IRF2804LPBF [INFINEON]

AUTOMOTIVE MOSFET; 汽车MOSFET
IRF2804LPBF
型号: IRF2804LPBF
厂家: Infineon    Infineon
描述:

AUTOMOTIVE MOSFET
汽车MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总12页 (文件大小:771K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95332A  
IRF2804PbF  
AUTOMOTIVE MOSFET  
IRF2804SPbF  
IRF2804LPbF  
Features  
HEXFET® Power MOSFET  
l
l
l
l
l
l
Advanced Process Technology  
UltraLowOn-Resistance  
175°COperatingTemperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free  
D
VDSS = 40V  
‰
RDS(on) = 2.0mΩ  
G
ID = 75A  
S
Description  
SpecificallydesignedforAutomotiveapplications,  
this HEXFET® Power MOSFET utilizes the latest  
processing techniques to achieve extremely low  
on-resistancepersiliconarea. Additionalfeatures  
of this design are a 175°C junction operating  
temperature, fast switching speed and improved  
repetitiveavalancherating. Thesefeaturescom-  
bine to make this design an extremely efficient  
andreliabledeviceforuseinAutomotiveapplica-  
tions and a wide variety of other applications.  
D2Pak  
IRF2804SPbF IRF2804LPbF  
TO-262  
TO-220AB  
IRF2804PbF  
Absolute Maximum Ratings  
Parameter  
Max.  
270  
190  
75  
Units  
A
I
I
I
I
@ TC = 25°C  
@ TC = 100°C  
@ TC = 25°C  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
D
D
D
Continuous Drain Current, VGS @ 10V (See Fig. 9)  
(Package Limited)  
Continuous Drain Current, VGS @ 10V  
1080  
300  
Pulsed Drain Current  
DM  
P
@TC = 25°C  
Maximum Power Dissipation  
W
D
Linear Derating Factor  
Gate-to-Source Voltage  
2.0  
± 20  
W/°C  
V
V
GS  
EAS  
Single Pulse Avalanche Energy (Thermally Limited)  
Single Pulse Avalanche Energy Tested Value  
540  
1160  
mJ  
E
AS (tested)  
Avalanche Current  
IAR  
EAR  
See Fig.12a,12b,15,16  
A
Repetitive Avalanche Energy  
mJ  
°C  
T
J
Operating Junction and  
-55 to + 175  
T
Storage Temperature Range  
STG  
Soldering Temperature, for 10 seconds  
Mounting torque, 6-32 or M3 screw  
300 (1.6mm from case )  
10 lbf•in (1.1N•m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
0.50  
–––  
62  
Units  
°C/W  
RθJC  
RθCS  
RθJA  
RθJA  
Junction-to-Case  
Case-to-Sink, Flat, Greased Surface  
0.50  
–––  
Junction-to-Ambient  
–––  
40  
Junction-to-Ambient (PCB Mount, steady state)  
HEXFET® is a registered trademark of International Rectifier.  
www.irf.com  
1
08/25/05  
IRF2804/S/LPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
40 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
V
∆ΒVDSS/TJ  
RDS(on) SMD  
Breakdown Voltage Temp. Coefficient ––– 0.031 ––– V/°C Reference to 25°C, ID = 1mA  
Static Drain-to-Source On-Resistance  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
–––  
2.0  
1.5  
1.8  
–––  
–––  
–––  
–––  
–––  
–––  
160  
41  
2.0  
2.3  
VGS = 10V, ID = 75A  
VGS = 10V, ID = 75A  
VDS = VGS, ID = 250µA  
VDS = 10V, ID = 75A  
m
RDS(on) TO-220  
VGS(th)  
4.0  
V
gfs  
IDSS  
Forward Transconductance  
130  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
20  
S
Drain-to-Source Leakage Current  
µA VDS = 40V, VGS = 0V  
250  
200  
-200  
240  
62  
VDS = 40V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
nA VGS = 20V  
VGS = -20V  
Qg  
Qgs  
Qgd  
td(on)  
tr  
nC ID = 75A  
VDS = 32V  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
66  
99  
V
GS = 10V  
DD = 20V  
13  
–––  
–––  
–––  
–––  
–––  
ns  
V
Rise Time  
120  
130  
130  
4.5  
ID = 75A  
td(off)  
tf  
Turn-Off Delay Time  
RG = 2.5Ω  
VGS = 10V  
Fall Time  
LD  
D
S
Internal Drain Inductance  
nH Between lead,  
6mm (0.25in.)  
from package  
G
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
GS = 0V  
DS = 25V  
ƒ = 1.0MHz, See Fig. 5  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
GS = 0V, VDS = 32V, ƒ = 1.0MHz  
Ciss  
Input Capacitance  
––– 6450 –––  
––– 1690 –––  
pF  
V
Coss  
Output Capacitance  
V
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
–––  
840  
–––  
Coss  
––– 5350 –––  
––– 1520 –––  
––– 2210 –––  
Coss  
Output Capacitance  
V
Coss eff.  
Effective Output Capacitance  
VGS = 0V, VDS = 0V to 32V  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS  
D
S
Continuous Source Current  
–––  
–––  
270  
(Body Diode)  
Pulsed Source Current  
A
V
showing the  
integral reverse  
ISM  
G
–––  
––– 1080  
(Body Diode)  
Diode Forward Voltage  
p-n junction diode.  
VSD  
T = 25°C, I = 75A, V = 0V  
–––  
–––  
1.3  
J
S
GS  
trr  
Qrr  
T = 25°C, I = 75A, VDD = 20V  
J F  
di/dt = 100A/µs  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
56  
67  
84  
100  
ns  
nC  
ton  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Forward Turn-On Time  
Notes:  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Limited by TJmax, starting TJ = 25°C,  
† Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
‡ This value determined from sample failure population. 100%  
tested to this value in production.  
L=0.24mH, RG = 25, IAS = 75A, VGS =10V.  
ˆ This is applied to D2Pak, when mounted on 1" square PCB  
( FR-4 or G-10 Material ). For recommended footprint and  
soldering techniques refer to application note #AN-994.  
‰ Max RDS(on) for D2Pak and TO-262 (SMD) devices.  
Part not recommended for use above this value.  
ƒ ISD 75A, di/dt 220A/µs, VDD V(BR)DSS  
TJ 175°C.  
,
„ Pulse width 1.0ms; duty cycle 2%.  
Coss eff. is a fixed capacitance that gives the same  
Š TO-220 device will have an Rth value of 0.45°C/W.  
charging time as Coss while VDS is rising from 0 to 80%  
VDSS  
.
2
www.irf.com  
IRF2804/S/LPbF  
10000  
1000  
100  
10  
10000  
1000  
100  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
VGS  
TOP  
TOP  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
BOTTOM 4.5V  
5.0V  
BOTTOM 4.5V  
4.5V  
20µs PULSE WIDTH  
4.5V  
20µs PULSE WIDTH  
Tj = 175°C  
Tj = 25°C  
1
10  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
300  
250  
200  
150  
100  
50  
T
J
= 25°C  
J
T
= 175°C  
J
T
= 175°C  
T
= 25°C  
J
V
= 10V  
V
= 10V  
DS  
20µs PULSE WIDTH  
DS  
20µs PULSE WIDTH  
1
0
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
0
40  
80  
120  
160  
200  
V
, Gate-to-Source Voltage (V)  
I , Drain-to-Source Current (A)  
GS  
D
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
vs. Drain Current  
www.irf.com  
3
IRF2804/S/LPbF  
20  
16  
12  
8
12000  
V
C
= 0V,  
f = 1 MHZ  
I = 75A  
D
GS  
= C + C , C SHORTED  
iss  
gs  
= C  
gd  
ds  
V
= 32V  
DS  
C
10000  
8000  
6000  
4000  
2000  
rss  
gd  
VDS= 20V  
VDS= 8.0V  
C
= C + C  
oss  
ds gd  
Ciss  
4
Coss  
Crss  
0
0
0
40  
80  
120  
160  
200  
240  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-SourceVoltage  
Drain-to-SourceVoltage  
10000  
1000.0  
100.0  
10.0  
1.0  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
1000  
100  
10  
100µsec  
1msec  
10msec  
T
= 25°C  
1.0  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
J
V
= 0V  
GS  
0.1  
1
0.2  
0.6  
SD  
1.4  
1.8  
2.2  
0
1
10  
100  
V
, Source-toDrain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF2804/S/LPbF  
2.0  
1.5  
1.0  
0.5  
300  
250  
200  
150  
100  
50  
I
= 75A  
= 10V  
D
V
GS  
Limited By Package  
0
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160 180  
25  
50  
75  
100  
125  
150  
175  
, Junction Temperature (°C)  
J
T
, Case Temperature (°C)  
C
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current vs.  
vs.Temperature  
CaseTemperature  
1
D = 0.50  
0.1  
0.20  
0.10  
0.05  
0.02  
0.01  
0.01  
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-008  
1E-007  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF2804/S/LPbF  
15V  
1200  
1000  
800  
600  
400  
200  
0
I
D
TOP  
31A  
53A  
DRIVER  
+
L
V
DS  
BOTTOM 75A  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
20V  
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
vs. Drain Current  
Q
G
10 V  
Q
Q
GD  
GS  
4.0  
3.0  
2.0  
1.0  
V
G
I
= 250µA  
D
Charge  
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
V
GS  
T
J
3mA  
I
I
D
G
Current Sampling Resistors  
Fig 14. Threshold Voltage vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF2804/S/LPbF  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses  
0.01  
0.05  
0.10  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
600  
TOP  
BOTTOM 10% Duty Cycle  
= 75A  
Single Pulse  
500  
400  
300  
200  
100  
0
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Fig 16. Maximum Avalanche Energy  
vs.Temperature  
www.irf.com  
7
IRF2804/S/LPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
CircuitLayoutConsiderations  
LowStrayInductance  
Ground Plane  
LowLeakageInductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dtcontrolledbyRG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
PulseWidth ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRF2804/S/LPbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
www.irf.com  
9
IRF2804/S/LPbF  
D2Pak Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak Part Marking Information  
10  
www.irf.com  
IRF2804/S/LPbF  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
OR  
www.irf.com  
11  
IRF2804/S/LPbF  
D2Pak Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
TRL  
11.60 (.457)  
11.40 (.449)  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
TO-220AB package is not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive [Q101] market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 08/05  
12  
www.irf.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY