IRF2805STRLPBF [INFINEON]

Industrial Motor Drive;
IRF2805STRLPBF
型号: IRF2805STRLPBF
厂家: Infineon    Infineon
描述:

Industrial Motor Drive

局域网 开关 脉冲 晶体管
文件: 总11页 (文件大小:337K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95944A  
IRF2805SPbF  
IRF2805LPbF  
HEXFET® Power MOSFET  
Typical Applications  
l
Industrial Motor Drive  
D
Features  
VDSS = 55V  
l
Advanced Process Technology  
UltraLowOn-Resistance  
175°COperatingTemperature  
Fast Switching  
l
l
l
l
l
RDS(on) = 4.7mΩ  
G
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free  
ID = 135A†  
S
Description  
This HEXFET® Power MOSFET utilizes the latest  
processing techniques to achieve extremely low on-  
resistancepersiliconarea. Additionalfeaturesofthis  
product area175°Cjunctionoperatingtemperature,  
fastswitchingspeedandimprovedrepetitiveavalanche  
rating . These features combine to make this design  
anextremelyefficientandreliabledeviceforuseina  
wide variety of applications.  
D2Pak  
IRF2805SPbF  
TO-262  
IRF2805LPbF  
Absolute Maximum Ratings  
Parameter  
Max.  
135†  
96†  
700  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current   
A
PD @TC = 25°C  
Power Dissipation  
200  
W
W/°C  
V
Linear Derating Factor  
1.3  
VGS  
Gate-to-Source Voltage  
± 20  
380  
EAS  
Single Pulse Avalanche Energy‚  
mJ  
EAS (6 sigma)  
Single Pulse Avalanche Energy Tested Valueˆ  
Avalanche Current  
1220  
IAR  
See Fig.12a, 12b, 15, 16  
A
EAR  
dv/dt  
TJ  
Repetitive Avalanche Energy‡  
Peak Diode Recovery dv/dt ƒ  
Operating Junction and  
mJ  
2.0  
V/ns  
-55 to + 175  
TSTG  
Storage Temperature Range  
°C  
Soldering Temperature, for 10 seconds  
300 (1.6mm from case )  
Thermal Resistance  
Parameter  
Junction-to-Case  
Typ.  
–––  
–––  
Max.  
0.75  
40  
Units  
RθJC  
RθJA  
°C/W  
Junction-to-Ambient(PCB Mounted, steady state)**  
HEXFET(R) is a registered trademark of International Rectifier.  
www.irf.com  
1
07/22/10  
IRF2805S/LPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
55 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
V
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.06 ––– V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
VGS(th)  
gfs  
Static Drain-to-Source On-Resistance –––  
3.9 4.7  
––– 4.0  
––– –––  
mVGS = 10V, ID = 104A „  
Gate Threshold Voltage  
2.0  
91  
V
VDS = 10V, ID = 250µA  
VDS = 25V, ID = 104A  
VDS = 55V, VGS = 0V  
VDS = 44V, VGS = 0V, TJ = 150°C  
VGS = 20V  
Forward Transconductance  
S
––– ––– 20  
––– ––– 250  
––– ––– 200  
––– ––– -200  
––– 150 230  
IDSS  
Drain-to-Source Leakage Current  
µA  
nA  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
IGSS  
VGS = -20V  
Qg  
ID = 104A  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
38  
52  
57  
78  
nC VDS = 44V  
VGS = 10V„  
VDD = 28V  
14 –––  
––– 120 –––  
––– 68 –––  
––– 110 –––  
ID = 104A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
RG = 2.5Ω  
VGS = 10V „  
D
S
Between lead,  
4.5  
LD  
LS  
Internal Drain Inductance  
Internal Source Inductance  
–––  
–––  
–––  
–––  
6mm (0.25in.)  
nH  
G
from package  
7.5  
and center of die contact  
Ciss  
Input Capacitance  
––– 5110 –––  
––– 1190 –––  
––– 210 –––  
––– 6470 –––  
––– 860 –––  
––– 1600 –––  
VGS = 0V  
Coss  
Output Capacitance  
pF VDS = 25V  
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
ƒ = 1.0MHz, See Fig. 5  
Coss  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 44V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 44V  
Coss  
Output Capacitance  
Coss eff.  
Effective Output Capacitance ꢀ  
Source-Drain Ratings and Characteristics  
Parameter  
Continuous Source Current  
(Body Diode)  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
IS  
––– –––  
––– –––  
175†  
showing the  
A
G
ISM  
Pulsed Source Current  
(Body Diode)   
integral reverse  
700  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
––– ––– 1.3  
––– 80 120  
––– 290 430  
V
TJ = 25°C, IS = 104A, VGS = 0V  
TJ = 25°C, IF = 104A  
„
ns  
Qrr  
nC di/dt = 100A/µs „  
ton  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
Coss eff. is a fixed capacitance that gives the same charging time  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Starting TJ = 25°C, L = 0.08mH  
RG = 25, IAS = 104A. (See Figure 12).  
ƒ ISD 104A, di/dt 240A/µs, VDD V(BR)DSS  
TJ 175°C  
as Coss while VDS is rising from 0 to 80% VDSS  
.
†
‡
ˆ
Calculated continuous current based on maximum allowable  
junction temperature. Package limitation current is 75A.  
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
,
This value determined from sample failure population. 100%  
tested to this value in production.  
„ Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRF2805S/LPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
TOP  
TOP  
BOTTOM 4.5V  
BOTTOM 4.5V  
4.5V  
4.5V  
20µs PULSE WIDTH  
Tj = 25°C  
20µs PULSE WIDTH  
Tj = 175°C  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
3.0  
175A  
=
I
D
T
= 25°C  
J
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
T
= 175°C  
J
100  
V
= 25V  
DS  
20µs PULSE WIDTH  
V
= 10V  
GS  
10  
4.0  
5.0  
V
6.0  
7.0  
8.0  
9.0  
10.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
°
T , Junction Temperature  
(
C)  
, Gate-to-Source Voltage (V)  
J
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
www.irf.com  
3
IRF2805S/LPbF  
10000  
20  
16  
12  
8
V
C
= 0V,  
= C  
f = 1 MHZ  
+ C C  
GS  
V
= 44V  
I = 104A  
D
DS  
VDS= 28V  
,
iss  
gs  
gd  
ds  
SHORTED  
8000  
6000  
4000  
2000  
C
= C  
rss  
gd  
C
= C + C  
oss  
ds gd  
Ciss  
4
Coss  
Crss  
0
0
0
40  
Q
80  
120  
160  
200  
240  
1
10  
100  
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.0  
100.0  
10.0  
1.0  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100µsec  
1msec  
T
= 25°C  
J
Tc = 25°C  
10msec  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
1
0.1  
1
10  
100  
1000  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
, Source-toDrain Voltage (V)  
V
, Drain-toSource Voltage (V)  
V
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF2805S/LPbF  
140  
120  
100  
80  
RD  
VDS  
LIMITED BY PACKAGE  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
60  
Fig 10a. Switching Time Test Circuit  
40  
V
DS  
20  
90%  
0
25  
50  
75  
100  
125  
150  
175  
°
, Case Temperature ( C)  
T
C
10%  
V
GS  
Fig 9. Maximum Drain Current Vs.  
t
t
r
t
t
f
d(on)  
d(off)  
Case Temperature  
Fig 10b. Switching Time Waveforms  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
P
2
DM  
t
1
0.02  
t
2
SINGLE PULSE  
(THERMAL RESPONSE)  
0.01  
Notes:  
1. Duty factor D =  
t / t  
1
2. Peak T =P  
x Z  
+ T  
C
J
DM  
thJC  
0.01  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
t , Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF2805S/LPbF  
800  
600  
400  
200  
0
15V  
I
D
TOP  
42.5A  
73.5A  
BOTTOM 104A  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
2
V0GVS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
°
Starting T , Junction Temperature ( C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
Vs. Drain Current  
Q
G
10 V  
Q
Q
GD  
GS  
4.0  
3.0  
2.0  
1.0  
V
G
I
= 250µA  
D
Charge  
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
V
GS  
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
3mA  
T
J
I
I
D
G
Current Sampling Resistors  
Fig 14. Threshold Voltage Vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF2805S/LPbF  
10000  
1000  
100  
10  
Duty Cycle = Single Pulse  
0.01  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming  
Tj = 25°C due to  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
0.05  
0.10  
1
0.1  
1.0E-07  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
400  
TOP  
BOTTOM 10% Duty Cycle  
= 104A  
Single Pulse  
I
D
300  
200  
100  
0
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Fig 16. Maximum Avalanche Energy  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
www.irf.com  
7
IRF2805S/LPbF  
Peak Diode Recovery dv/dt Test Circuit  
+
ƒ
-
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T*  
+
‚
-
„
-
+

