IRF2805 [INFINEON]

AUTOMOTIVE MOSFET; 汽车MOSFET
IRF2805
型号: IRF2805
厂家: Infineon    Infineon
描述:

AUTOMOTIVE MOSFET
汽车MOSFET

晶体 晶体管 开关 脉冲 局域网
文件: 总9页 (文件大小:152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94428  
IRF2805  
AUTOMOTIVE MOSFET  
HEXFET® Power MOSFET  
Typical Applications  
D
l
Climate Control, ABS, Electronic Braking,  
VDSS = 55V  
Windshield Wipers  
Features  
R
DS(on) = 4.7mΩ  
G
l
l
l
l
l
Advanced Process Technology  
UltraLowOn-Resistance  
175°COperatingTemperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
ID = 75A  
S
Description  
SpecificallydesignedforAutomotiveapplications, thisHEXFET® Power  
MOSFET utilizes the latest processing techniques to achieve extremely  
lowon-resistancepersiliconarea. Additionalfeaturesofthisdesign are  
a 175°C junction operating temperature, fast switching speed and im-  
provedrepetitiveavalancherating.Thesefeaturescombinetomakethis  
design an extremely efficient and reliable device for use in Automotive  
applications and a wide variety of other applications.  
TO-220AB  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon limited)  
Continuous Drain Current, VGS @ 10V (See Fig.9)  
Continuous Drain Current, VGS @ 10V (Package limited)  
Pulsed Drain Current   
175  
120  
75  
A
700  
330  
2.2  
PD @TC = 25°C  
Power Dissipation  
W
W/°C  
V
Linear Derating Factor  
VGS  
Gate-to-Source Voltage  
± 20  
450  
1220  
EAS  
Single Pulse Avalanche Energy‚  
Single Pulse Avalanche Energy Tested Value‡  
Avalanche Current  
mJ  
EAS (6 sigma)  
IAR  
See Fig.12a, 12b, 15, 16  
A
EAR  
TJ  
Repetitive Avalanche Energy†  
Operating Junction and  
mJ  
-55 to + 175  
TSTG  
Storage Temperature Range  
°C  
Soldering Temperature, for 10 seconds  
Mounting Torque, 6-32 or M3 screw  
300 (1.6mm from case )  
1.1 (10)  
N•m (lbf•in)  
Thermal Resistance  
Parameter  
Junction-to-Case  
Typ.  
–––  
Max.  
0.45  
–––  
62  
Units  
RθJC  
RθCS  
RθJA  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
0.50  
–––  
°C/W  
HEXFET(R) is a registered trademark of International Rectifier.  
www.irf.com  
1
8/8/02  
IRF2805  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
55 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
V
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.06 ––– V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
VGS(th)  
gfs  
Static Drain-to-Source On-Resistance –––  
3.9 4.7  
––– 4.0  
––– –––  
mVGS = 10V, ID = 104A „  
Gate Threshold Voltage  
2.0  
91  
V
S
VDS = 10V, ID = 250µA  
VDS = 25V, ID = 104A  
VDS = 55V, VGS = 0V  
VDS = 55V, VGS = 0V, TJ = 125°C  
VGS = 20V  
Forward Transconductance  
––– ––– 20  
––– ––– 250  
––– ––– 200  
––– ––– -200  
––– 150 230  
IDSS  
Drain-to-Source Leakage Current  
µA  
nA  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
IGSS  
VGS = -20V  
Qg  
ID = 104A  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
38  
52  
57  
78  
nC VDS = 44V  
VGS = 10V„  
VDD = 28V  
14 –––  
––– 120 –––  
––– 68 –––  
––– 110 –––  
ID = 104A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
RG = 2.5Ω  
VGS = 10V „  
D
Between lead,  
4.5  
LD  
LS  
Internal Drain Inductance  
Internal Source Inductance  
–––  
–––  
–––  
–––  
6mm (0.25in.)  
nH  
G
from package  
7.5  
and center of die contact  
S
Ciss  
Input Capacitance  
––– 5110 –––  
––– 1190 –––  
––– 210 –––  
––– 6470 –––  
––– 860 –––  
––– 1600 –––  
VGS = 0V  
Coss  
Output Capacitance  
pF VDS = 25V  
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
ƒ = 1.0MHz, See Fig. 5  
Coss  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 44V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 44V  
Coss  
Output Capacitance  
Coss eff.  
Effective Output Capacitance ꢀ  
Source-Drain Ratings and Characteristics  
Parameter  
Continuous Source Current  
(Body Diode)  
Min. Typ. Max. Units  
Conditions  
D
IS  
MOSFET symbol  
175  
700  
––– –––  
––– –––  
showing the  
A
G
ISM  
Pulsed Source Current  
(Body Diode)   
integral reverse  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
––– ––– 1.3  
––– 80 120  
––– 290 430  
V
TJ = 25°C, IS = 104A, VGS = 0V „  
ns  
TJ = 25°C, IF = 104A  
Qrr  
nC di/dt = 100A/µs „  
ton  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
Coss eff. is a fixed capacitance that gives the same charging time  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Starting TJ = 25°C, L = 0.08mH  
RG = 25, IAS = 104A. (See Figure 12).  
ƒ ISD 104A, di/dt 240A/µs, VDD V(BR)DSS  
TJ 175°C  
as Coss while VDS is rising from 0 to 80% VDSS  
.
†
‡
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
This value determined from sample failure population. 100%  
tested to this value in production.  
,
„ Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRF2805  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
TOP  
TOP  
BOTTOM 4.5V  
BOTTOM 4.5V  
4.5V  
4.5V  
20µs PULSE WIDTH  
Tj = 25°C  
20µs PULSE WIDTH  
Tj = 175°C  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
200  
160  
T
= 25°C  
J
T
= 175°C  
J
T
= 175°C  
J
120  
80  
40  
0
100  
T
= 25°C  
J
V
= 25V  
V
= 25V  
DS  
20µs PULSE WIDTH  
DS  
20µs PULSE WIDTH  
10  
4.0  
5.0  
V
6.0  
7.0  
8.0  
9.0  
10.0  
0
40  
80  
120  
160  
200  
, Gate-to-Source Voltage (V)  
I
Drain-to-Source Current (A)  
GS  
D,  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
Vs. DrainCurrent  
www.irf.com  
3
IRF2805  
10000  
8000  
6000  
4000  
2000  
20  
16  
12  
8
V
= 0V,  
= C  
f = 1 MHZ  
+ C C  
GS  
V
= 44V  
I = 104A  
D
DS  
VDS= 28V  
C
,
iss  
gs  
gd  
ds  
SHORTED  
C
= C  
rss  
gd  
C
= C + C  
oss  
ds gd  
Ciss  
4
Coss  
Crss  
0
0
1
0
40  
Q
80  
120  
160  
200  
240  
10  
100  
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.0  
100.0  
10.0  
1.0  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100µsec  
1msec  
T
= 25°C  
J
Tc = 25°C  
10msec  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
1
0.1  
1
10  
100  
1000  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
, Source-toDrain Voltage (V)  
V
, Drain-toSource Voltage (V)  
V
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF2805  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
180  
150  
120  
90  
175A  
=
I
D
LIMITED BY PACKAGE  
60  
30  
V
= 10V  
GS  
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
°
25  
50  
75  
100  
125  
150  
175  
T , Junction Temperature  
(
C)  
°
, Case Temperature ( C)  
T
J
C
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current Vs.  
Vs.Temperature  
Case Temperature  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
SINGLE PULSE  
(THERMAL RESPONSE)  
0.02  
0.01  
P
DM  
0.01  
t
1
t
2
Notes:  
1. Duty factor D =  
t
/ t  
1
2
2. Peak T  
= P  
x
Z
+ T  
J
DM  
thJC  
C
0.001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
t , Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF2805  
1000  
800  
600  
400  
200  
0
I
15V  
D
TOP  
43A  
87A  
BOTTOM  
104A  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
2
V0GVS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
°
( C)  
150  
175  
Starting Tj, Junction Temperature  
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
Vs. Drain Current  
Q
G
10 V  
Q
Q
GD  
GS  
4.0  
V
G
I
= 250µA  
D
3.0  
2.0  
1.0  
Charge  
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
V
GS  
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
3mA  
T
J
I
I
D
G
Current Sampling Resistors  
Fig 14. Threshold Voltage Vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF2805  
10000  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
0.01  
0.05  
0.10  
1
1.0E-07  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
500  
400  
300  
200  
100  
0
TOP  
BOTTOM 10% Duty Cycle  
= 104A  
Single Pulse  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Fig 16. Maximum Avalanche Energy  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
www.irf.com  
7
IRF2805  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
CircuitLayoutConsiderations  
LowStrayInductance  
Ground Plane  
LowLeakageInductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dtcontrolledbyRG  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
RG  
+
-
Body Diode  
Forward Drop  
Inductor Curent  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
PulseWidth ≤ 1 µs  
Duty Factor≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRF2805  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
10.54 (.415)  
10.29 (.405)  
- B -  
3.78 (.149)  
3.54 (.139)  
2.87 (.113)  
2.62 (.103)  
4.69 (.185)  
4.20 (.165)  
1.32 (.052)  
1.22 (.048)  
- A -  
6.47 (.255)  
6.10 (.240)  
4
15.24 (.600)  
14.84 (.584)  
1.15 (.045)  
MIN  
LEAD ASSIGNMENTS  
1 - GATE  
1
2
3
2 - DRAIN  
3 - SOURCE  
4 - DRAIN  
14.09 (.555)  
13.47 (.530)  
4.06 (.160)  
3.55 (.140)  
0.93 (.037)  
0.69 (.027)  
0.55 (.022)  
0.46 (.018)  
3X  
3X  
1.40 (.055)  
3X  
1.15 (.045)  
0.36 (.014)  
M
B A M  
2.92 (.115)  
2.64 (.104)  
2.54 (.100)  
2X  
NOTES:  
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
2 CONTROLLING DIMENSION : INCH  
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.  
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.  
TO-220AB Part Marking Information  
EXAMPLE: THIS IS AN IRF1010  
PART NUMB  
DATE CODE  
ER  
INTER  
NATIONAL  
RECTIFI  
ER  
LOT C  
ODE 1789  
ASSEMBLED ON WW 19, 199  
7
LOGO  
IN THE ASSEM  
BLY LINE "C"  
YEAR 7 = 1997  
WEEK 19  
ASSEMBLY  
LOT CODE  
LINE C  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive [Q101] market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 8/02  
www.irf.com  
9

相关型号:

IRF2805L

AUTOMOTIVE MOSFET
INFINEON

IRF2805LPBF

HEXFET Power MOSFET
INFINEON

IRF2805PBF

AUTOMOTIVE MOSFET
INFINEON

IRF2805S

AUTOMOTIVE MOSFET
INFINEON

IRF2805SPBF

HEXFET Power MOSFET
INFINEON

IRF2805SPBF_15

Advanced Process Technology
INFINEON

IRF2805STRLPBF

Industrial Motor Drive
INFINEON

IRF2805STRRPBF

Power Field-Effect Transistor, 75A I(D), 55V, 0.0047ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF2807

Power MOSFET(Vdss=75V, Id=82A)
INFINEON

IRF2807

HEXFET Power MOSFET
FREESCALE

IRF2807L

HEXFET Power MOSFET
INFINEON

IRF2807LPBF

HEXFET Power MOSFET
INFINEON