating Temperature  
Fast Switching  
G
ID = 130A†  
S
Repetitive Avalanche Allowed up to Tjmax  
Description  
Specifically designed for Automotive applications, this Stripe Planar  
design of HEXFET® Power MOSFETs utilizes the lastest processing  
techniques to achieve extremely low on-resistance per silicon area.  
Additional features of this HEXFET power MOSFET are a 175°C junction  
operating temperature, fast switching speed and improved repetitive  
avalancherating.Thesebenefitscombinetomakethisdesignanextremely  
efficient and reliable device for use in Automotive applications and a wide  
variety of other applications.  
TO-220AB  
Absolute Maximum Ratings  
Parameter  
Max.  
130†  
92†  
520  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current   
A
PD @TC = 25°C  
Power Dissipation  
330  
W
W/°C  
V
Linear Derating Factor  
2.2  
VGS  
EAS  
IAR  
Gate-to-Source Voltage  
± 20  
390  
Single Pulse Avalanche Energy‚  
Avalanche Current  
mJ  
See Fig.12a, 12b, 15, 16  
A
EAR  
dv/dt  
TJ  
Repetitive Avalanche Energy‡  
Peak Diode Recovery dv/dt ƒ  
Operating Junction and  
mJ  
4.6  
V/ns  
-55 to + 175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
Mounting Torque, 6-32 or M3 screw  
°C  
300 (1.6mm from case )  
10 lbf•in (1.1N•m)  
Thermal Resistance  
Parameter  
Junction-to-Case  
Typ.  
–––  
Max.  
Units  
RθJC  
RθCS  
RθJA  
0.45  
–––  
62  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
0.50  
–––  
°C/W  
www.irf.com  
1
10/11/01  
IRF1407  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
75 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
V
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.09 ––– V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
VGS(th)  
gfs  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
––– ––– 0.0078  
V
S
VGS = 10V, ID = 78A „  
VDS = 10V, ID = 250µA  
VDS = 25V, ID = 78A  
VDS = 75V, VGS = 0V  
VDS = 60V, VGS = 0V, TJ = 150°C  
VGS = 20V  
2.0  
74  
––– 4.0  
Forward Transconductance  
––– –––  
––– ––– 20  
––– ––– 250  
––– ––– 200  
––– ––– -200  
––– 160 250  
IDSS  
Drain-to-Source Leakage Current  
µA  
nA  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
IGSS  
VGS = -20V  
Qg  
ID = 78A  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
35  
54  
52  
81  
nC VDS = 60V  
VGS = 10V„  
VDD = 38V  
11 –––  
––– 150 –––  
––– 150 –––  
––– 140 –––  
ID = 78A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
RG = 2.5Ω  
VGS = 10V „  
D
Between lead,  
4.5  
LD  
LS  
Internal Drain Inductance  
Internal Source Inductance  
–––  
–––  
–––  
–––  
6mm (0.25in.)  
nH  
G
from package  
7.5  
and center of die contact  
S
Ciss  
Input Capacitance  
––– 5600 –––  
––– 890 –––  
––– 190 –––  
––– 5800 –––  
––– 560 –––  
––– 1100 –––  
VGS = 0V  
Coss  
Output Capacitance  
pF  
VDS = 25V  
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
ƒ = 1.0KHz, See Fig. 5  
Coss  
VGS = 0V, VDS = 1.0V, ƒ = 1.0KHz  
VGS = 0V, VDS = 60V, ƒ = 1.0KHz  
VGS = 0V, VDS = 0V to 60V  
Coss  
Output Capacitance  
Coss eff.  
Effective Output Capacitance ꢀ  
Source-Drain Ratings and Characteristics  
Parameter  
Continuous Source Current  
(Body Diode)  
Min. Typ. Max. Units  
Conditions  
D
IS  
MOSFET symbol  
––– –––  
130†  
showing the  
A
G
ISM  
Pulsed Source Current  
(Body Diode)   
integral reverse  
––– ––– 520  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse RecoveryCharge  
Forward Turn-On Time  
––– ––– 1.3  
––– 110 170  
––– 390 590  
V
TJ = 25°C, IS = 78A, VGS = 0V „  
TJ = 25°C, IF = 78A  
ns  
Qrr  
ton  
nC di/dt = 100A/µs „  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚Starting TJ = 25°C, L = 0.13mH  
RG = 25, IAS = 78A. (See Figure 12).  
ƒISD 78A, di/dt 320A/µs, VDD V(BR)DSS  
TJ 175°C  
Coss eff. is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
.
†
‡
Calculated continuous current based on maximum allowable  
junction temperature. Package limitation current is 75A.  
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
,
„Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRF1407  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
VGS  
15V  
10V  
TOP  
TOP  
8.0V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
7.0V  
6.0V  
5.5V  
5.0V  
BOTTOM 4.5V  
BOTTOM 4.5V  
4.5V  
4.5V  
20µs PULSE WIDTH  
Tj = 25°C  
20µs PULSE WIDTH  
Tj = 175°C  
1
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
3.0  
1000.00  
100.00  
10.00  
130A  
=
I
D
T
= 25°C  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
J
T
= 175°C  
J
V
= 15V  
DS  
20µs PULSE WIDTH  
V
= 10V  
GS  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
3.0  
5.0  
7.0  
9.0  
11.0  
13.0  
°
T , Junction Temperature  
( C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
vs. Temperature  
www.irf.com  
3
IRF1407  
15  
12  
9
100000  
D
I
=
78A  
V
= 0V,  
f = 1 MHZ  
GS  
V
V
V
=
=
=
60V  
37V  
15V  
DS  
DS  
DS  
C
= C + C  
,
C
ds  
SHORTED  
iss  
gs  
gd  
C
= C  
rss  
gd  
C
= C + C  
oss  
ds gd  
10000  
1000  
Ciss  
6
Coss  
Crss  
3
100  
1
0
0
40  
Q
80  
120  
160  
200  
10  
, Drain-to-Source Voltage (V)  
100  
, Total Gate Charge (nC)  
G
V
DS  
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.00  
100.00  
10.00  
1.00  
10000  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
1000  
100  
10  
J
100µsec  
1msec  
T
= 25°C  
J
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
10msec  
100  
GS  
1
0.10  
1
10  
1000  
0.0  
1.0  
2.0  
3.0  
V
, Drain-toSource Voltage (V)  
V
, Source-toDrain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF1407  
140  
120  
100  
80  
RD  
VDS  
LIMITED BY PACKAGE  
VGS  
10V  
D.U.T.  
RG  
+VDD  
-
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
60  
Fig 10a. Switching Time Test Circuit  
40  
V
20  
DS  
90%  
0
25  
50  
75  
100  
125  
150  
175  
°
( C)  
T
, Case Temperature  
C
10%  
V
GS  
Fig 9. Maximum Drain Current vs.  
t
t
r
t
t
f
d(on)  
d(off)  
Case Temperature  
Fig 10b. Switching Time Waveforms  
1
D = 0.50  
0.20  
0.10  
0.1  
0.05  
SINGLE PULSE  
(THERMAL RESPONSE)  
0.02  
0.01  
P
DM  
0.01  
t
1
t
2
Notes:  
1. Duty factor D =  
t
/ t  
1
2
2. Peak T  
= P  
x
Z
+ T  
J
DM  
thJC  
C
0.001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
t , Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF1407  
650  
520  
390  
260  
130  
0
1 5V  
I
D
TOP  
32A  
55A  
78A  
DRIVER  
BOTTOM  
L
V
G
DS  
D.U.T  
AS  
R
+
V
D D  
-
I
A
20V  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
°
( C)  
Starting T , Junction Temperature  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
vs. Drain Current  
Q
G
10 V  
Q
Q
GD  
GS  
3.5  
V
G
3.0  
2.5  
2.0  
1.5  
I
= 250µA  
D
Charge  
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
V
GS  
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
3mA  
T
, Temperature ( °C )  
J
I
I
D
G
Current Sampling Resistors  
Fig 14. Threshold Voltage vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF1407  
1000  
100  
10  
Duty Cycle = Single Pulse  
0.01  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses  
0.05  
0.10  
1
1.0E-07  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
400  
300  
200  
100  
0
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
TOP  
BOTTOM 10% Duty Cycle  
= 78A  
Single Pulse  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
Starting T , Junction Temperature (°C)  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC  
Iav = 2T/ [1.3·BV·Zth]  
Fig 16. Maximum Avalanche Energy  
EAS (AR) = PD (ave)·tav  
vs. Temperature  
www.irf.com  
7
IRF1407  
Peak Diode Recovery dv/dt Test Circuit  
+
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T*  
ƒ
-
+
‚
-
„
-
+

RG  
dv/dt controlled by RG  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
+
-
VDD  
VGS  
* Reverse Polarity of D.U.T for P-Channel  
Driver Gate Drive  
P.W.  
Period  
Period  
D =  
P.W.  
V
[
=10V  
] ***  
GS  
D.U.T. I Waveform  
SD  
Reverse  
Recovery  
Current  
Body Diode Forward  
Current  
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  
V
DD  
[
[
]
Re-Applied  
Voltage  
Body Diode  
Forward Drop  
Inductor Curent  
I
]
SD  
Ripple 5%  
*** VGS = 5.0V for Logic Level and 3V Drive Devices  
Fig 17. For N-channel HEXFET® power MOSFETs  
8
www.irf.com  
IRF1407  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
10.54 (.415)  
- B  
-
3.78 (.149)  
3.54 (.139)  
10.29 (.405)  
2.87 (.113)  
2.62 (.103)  
4.69 (.185)  
4.20 (.165)  
1.32 (.052)  
1.22 (.048)  
- A  
-
6.47 (.255)  
6.10 (.240)  
4
15.24 (.600)  
14.84 (.584)  
1.15 (.045)  
MIN  
LEAD ASSIG NMENTS  
1 - GATE  
1
2
3
2 - DRAIN  
3 - SOU RCE  
4 - DRAIN  
14.09 (.555)  
13.47 (.530)  
4.06 (.160)  
3.55 (.140)  
0.93 (.037)  
0.69 (.027)  
0.55 (.022)  
0.46 (.018)  
3X  
3X  
1.40 (.055)  
3X  
1.15 (.045)  
0.36 (.014)  
M
B
A
M
2.92 (.115)  
2.64 (.104)  
2.54 (.100)  
2X  
N OTES:  
1
2
DIMENSIO NING & TO LER ANCING PER ANS I Y14.5M, 1982.  
CO NTROLLING DIMEN SIO N : INC H  
3
4
O UTLINE CO NFOR MS TO JEDEC O UTLIN E TO -220AB.  
HEATSIN K & LEAD M EASUREM ENTS D O NO T INCLU DE B URRS .  
TO-220AB Part Marking Information  
EXAMPLE: THIS IS AN IRF1010  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
LOT CODE 1789  
ASSEMBLED ON WW 19, 1997  
IN THE ASSEMBLYLINE "C"  
DATE CODE  
YEAR 7 = 1997  
ASSEMBLY  
LOT CODE  
WE E K 19  
LINE C  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive [Q101] market.  
Qualification Standards can be found on IRs Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.10/01  
www.irf.com  
9

相关型号:

IRF1407STRR

TRANSISTOR | MOSFET | N-CHANNEL | 75V V(BR)DSS | 100A I(D) | TO-263AB
INFINEON

IRF1407STRRPBF

暂无描述
INFINEON

IRF140EA

Power Field-Effect Transistor, 28A I(D), 100V, 0.089ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AE,
INFINEON

IRF140EBPBF

Power Field-Effect Transistor, 28A I(D), 100V, 0.089ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AE
INFINEON

IRF140EC

Power Field-Effect Transistor, 28A I(D), 100V, 0.089ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AE
INFINEON

IRF140EPBF

Power Field-Effect Transistor, 28A I(D), 100V, 0.089ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AE
INFINEON

IRF140SMD

N-CHANNEL POWER MOSFET
SEME-LAB

IRF141

N-CHANNEL POWER MOSFETS
SAMSUNG

IRF141

28A, 80V, 0.077ohm, N-CHANNEL, Si, POWER, MOSFET, TO-240AE, TO-204AE, 2 PIN
ROCHESTER

IRF141

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
VISHAY

IRF142

N-Channel Power MOSFETs, 27 A, 60-100V
FAIRCHILD

IRF142

N-CHANNEL POWER MOSFETS
SAMSUNG