IRF2204 [INFINEON]

AUTOMOTIVE MOSFET; 汽车MOSFET
IRF2204
型号: IRF2204
厂家: Infineon    Infineon
描述:

AUTOMOTIVE MOSFET
汽车MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总9页 (文件大小:141K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94434  
AUTOMOTIVE MOSFET  
IRF2204  
HEXFET® Power MOSFET  
Typical Applications  
Electric Power Steering  
D
14 Volts Automotive Electrical Systems  
VDSS = 40V  
Features  
Advanced Process Technology  
Ultra Low On-Resistance  
Dynamic dv/dt Rating  
175°C Operating Temperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
RDS(on) = 3.6mΩ  
G
ID = 210A†  
S
Description  
SpecificallydesignedforAutomotiveapplications,thisHEXFET® PowerMOSFET  
utilizesthelastestprocessingtechniquestoachieveextremelylow on-resistance  
per silicon area. Additional features of this design are a 175°C junction operating  
temperature, fast switching speed and improved repetitive avalanche rating.  
These features combine to make this design an extremely efficient and reliable  
device for use in Automotive applications and a wide variety of other applications.  
TO-220AB  
Absolute Maximum Ratings  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current   
Max.  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
210†  
150†  
850  
A
PD @TC = 25°C  
Power Dissipation  
330  
W
W/°C  
V
Linear Derating Factor  
2.2  
VGS  
EAS  
IAR  
Gate-to-Source Voltage  
± 20  
460  
Single Pulse Avalanche Energy‚  
Avalanche Current  
mJ  
See Fig.12a, 12b, 15, 16  
A
EAR  
TJ  
Repetitive Avalanche Energy‡  
Operating Junction and  
mJ  
°C  
-55 to + 175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
Mounting Torque, 6-32 or M3 screw  
300 (1.6mm from case )  
10 lbf•in (1.1N•m)  
Thermal Resistance  
Parameter  
Junction-to-Case  
Typ.  
–––  
Max.  
Units  
RθJC  
RθCS  
RθJA  
0.45  
–––  
62  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
0.50  
–––  
°C/W  
www.irf.com  
1
08/07/02  
IRF2204  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
40 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
V
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.041 ––– V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
VGS(th)  
gfs  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
2.0  
3.0 3.6  
––– 4.0  
mVGS = 10V, ID = 130A „  
V
S
VDS = 10V, ID = 250µA  
VDS = 10V, ID = 130A  
VDS = 40V, VGS = 0V  
VDS = 32V, VGS = 0V, TJ = 150°C  
VGS = 20V  
Forward Transconductance  
120 ––– –––  
––– ––– 20  
––– ––– 250  
––– ––– 200  
––– ––– -200  
––– 130 200  
IDSS  
Drain-to-Source Leakage Current  
µA  
nA  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
IGSS  
VGS = -20V  
Qg  
ID = 130A  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
35  
39  
52  
59  
nC VDS = 32V  
VGS = 10V„  
VDD = 20V  
15 –––  
––– 140 –––  
––– 62 –––  
––– 110 –––  
ID = 130A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
RG = 2.5Ω  
VGS = 10V „  
D
Between lead,  
4ꢀ5  
LD  
LS  
Internal Drain Inductance  
Internal Source Inductance  
–––  
–––  
–––  
–––  
6mm (0.25in.)  
nH  
G
from package  
7ꢀ5  
and center of die contact  
S
Ciss  
Input Capacitance  
––– 5890 –––  
––– 1570 –––  
––– 130 –––  
––– 8000 –––  
––– 1370 –––  
––– 2380 –––  
VGS = 0V  
Coss  
Output Capacitance  
pF  
VDS = 25V  
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
ƒ = 1.0MHz, See Fig. 5  
Coss  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 32V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 32V  
Coss  
Output Capacitance  
Coss eff.  
Effective Output Capacitance ꢀ  
Source-Drain Ratings and Characteristics  
Parameter  
Continuous Source Current  
(Body Diode)  
Min. Typ. Max. Units  
Conditions  
D
IS  
MOSFET symbol  
––– –––  
210†  
showing the  
A
G
ISM  
Pulsed Source Current  
(Body Diode)   
integral reverse  
––– ––– 850  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse RecoveryCharge  
Forward Turn-On Time  
––– ––– 1.3  
––– 68 100  
––– 120 180  
V
TJ = 25°C, IS = 130A, VGS = 0V „  
ns  
TJ = 25°C, IF = 130A  
Qrr  
ton  
nC di/dt = 100A/µs „  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
2
www.irf.com  
IRF2204  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
20µs PULSE WIDTH  
°
20µs PULSE WIDTH  
°
T = 25  
C
J
T = 175  
J
C
1
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000.00  
100.00  
10.00  
2.5  
210A  
=
I
D
T = 175°C  
J
2.0  
1.5  
1.0  
0.5  
0.0  
T = 25°C  
J
V
= 25V  
DS  
20µs PULSE WIDTH  
V
= 10V  
GS  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
°
4.0  
5.0  
V
6.0  
7.0  
8.0  
9.0  
10.0  
T , Junction Temperature  
(
C)  
J
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
www.irf.com  
3
IRF2204  
100000  
10000  
1000  
12  
10  
8
I
V
= 0V,  
f = 1 MHZ  
= 130A  
D
GS  
V
V
= 32V  
= 20V  
C
= C + C  
,
C
SHORTED  
DS  
DS  
iss  
gs  
gd  
ds  
C
= C  
rss  
gd  
C
= C + C  
ds gd  
oss  
Ciss  
Coss  
6
Crss  
4
100  
2
10  
1
0
0
30  
60  
90  
120  
150  
10  
100  
Q
, Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
°
T = 175  
J
C
100  
10  
1
100µsec  
1msec  
°
T = 25  
J
C
10msec  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0 V  
GS  
2.0  
1
0.1  
0.0  
0.5  
1.0  
1.5  
2.5  
1
10  
, Drain-toSource Voltage (V)  
100  
V
,Source-to-Drain Voltage (V)  
SD  
V
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF2204  
250  
200  
150  
100  
50  
RD  
VDS  
LIMITED BY PACKAGE  
VGS  
10V  
DꢀUꢀTꢀ  
RG  
+VDD  
-
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 10a. Switching Time Test Circuit  
V
DS  
90%  
0
25  
50  
75  
100  
125  
150  
175  
°
, Case Temperature ( C)  
T
C
10%  
V
GS  
Fig 9. Maximum Drain Current Vs.  
t
t
r
t
t
f
d(on)  
d(off)  
Case Temperature  
Fig 10b. Switching Time Waveforms  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
SINGLE PULSE  
0.02  
(THERMAL RESPONSE)  
0.01  
P
DM  
0.01  
t
1
t
2
Notes:  
1. Duty factor D =  
t
/ t  
1
2
2. Peak T  
= P  
x
Z
+ T  
J
DM  
thJC  
C
0.001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
t , Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF2204  
900  
750  
600  
450  
300  
150  
0
15V  
I
D
TOP  
52A  
91A  
BOTTOM  
130A  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
20V  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
°
( C)  
150  
175  
Starting Tj, Junction Temperature  
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
Vs. Drain Current  
Q
G
10 V  
4.0  
Q
Q
GD  
GS  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
V
G
I
= 250µA  
D
Charge  
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
V
GS  
T , Temperature ( °C )  
3mA  
J
I
I
D
G
Current Sampling Resistors  
Fig 14. Threshold Voltage Vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF2204  
1000  
100  
10  
Duty Cycle = Single Pulse  
0.01  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses  
0.05  
0.10  
1
1.0E-07  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
500  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
TOP  
BOTTOM 10% Duty Cycle  
= 210A  
Single Pulse  
I
400  
300  
200  
100  
0
D
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
Fig 16. Maximum Avalanche Energy  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
www.irf.com  
7
IRF2204  
Peak Diode Recovery dv/dt Test Circuit  
+
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
DꢀUꢀT*  
ƒ
-
+
‚
-
„
-
+

RG  
dv/dt controlled by RG  
ISD controlled by Duty Factor "D"  
DꢀUꢀTꢀ - Device Under Test  
+
-
VDD  
VGS  
* Reverse Polarity of DꢀUꢀT for P-Channel  
Driver Gate Drive  
P.W.  
Period  
Period  
D =  
P.W.  
V
[
=10V  
] ***  
GS  
D.U.T. I Waveform  
SD  
Reverse  
Recovery  
Current  
Body Diode Forward  
Current  
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  
V
DD  
]
[
Re-Applied  
Voltage  
Body Diode  
Forward Drop  
Inductor Curent  
I
[
]
SD  
Ripple 5%  
*** VGS = 5ꢀ0V for Logic Level and 3V Drive Devices  
Fig 17ꢀ For N-channel HEXFET® power MOSFETs  
8
www.irf.com  
IRF2204  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
10.54 (.415)  
10.29 (.405)  
- B -  
3.78 (.149)  
3.54 (.139)  
2.87 (.113)  
2.62 (.103)  
4.69 (.185)  
4.20 (.165)  
1.32 (.052)  
1.22 (.048)  
- A -  
6.47 (.255)  
6.10 (.240)  
4
15.24 (.600)  
14.84 (.584)  
1.15 (.045)  
MIN  
LEAD ASSIGNMENTS  
1 - GATE  
1
2
3
2 - DRAIN  
3 - SOURCE  
4 - DRAIN  
14.09 (.555)  
13.47 (.530)  
4.06 (.160)  
3.55 (.140)  
0.93 (.037)  
0.69 (.027)  
0.55 (.022)  
0.46 (.018)  
3X  
3X  
1.40 (.055)  
3X  
1.15 (.045)  
0.36 (.014)  
M
B A M  
2.92 (.115)  
2.64 (.104)  
2.54 (.100)  
2X  
NOTES:  
1
2
DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
CONTROLLING DIMENSION : INCH  
3
4
OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.  
HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.  
TO-220AB Part Marking Information  
EXAMPLE : THIS IS AN IRF1010  
WITH ASSEMBLY  
A
INTERNATIONAL  
RECTIFIER  
PART NUMBER  
LOT CODE 9B1M  
IRF1010  
9246  
LOGO  
9B 1M  
DATE CODE  
(YYWW)  
ASSEMBLY  
LOT CODE  
YY = YEAR  
WW = WEEK  
Notes:  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Starting TJ = 25°C, L = 0.06mH  
RG = 25, IAS = 130A. (See Figure 12).  
ƒ ISD 130A, di/dt 170A/µs, VDD V(BR)DSS  
TJ 175°C.  
Coss eff. is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
.
†
Calculated continuous current based on maximum allowable  
junction temperature. Package limitation current is 75A.  
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
,
‡
„ Pulse width 400µs; duty cycle 2%.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive [Q101] market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.08/02  
www.irf.com  
9

相关型号:

IRF2204L

AUTOMOTIVE MOSFET
INFINEON

IRF2204LPBF

HEXFET㈢ Power MOSFET ( VDSS = 40V , RDS(on) = 3.6mヘ , ID = 170A )
INFINEON

IRF2204PBF

Power Field-Effect Transistor, 75A I(D), 40V, 0.0036ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, TO-220AB, LEAD FREE, PLASTIC PACKAGE-3
INFINEON

IRF2204S

AUTOMOTIVE MOSFET
INFINEON

IRF2204SPBF

HEXFET㈢ Power MOSFET ( VDSS = 40V , RDS(on) = 3.6mヘ , ID = 170A )
INFINEON

IRF2204STRL

TRANSISTOR | MOSFET | N-CHANNEL | 40V V(BR)DSS | 170A I(D) | TO-263AB
ETC

IRF2204STRR

TRANSISTOR | MOSFET | N-CHANNEL | 40V V(BR)DSS | 170A I(D) | TO-263AB
ETC

IRF2204STRRPBF

暂无描述
INFINEON

IRF220E

Power Field-Effect Transistor, 200V, 0.8ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AA,
INFINEON

IRF220EA

Power Field-Effect Transistor, 200V, 0.8ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AA,
INFINEON

IRF220EB

Power Field-Effect Transistor, 200V, 0.8ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AA
INFINEON

IRF220EC

Power Field-Effect Transistor, 200V, 0.8ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AA
INFINEON