IRF1503S [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRF1503S
型号: IRF1503S
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总11页 (文件大小:660K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94494A  
IRF1503S  
IRF1503L  
HEXFET® Power MOSFET  
Typical Applications  
14V Automotive Electrical Systems  
14V Electronic Power Steering  
D
VDSS = 30V  
Benefits  
Advanced Process Technology  
Ultra Low On-Resistance  
175°COperatingTemperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
RDS(on) = 3.3mΩ  
G
ID = 75A  
S
Description  
Specifically designed for Automotive applications, this Stripe Planar  
design of HEXFET® Power MOSFETs utilizes the lastest processing  
techniques to achieve extremely low on-resistance per silicon area.  
Additional features of this HEXFET power MOSFET are a 175°C  
junction operating temperature, fast switching speed and improved  
repetitive avalanche rating. These benefits combine to make this  
design an extremely efficient and reliable device for use in Automotive  
applications and a wide variety of other applications.  
D2Pak  
IRF1503S  
TO-262  
IRF1503L  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon limited)  
Continuous Drain Current, VGS @ 10V (See Fig.9)  
Continuous Drain Current, VGS @ 10V (Package limited)  
Pulsed Drain Current   
190  
130  
75  
A
960  
200  
1.3  
PD @TC = 25°C  
Power Dissipation  
W
Linear Derating Factor  
W/°C  
VGS  
Gate-to-Source Voltage  
20  
V
EAS  
Single Pulse Avalanche Energy‚  
Single Pulse Avalanche Energy Tested Value†  
Avalanche Current  
510  
980  
mJ  
EAS (tested)  
IAR  
See Fig.12a, 12b, 15, 16  
A
EAR  
Repetitive Avalanche Energyꢀ  
Operating Junction and  
mJ  
°C  
TJ  
-55 to + 175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
Mounting Torque, 6-32 or M3 screw  
300 (1.6mm from case )  
10 lbf•in (1.1N•m)  
Thermal Resistance  
Parameter  
Junction-to-Case  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
Typ.  
–––  
0.50  
–––  
Max.  
0.75  
–––  
62  
Units  
RθJC  
RθCS  
RθJA  
°C/W  
www.irf.com  
1
12/11/02  
IRF1503S/IRF1503L  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
30 ––– –––  
––– 0.028 ––– V/°C Reference to 25°C, ID = 1mA  
Conditions  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
V
VGS = 0V, ID = 250µA  
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient  
RDS(on)  
VGS(th)  
gfs  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
2.0  
75  
2.6 3.3  
––– 4.0  
––– –––  
mVGS = 10V, ID = 140A „  
V
S
VDS = 10V, ID = 250µA  
VDS = 25V, ID = 140A  
Forward Transconductance  
––– ––– 20  
––– ––– 250  
––– ––– 200  
––– ––– -200  
––– 130 200  
VDS = 30V, VGS = 0V  
IDSS  
Drain-to-Source Leakage Current  
µA  
nA  
VDS = 24V, VGS = 0V, TJ = 150°C  
VGS = 20V  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
IGSS  
VGS = -20V  
Qg  
ID = 140A  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
36  
41  
54  
62  
nC VDS = 24V  
VGS = 10V„  
VDD = 15V  
17 –––  
––– 130 –––  
ID = 140A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
–––  
–––  
59 –––  
48 –––  
RG = 2.5Ω  
VGS = 10V „  
D
S
Between lead,  
5.0  
LD  
LS  
Internal Drain Inductance  
Internal Source Inductance  
–––  
–––  
–––  
–––  
6mm (0.25in.)  
nH  
G
from package  
13  
and center of die contact  
Ciss  
Input Capacitance  
––– 5730 –––  
––– 2250 –––  
––– 290 –––  
––– 7580 –––  
––– 2290 –––  
––– 3420 –––  
VGS = 0V  
Coss  
Output Capacitance  
pF  
VDS = 25V  
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
ƒ = 1.0MHz, See Fig. 5  
Coss  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 24V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 24V  
Coss  
Output Capacitance  
Coss eff.  
Effective Output Capacitance ꢀ  
Source-Drain Ratings and Characteristics  
Parameter  
Continuous Source Current  
(Body Diode)  
Min. Typ. Max. Units  
Conditions  
D
IS  
MOSFET symbol  
––– –––  
190†  
showing the  
A
G
ISM  
Pulsed Source Current  
(Body Diode)   
integral reverse  
––– ––– 960  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse RecoveryCharge  
Forward Turn-On Time  
––– ––– 1.3  
––– 71 110  
––– 110 170  
V
TJ = 25°C, IS = 140A, VGS = 0V „  
ns  
TJ = 25°C, IF = 140A  
Qrr  
nC di/dt = 100A/µs „  
ton  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Starting TJ = 25°C, L = 0.049mH  
RG = 25, IAS = 140A. (See Figure 12).  
ƒ ISD 140A, di/dt 110A/µs, VDD V(BR)DSS  
TJ 175°C  
Coss eff. is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
.
† Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
,
„ Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRF1503S/IRF1503L  
1000  
100  
10  
1000  
VGS  
15V  
VGS  
15V  
TOP  
TOP  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
BOTTOM4.5V  
BOTTOM4.5V  
100  
4.5V  
4.5V  
20µs PULSE WIDTH  
Tj = 25°C  
20µs PULSE WIDTH  
Tj = 175°C  
1
10  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
200  
1000  
T
= 25°C  
T
= 175°C  
J
J
T
= 175°C  
160  
120  
80  
J
T
= 25°C  
J
100  
40  
V
= 25V  
DS  
20µs PULSE WIDTH  
V
= 25V  
DS  
20µs PULSE WIDTH  
10  
0
4.0  
5.0  
V
6.0  
7.0  
8.0  
9.0  
10.0  
0
40  
80  
120  
160  
200  
, Gate-to-Source Voltage (V)  
I
Drain-to-Source Current (A)  
GS  
D,  
Fig 4. Typical Forward Transconductance  
Fig 3. Typical Transfer Characteristics  
Vs. DrainCurrent  
www.irf.com  
3
IRF1503S/IRF1503L  
10000  
20  
16  
12  
8
V
C
= 0V,  
= C  
f = 1 MHZ  
+ C C  
GS  
I = 140A  
D
,
V
= 24V  
iss  
gs  
gd  
ds  
DS  
SHORTED  
8000  
6000  
4000  
2000  
C
= C  
rss  
gd  
C
= C + C  
oss  
ds  
gd  
Ciss  
Coss  
4
Crss  
10  
0
0
0
40  
Q
80  
120  
160  
200  
1
100  
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.0  
10000  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
1000  
100  
10  
100.0  
10.0  
1.0  
T
= 175°C  
J
100µsec  
1msec  
T
= 25°C  
10msec  
J
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
1
0.1  
1
10  
100  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
V
, Drain-toSource Voltage (V)  
V
, Source-toDrain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF1503S/IRF1503L  
200  
160  
120  
80  
2.0  
240A  
=
I
D
LIMITED BY PACKAGE  
1.5  
1.0  
0.5  
0.0  
40  
V
= 10V  
GS  
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
°
25  
50  
75  
100  
125  
150  
175  
°
, Case Temperature ( C)  
T , Junction Temperature  
( C)  
T
J
C
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current Vs.  
Vs.Temperature  
Case Temperature  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
P
DM  
t
1
0.02  
t
2
SINGLE PULSE  
0.01  
(THERMAL RESPONSE)  
Notes:  
1. Duty factor D =  
t
/ t  
1
2
2. Peak T  
= P  
x
Z
+ T  
J
DM  
thJC  
C
0.01  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
t , Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF1503S/IRF1503L  
1400  
1200  
1000  
800  
600  
400  
200  
0
15V  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
2
V0GVS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
Vs. Drain Current  
Q
G
10 V  
Q
Q
GD  
GS  
4.0  
3.0  
2.0  
1.0  
V
G
I
= 250µA  
D
Charge  
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
V
GS  
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
, Temperature ( °C )  
3mA  
T
J
I
I
D
G
Current Sampling Resistors  
Fig 14. Threshold Voltage Vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF1503S/IRF1503L  
10000  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming  
Tj = 25°C due to  
0.01  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
0.05  
0.10  
1
1.0E-07  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
600  
500  
400  
300  
200  
100  
0
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
TOP  
BOTTOM 50% Duty Cycle  
= 140A  
Single Pulse  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Fig 16. Maximum Avalanche Energy  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
www.irf.com  
7
IRF1503S/IRF1503L  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
CircuitLayoutConsiderations  
LowStrayInductance  
Ground Plane  
LowLeakageInductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
Reverse  
Recovery  
Current  
‚
Body Diode Forward  
„
Current  
di/dt  
-
+
-
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dtcontrolledbyRG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
PulseWidth ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRF1503S/IRF1503L  
D2Pak Package Outline  
D2Pak Part Marking Information  
www.irf.com  
9
IRF1503S/IRF1503L  
TO-262 Package Outline  
TO-262 Part Marking Information  
10  
www.irf.com  
IRF1503S/IRF1503L  
D2Pak Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
TRL  
11.60 (.457)  
11.40 (.449)  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
15.42 (.609)  
23.90 (.941)  
15.22 (.601)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
4.72 (.136)  
4.52 (.178)  
10.70 (.421)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 12/02  
www.irf.com  
11  

相关型号:

IRF1503SPBF

HEXFET Power MOSFET
INFINEON

IRF1503STRL

Power Field-Effect Transistor, 75A I(D), 30V, 0.0033ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRF1503STRLPBF

Power Field-Effect Transistor, 75A I(D), 30V, 0.0033ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF1503STRR

Power Field-Effect Transistor, 75A I(D), 30V, 0.0033ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRF1503STRRPBF

Power Field-Effect Transistor, 75A I(D), 30V, 0.0033ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF150CHP

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
VISHAY

IRF150EAPBF

Power Field-Effect Transistor, 38A I(D), 100V, 0.065ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AE
INFINEON

IRF150EB

Power Field-Effect Transistor, 38A I(D), 100V, 0.065ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AE
INFINEON

IRF150EBPBF

38A, 100V, 0.065ohm, N-CHANNEL, Si, POWER, MOSFET, TO-204AE
INFINEON

IRF150EC

Power Field-Effect Transistor, 38A I(D), 100V, 0.065ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AE
INFINEON

IRF150ECPBF

38A, 100V, 0.065ohm, N-CHANNEL, Si, POWER, MOSFET, TO-204AE
INFINEON

IRF150ED

Power Field-Effect Transistor, 38A I(D), 100V, 0.065ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AE
INFINEON