IRF2907ZS-7PPBF [INFINEON]

IRF2907ZS-7PPBF;
IRF2907ZS-7PPBF
型号: IRF2907ZS-7PPBF
厂家: Infineon    Infineon
描述:

IRF2907ZS-7PPBF

晶体 晶体管 开关 脉冲 局域网
文件: 总10页 (文件大小:664K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97031  
IRF2907ZS-7PPbF  
Features  
HEXFET® Power MOSFET  
l
l
l
l
l
Advanced Process Technology  
UltraLowOn-Resistance  
175°COperatingTemperature  
Fast Switching  
D
VDSS = 75V  
Repetitive Avalanche Allowed up to Tjmax  
‰
RDS(on) = 3.8mΩ  
G
S
Description  
ID = 160A  
S (Pin 2, 3, 5, 6, 7)  
G (Pin 1)  
Specificallydesignedforhighcurrent,highreliabil-  
ity applications, this HEXFET® Power MOSFET  
utilizes the latest processing techniques and ad-  
vancedpackagingtechnologytoachieveextremely  
lowon-resistanceandworld-classcurrentratings.  
Additional features of this design are a 175°C  
junctionoperatingtemperature,fastswitchingspeed  
and improved repetitive avalanche rating . These  
featurescombinetomakethisdesignanextremely  
efficient and reliable device for use in Server &  
TelecomOR'ing,AutomotiveandlowvoltageMotor  
Drive Applications.  
Absolute Maximum Ratings  
Parameter  
Max.  
180  
120  
160  
700  
300  
Units  
A
I
I
I
I
@ TC = 25°C  
@ TC = 100°C  
@ TC = 25°C  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
D
D
D
Continuous Drain Current, VGS @ 10V (See Fig. 9)  
(Package Limited)  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
DM  
P
@TC = 25°C  
W
Maximum Power Dissipation  
Linear Derating Factor  
D
2.0  
± 20  
W/°C  
V
V
Gate-to-Source Voltage  
GS  
EAS  
160  
410  
mJ  
Single Pulse Avalanche Energy (Thermally Limited)  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
E
AS (tested)  
IAR  
EAR  
See Fig.12a,12b,15,16  
A
mJ  
°C  
Repetitive Avalanche Energy  
T
J
-55 to + 175  
Operating Junction and  
T
Storage Temperature Range  
STG  
Soldering Temperature, for 10 seconds  
Mounting torque, 6-32 or M3 screw  
300 (1.6mm from case )  
10 lbf•in (1.1N•m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
0.50  
–––  
62  
Units  
°C/W  
RθJC  
Junction-to-Case  
RθCS  
RθJA  
RθJA  
0.50  
–––  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
–––  
40  
Junction-to-Ambient (PCB Mount, steady state)  
HEXFET® is a registered trademark of International Rectifier.  
www.irf.com  
1
08/03/05  
IRF2907ZS-7PPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
75 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
∆Β  
V
VDSS/ TJ  
Breakdown Voltage Temp. Coefficient ––– 0.066 ––– V/°C Reference to 25°C, ID = 1mA  
R
DS(on) SMD  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
2.0  
V
GS = 10V, ID = 110A  
DS = VGS, ID = 250µA  
3.0  
–––  
–––  
–––  
–––  
–––  
–––  
170  
55  
3.8  
4.0  
mΩ  
V
VGS(th)  
V
gfs  
IDSS  
94  
–––  
20  
S
VDS = 25V, ID = 110A  
Forward Transconductance  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
µA  
nA  
V
V
V
V
DS = 75V, VGS = 0V  
DS = 75V, VGS = 0V, TJ = 125°C  
GS = 20V  
250  
200  
-200  
260  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
GS = -20V  
Qg  
Qgs  
Qgd  
td(on)  
tr  
nC ID = 110A  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
V
DS = 60V  
GS = 10V  
66  
V
21  
ns VDD = 38V  
ID = 110A  
Rise Time  
90  
td(off)  
tf  
Turn-Off Delay Time  
92  
RG = 2.6Ω  
VGS = 10V  
Fall Time  
44  
D
S
LD  
Internal Drain Inductance  
4.5  
nH Between lead,  
6mm (0.25in.)  
from package  
G
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
VGS = 0V  
Ciss  
Input Capacitance  
––– 7580 –––  
pF  
Coss  
Output Capacitance  
–––  
–––  
970  
540  
–––  
–––  
VDS = 25V  
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
ƒ = 1.0MHz, See Fig. 5  
Coss  
––– 3750 –––  
––– 650 –––  
––– 1110 –––  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 60V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 60V  
Coss  
Output Capacitance  
Coss eff.  
Effective Output Capacitance  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
IS  
Continuous Source Current  
–––  
–––  
160  
MOSFET symbol  
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
G
ISM  
–––  
–––  
700  
S
(Body Diode)  
p-n junction diode.  
VSD  
T = 25°C, I = 110A, V = 0V  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
1.3  
V
J
S
GS  
trr  
Qrr  
T = 25°C, I = 110A, VDD = 38V  
–––  
–––  
35  
40  
53  
60  
ns  
nC  
J
F
di/dt = 100A/µs  
Notes:  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Limited by TJmax, starting TJ = 25°C,  
L=0.026mH, RG = 25, IAS = 110A, VGS =10V.  
Part not recommended for use above this value.  
ƒ Pulse width 1.0ms; duty cycle 2%.  
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
† This value determined from sample failure population. 100%  
tested to this value in production.  
‡ This is applied to D2Pak, when mounted on 1" square PCB  
( FR-4 or G-10 Material ). For recommended footprint and  
soldering techniques refer to application note #AN-994.  
„ Coss eff. is a fixed capacitance that gives the same  
charging time as Coss while VDS is rising from 0 to 80%  
ˆ R is measured at TJ of approximately 90°C.  
θ
VDSS  
.
2
www.irf.com  
IRF2907ZS-7PPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 175°C  
Tj = 25°C  
1
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
200  
150  
100  
50  
1000  
T
= 25°C  
J
100  
10  
1
T
= 175°C  
J
T
= 25°C  
J
T
= 175°C  
J
V
= 10V  
DS  
380µs PULSE WIDTH  
V
= 25V  
DS  
60µs PULSE WIDTH  
0
0.1  
0
25  
50  
75  
100  
125  
150  
1
2
3
4
5
6
7
8
I ,Drain-to-Source Current (A)  
D
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
vs. Drain Current  
www.irf.com  
3
IRF2907ZS-7PPbF  
100000  
12.0  
10.0  
8.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 110A  
D
C
C
C
+ C , C  
SHORTED  
V
V
V
= 60V  
= 38V  
= 15V  
iss  
gs  
gd  
ds  
DS  
DS  
DS  
= C  
rss  
oss  
gd  
= C + C  
ds  
gd  
10000  
1000  
100  
C
iss  
6.0  
C
oss  
4.0  
C
rss  
2.0  
0.0  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
50  
100  
150  
200  
V
Q
G
Total Gate Charge (nC)  
DS  
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-SourceVoltage  
Drain-to-SourceVoltage  
10000  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100µsec  
T
= 175°C  
J
1msec  
T
= 25°C  
J
10msec  
DC  
1
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
1.2  
GS  
0.1  
0.1  
0
1
10  
100  
1000  
0.0  
0.2  
V
0.4  
0.6  
0.8  
1.0  
1.4  
V
, Drain-to-Source Voltage (V)  
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF2907ZS-7PPbF  
200  
160  
120  
80  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 180A  
= 10V  
D
Limited By Package  
V
GS  
40  
0
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
25  
50  
75  
100  
125  
150  
175  
T
T
, Case Temperature (°C)  
J
C
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current vs.  
vs.Temperature  
CaseTemperature  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
R1  
R1  
R2  
R2  
R3  
R3  
0.02  
0.01  
Ri (°C/W) τi (sec)  
0.01  
0.001  
τ
J τJ  
τ
τ
Cτ  
0.1072  
0.2787  
0.1143  
0.000896  
0.009380  
0.121118  
τ
1τ1  
τ
2 τ2  
3τ3  
SINGLE PULSE  
( THERMAL RESPONSE )  
Ci= τi/Ri  
/
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF2907ZS-7PPbF  
15V  
700  
600  
500  
400  
300  
200  
100  
0
DRIVER  
+
L
V
DS  
I
D
TOP  
24A  
34A  
BOTTOM 110A  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
20V  
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
vs. Drain Current  
Q
G
10 V  
Q
Q
GD  
GS  
V
G
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
Charge  
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
I
I
I
= 250µA  
= 1.0mA  
= 1.0A  
50KΩ  
D
D
D
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
V
GS  
3mA  
-75 -50 -25  
0
T
25 50 75 100 125 150 175 200  
, Temperature ( °C )  
I
I
D
G
Current Sampling Resistors  
J
Fig 14. Threshold Voltage vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF2907ZS-7PPbF  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses  
0.01  
0.05  
0.10  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
200  
150  
100  
50  
TOP  
BOTTOM 1% Duty Cycle  
= 110A  
Single Pulse  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
0
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
J
EAS (AR) = PD (ave)·tav  
Fig 16. Maximum Avalanche Energy  
vs.Temperature  
www.irf.com  
7
IRF2907ZS-7PPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
CircuitLayoutConsiderations  
LowStrayInductance  
Ground Plane  
LowLeakageInductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dtcontrolledbyRG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
PulseWidth ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRF2907ZS-7PPbF  
D2Pak - 7 Pin Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak - 7 Pin Part Marking Information  
www.irf.com  
9
IRF2907ZS-7PPbF  
D2Pak - 7 Pin Tape and Reel  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive [Q101] market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 08/05  
10  
www.irf.com  

相关型号:

IRF2907ZS-7PPBF_06

HEXFET㈢ Power MOSFET
INFINEON

IRF2907ZS-7PPBF_15

Advanced Process Technology
INFINEON

IRF2907ZSPBF

HEXFET Power MOSFET
INFINEON

IRF2907ZSTRL

Power Field-Effect Transistor, 160A I(D), 75V, 0.0045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRF2907ZSTRL7PP

Advanced Process Technology
INFINEON

IRF2907ZSTRLPBF

Power Field-Effect Transistor, 160A I(D), 75V, 0.0045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF2907ZSTRR

Power Field-Effect Transistor, 160A I(D), 75V, 0.0045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRF2907ZSTRRPBF

Power Field-Effect Transistor, 160A I(D), 75V, 0.0045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF2N60

POWER MOSFET
SUNTAC

IRF2N60-126

POWER MOSFET
SUNTAC

IRF2N60-220

POWER MOSFET
SUNTAC

IRF2N60-220FP

POWER MOSFET
SUNTAC