RG  
dv/dt controlled by RG  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
+
-
VDD  
VGS  
* Reverse Polarity of D.U.T for P-Channel  
Driver Gate Drive  
P.W.  
Period  
Period  
D =  
P.W.  
V
[
=10V  
] ***  
GS  
D.U.T. I Waveform  
SD  
Reverse  
Recovery  
Current  
Body Diode Forward  
Current  
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  
V
DD  
]
[
Re-Applied  
Voltage  
Body Diode  
Forward Drop  
Inductor Curent  
I
[
]
SD  
Ripple 5%  
*** VGS = 5.0V for Logic Level and 3V Drive Devices  
Fig 17. For N-channel HEXFET® power MOSFETs  
8
www.irf.com  
IRF2805S/LPbF  
D2Pak (TO-263AB) Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak (TO-263AB) Part Marking Information  
THIS IS AN IRF530S WITH  
PART NUMBER  
LOT CODE 8024  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW02, 2000  
IN THE ASSEMBLY LINE "L"  
F530S  
DAT E CODE  
YEAR 0 = 2000  
WE E K 02  
AS S E MB LY  
LOT CODE  
LINE L  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
F530S  
DAT E CODE  
P = DE S I GNAT E S LE AD - F R E E  
PRODUCT (OPTIONAL)  
YEAR 0 = 2000  
AS S E MB L Y  
LOT CODE  
WE E K 02  
A = AS S EMBL Y S IT E CODE  
Notes:  
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/  
2. ForthemostcurrentdrawingpleaserefertoIRwebsiteathttp://www.irf.com/package/  
www.irf.com  
9
IRF2805S/LPbF  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
EXAMPLE: THIS IS AN IRL3103L  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
ASSEMBLED ON WW 19, 1997  
RECTIFIER  
IN THE ASSEMBLY LINE "C"  
LOGO  
DATE CODE  
YEAR 7 = 1997  
WEEK 19  
AS S E MB L Y  
LOT CODE  
LINE C  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
DAT E CODE  
P = DE S I GNAT E S L E AD-F R E E  
PRODUCT (OPTIONAL)  
YEAR 7 = 1997  
AS S E MBL Y  
LOT CODE  
WEEK 19  
A= ASSEMBLY SITE CODE  
Notes:  
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/  
2. ForthemostcurrentdrawingpleaserefertoIRwebsiteathttp://www.irf.com/package/  
10  
www.irf.com  
IRF2805S/LPbF  
D2Pak Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.07/2010  
www.irf.com  
11  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY