IRF2804S-7P [INFINEON]

AUTOMOTIVE MOSFET; 汽车MOSFET
IRF2804S-7P
型号: IRF2804S-7P
厂家: Infineon    Infineon
描述:

AUTOMOTIVE MOSFET
汽车MOSFET

文件: 总10页 (文件大小:263K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96891  
AUTOMOTIVE MOSFET  
IRF2804S-7P  
HEXFET® Power MOSFET  
Features  
l
l
l
l
l
Advanced Process Technology  
D
Ultra Low On-Resistance  
175°C Operating Temperature  
Fast Switching  
VDSS = 40V  
G
Repetitive Avalanche Allowed up to Tjmax  
RDS(on) = 1.6mΩ  
S
Description  
ID = 160A  
S (Pin 2, 3 ,5,6,7)  
G (Pin 1)  
SpecificallydesignedforAutomotiveapplications,  
this HEXFET® Power MOSFET utilizes the latest  
processing techniques to achieve extremely low  
on-resistance per silicon area. Additional fea-  
tures of this design are a 175°C junction operat-  
ing temperature, fast switching speed and im-  
proved repetitive avalanche rating . These fea-  
tures combine to make this design an extremely  
efficient and reliable device for use in Automotive  
applications and a wide variety of other applica-  
tions.  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
I
I
I
I
@ TC = 25°C  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
320  
A
D
D
D
@ TC = 100°C Continuous Drain Current, VGS @ 10V (See Fig. 9)  
230  
160  
@ TC = 25°C  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
1360  
330  
DM  
P
@TC = 25°C  
Maximum Power Dissipation  
W
D
Linear Derating Factor  
2.2  
W/°C  
V
V
Gate-to-Source Voltage  
± 20  
GS  
Single Pulse Avalanche Energy (Thermally Limited)  
EAS  
630  
1050  
mJ  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
E
AS (tested)  
IAR  
EAR  
See Fig.12a,12b,15,16  
A
Repetitive Avalanche Energy  
Operating Junction and  
mJ  
°C  
T
T
-55 to + 175  
J
Storage Temperature Range  
STG  
Soldering Temperature, for 10 seconds  
Mounting torque, 6-32 or M3 screw  
300 (1.6mm from case )  
10 lbf•in (1.1N•m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
0.50  
–––  
62  
Units  
°C/W  
Junction-to-Case  
RθJC  
RθCS  
RθJA  
RθJA  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
0.50  
–––  
Junction-to-Ambient (PCB Mount, steady state)  
–––  
40  
HEXFET® is a registered trademark of International Rectifier.  
www.irf.com  
1
9/6/04  
IRF2804S-7P  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
40 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
∆ΒVDSS/TJ  
RDS(on) SMD  
VGS(th)  
V
Breakdown Voltage Temp. Coefficient ––– 0.028 ––– V/°C Reference to 25°C, ID = 1mA  
mΩ  
V
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
2.0  
1.2  
–––  
–––  
–––  
–––  
–––  
1.6  
4.0  
–––  
20  
VGS = 10V, ID = 160A  
VDS = VGS, ID = 250µA  
VDS = 10V, ID = 160A  
gfs  
Forward Transconductance  
220  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
S
IDSS  
Drain-to-Source Leakage Current  
µA  
V
DS = 40V, VGS = 0V  
VDS = 40V, VGS = 0V, TJ = 125°C  
GS = 20V  
VGS = -20V  
nC ID = 160A  
DS = 32V  
250  
200  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
nA  
V
––– -200  
Qg  
Qgs  
Qgd  
td(on)  
tr  
170  
63  
260  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
V
71  
VGS = 10V  
ns VDD = 20V  
ID = 160A  
17  
Rise Time  
150  
110  
105  
4.5  
td(off)  
tf  
Turn-Off Delay Time  
R
G = 2.6Ω  
Fall Time  
VGS = 10V  
LD  
Internal Drain Inductance  
nH Between lead,  
D
S
6mm (0.25in.)  
from package  
G
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
Ciss  
Input Capacitance  
––– 6930 –––  
––– 1750 –––  
pF VGS = 0V  
VDS = 25V  
Coss  
Output Capacitance  
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
–––  
970  
–––  
ƒ = 1.0MHz, See Fig. 5  
GS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
Coss  
––– 5740 –––  
––– 1570 –––  
––– 2340 –––  
V
Coss  
Output Capacitance  
VGS = 0V, VDS = 32V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 32V  
Coss eff.  
Effective Output Capacitance  
Diode Characteristics  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
IS  
–––  
–––  
320  
(Body Diode)  
A
showing the  
G
ISM  
Pulsed Source Current  
(Body Diode)  
–––  
––– 1360  
integral reverse  
S
p-n junction diode.  
VSD  
trr  
T = 25°C, I = 160A, V = 0V  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
43  
1.3  
65  
72  
V
J
S
GS  
T = 25°C, I = 160A, VDD = 20V  
ns  
J
F
Qrr  
48  
nC di/dt = 100A/µs  
Notes:  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Limited by TJmax, starting TJ = 25°C,  
L=0.049mH, RG = 25, IAS = 160A, VGS =10V.  
Part not recommended for use above this value.  
ƒ Pulse width 1.0ms; duty cycle 2%.  
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
† This value determined from sample failure population. 100%  
tested to this value in production.  
‡ This is applied to D2Pak, when mounted on 1" square PCB  
( FR-4 or G-10 Material ). For recommended footprint and  
soldering techniques refer to application note #AN-994.  
„ Coss eff. is a fixed capacitance that gives the same  
charging time as Coss while VDS is rising from 0 to  
ˆ R is measured at TJ of approximately 90°C.  
θ
80% VDSS  
.
2
www.irf.com  
IRF2804S-7P  
10000  
1000  
100  
10000  
1000  
100  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
60µs PULSE WIDTH  
Tj = 25°C  
4.5V  
60µs PULSE WIDTH  
Tj = 175°C  
10  
10  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000.0  
240  
T
= 25°C  
J
200  
160  
120  
80  
100.0  
10.0  
1.0  
T
= 175°C  
J
T
= 175°C  
J
T
= 25°C  
J
V
= 20V  
DS  
60µs PULSE WIDTH  
40  
V
= 10V  
DS  
380µs PULSE WIDTH  
0.1  
0
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
0
20  
40  
60  
80  
100 120 140  
V
, Gate-to-Source Voltage (V)  
GS  
I
Drain-to-Source Current (A)  
D,  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
vs. Drain Current  
www.irf.com  
3
IRF2804S-7P  
14000  
20  
16  
12  
8
V
C
= 0V,  
f = 1 MHZ  
GS  
I
= 160A  
D
V
= 32V  
= C + C , C SHORTED  
DS  
VDS= 20V  
iss  
gs  
gd ds  
12000  
10000  
8000  
6000  
4000  
2000  
0
C
= C  
rss  
gd  
C
= C + C  
oss  
ds  
gd  
Ciss  
Coss  
Crss  
4
0
0
50  
Q
100  
150  
200  
250  
300  
1
10  
100  
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.0  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
100.0  
10.0  
1.0  
100µsec  
1msec  
T
J
= 25°C  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
10msec  
DC  
V
= 0V  
GS  
0.1  
0.1  
0.0  
0.4  
V
0.8  
1.2  
1.6  
2.0  
2.4  
0
1
10  
100  
1000  
V
, Drain-toSource Voltage (V)  
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF2804S-7P  
350  
300  
250  
200  
150  
100  
50  
2.0  
1.5  
1.0  
0.5  
I
= 160A  
= 10V  
LIMITED BY PACKAGE  
D
V
GS  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
C
T
, Junction Temperature (°C)  
J
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current vs.  
vs. Temperature  
Case Temperature  
1
D = 0.50  
0.1  
0.20  
0.10  
R1  
R1  
R2  
R2  
0.05  
Ri (°C/W) τi (sec)  
0.1951 0.000743  
τ
0.01  
0.001  
J τJ  
τ
τ
0.02  
0.01  
Cτ  
1τ1  
Ci= τi/Ri  
τ
2τ2  
0.3050 0.008219  
Notes:  
SINGLE PULSE  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
( THERMAL RESPONSE )  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF2804S-7P  
2500  
2000  
1500  
1000  
500  
15V  
I
D
TOP  
21A  
33A  
160A  
BOTTOM  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
20V  
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
0
t
p
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
Fig 12c. Maximum Avalanche Energy  
I
vs. Drain Current  
AS  
Fig 12b. Unclamped Inductive Waveforms  
Q
G
10 V  
Q
Q
GD  
GS  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
G
Charge  
Fig 13a. Basic Gate Charge Waveform  
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250µA  
L
VCC  
DUT  
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
0
1K  
T
J
Fig 14. Threshold Voltage vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF2804S-7P  
10000  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
0.01  
0.05  
0.10  
1
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
800  
600  
400  
200  
0
TOP  
BOTTOM 1% Duty Cycle  
= 160A  
Single Pulse  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Fig 16. Maximum Avalanche Energy  
vs. Temperature  
www.irf.com  
7
IRF2804S-7P  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRF2804S-7P  
D2Pak - 7 Pin Package Outline  
Dimensions are shown in millimeters (inches)  
www.irf.com  
9
IRF2804S-7P  
D2Pak - 7 Pin Tape and Reel  
IRF2804STRL-7P  
IRF2804STRL-7P  
IRF2804STRL-7P  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive [Q101]market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 09/04  
10  
www.irf.com  

相关型号:

IRF2804S-7PPBF

HEXFET㈢ Power MOSFET
INFINEON

IRF2804S-7PTRLPBF

Power Field-Effect Transistor, 160A I(D), 40V, 0.0016ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, D2PAK-7
INFINEON

IRF2804SPBF

AUTOMOTIVE MOSFET
INFINEON

IRF2804STRLPBF

Power Field-Effect Transistor, 75A I(D), 40V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF2804STRRPBF

Power Field-Effect Transistor, 75A I(D), 40V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF2805

AUTOMOTIVE MOSFET
INFINEON

IRF2805L

AUTOMOTIVE MOSFET
INFINEON

IRF2805LPBF

HEXFET Power MOSFET
INFINEON

IRF2805PBF

AUTOMOTIVE MOSFET
INFINEON

IRF2805S

AUTOMOTIVE MOSFET
INFINEON

IRF2805SPBF

HEXFET Power MOSFET
INFINEON

IRF2805SPBF_15

Advanced Process Technology
INFINEON