IRF3546MTRPBF [INFINEON]

60A Dual Integrated Power Block; 60A双集成电源模块
IRF3546MTRPBF
型号: IRF3546MTRPBF
厂家: Infineon    Infineon
描述:

60A Dual Integrated Power Block
60A双集成电源模块

电源电路
文件: 总18页 (文件大小:358K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
60A Dual Integrated Power Block  
IRF3546  
The IRF3546 dual integrated Power Block co-  
packages two pairs of high performance control and  
synchronous MOSFETs and is ideal for use in high-  
density two-phase synchronous buck converters. It is  
optimized internally for PCB layout, heat transfer and  
package inductance. Coupled with the latest  
generation of IR MOSFET technology, the IRF3546  
provides higher efficiency at low output voltages  
required by cutting edge CPU, GPU and DDR  
memory designs.  
FEATURES  
Peak efficiency up to 94% at 1.2V  
Two pairs of control and synchronous  
MOSFETs in a single PQFN package  
Proprietary package minimizes package  
parasitic and simplifies PCB layout  
Input voltage (VIN) range of 4.5V to 21V  
Output current capability of 30A/phase  
High switching frequency enables high performance  
transient response, allowing miniaturization of output  
inductors, as well as input and output capacitors while  
maintaining industry leading efficiency. Integrating two  
phases in one package while still providing superior  
efficiency and thermal performance, the IRF3546  
enables smallest size solutions.  
Ultra-low Rg MOSFET technology minimizes  
switching losses for optimized high frequency  
performance  
Synchronous MOSFET with monolithic  
integrated Schottky diode reduces dead-time  
and diode reverse recovery losses  
Efficient dual side cooling  
The IRF3546 uses IR’s latest generation of low  
voltage MOSFET technology characterized by ultra-  
low gate resistance (Rg, <0.5) and charge that result  
in minimized switching losses. The synchronous  
MOSFET optimizes conduction losses and features a  
monolithic integrated Schottky to significantly reduce  
dead-time and diode conduction and reverse recovery  
losses.  
Small 6mm x 8 mm x 0.9mm PQFN package  
Lead-free RoHS compliant package  
APPLICATIONS  
High frequency, low profile DC-DC converters  
Voltage Regulators for CPUs, GPUs, and DDR  
memory arrays  
The IRF3546 is optimized specifically for CPU core  
power delivery in 12V input applications like servers,  
certain notebooks, GPU and DDR memory designs.  
DESCRIPTION  
ORDERING INFORMATION  
Standard Pack  
Base Part Number Package Type  
Orderable Part Number  
Form  
Tape and Reel  
Quantity  
3000  
IRF3546  
PQFN 6 mm x 8 mm  
IRF3546MTRPBF  
www.irf.com | © 2013 International Rectifier  
May 29, 2013 | Final  
1
60A Dual Integrated Power Block  
IRF3546  
PINOUT DIAGRAM  
Figure 1: IRF3546 Top View  
FUNCTIONAL BLOCK DIAGRAM  
VIN2  
16  
VIN1  
41  
VIN2  
17  
VIN1 VIN1  
40  
GATEH2 VIN2  
GATEH1  
7
1
15  
9
29  
30  
31  
32  
SW1  
SW1  
SW1  
SW1  
21  
22  
23  
24  
SW2  
SW2  
SW2  
SW2  
Q1  
Q2  
Q3  
SW1 33  
25 SW2  
IRF3546  
SW1  
SW1  
SW1  
34  
35  
36  
SW2  
SW2  
SW2  
26  
27  
28  
Q4  
38  
PGND  
39  
PGND  
37  
GATEL1  
18  
GATEL2  
19  
20  
PGND  
8
42  
PGND  
PGND  
PGND  
Figure 2: Block Diagram  
www.irf.com | © 2013 International Rectifier  
May 29, 2013 | Final  
2
60A Dual Integrated Power Block  
IRF3546  
TYPICAL APPLICATION  
VIN1  
IRF3546  
1, 40, 41  
C2  
0.1uF  
C1  
10uF x2  
Q1  
GATEH1  
7
L1  
150nH  
SW1  
VOUT1  
C3  
22uF x5  
2936  
Q2  
GATEL1  
37  
PGND  
38, 39  
PGND  
8, 42  
VIN2  
1517  
C5  
0.1uF  
C4  
10uF x2  
Q3  
Q4  
GATEH2  
9
L2  
150nH  
SW2  
2128  
VOUT2  
C6  
22uF x5  
GATEL2  
18  
PGND  
19, 20  
Figure 3: High Density Two Phase Voltage Regulator  
www.irf.com | © 2013 International Rectifier  
May 29, 2013 | Final  
3
60A Dual Integrated Power Block  
IRF3546  
PIN DESCRIPTIONS  
PIN #  
PIN NAME  
PIN DESCRIPTION  
High current input supply pads. Connected to Drains of Q1. Recommended operating  
range is 4.5V to 21V. Connect at least two 10uF 1206 ceramic capacitors and a 0.1uF  
0402 ceramic capacitor. Place the capacitors as close as possible to VIN1 pins (40 and 41)  
and PGND pins (38 and 39). The 0.1uF 0402 capacitor should be on the same side of the  
PCB as the IRF3546.  
1, 40, 41  
VIN1  
No connects. These pins can be connected to the VIN planes to reduce PCB trace  
resistances.  
2-6, 10-14  
7
No Connect  
GATEH1  
Gate connection of the Channel 1 control MOSFET Q1.  
High current Power Ground. Connected to Sources of Q2 and Q4. Note all pads are  
internally connected in the package. Provide low resistance connections to the ground  
plane and respective output capacitors.  
8, 19, 20,  
38, 39, 42  
PGND  
9
GATEH2  
Gate connection of the Channel 2 control MOSFET Q3.  
High current input supply pads. Connected to Drains of Q3. Recommended operating  
range is 4.5V to 21V. Connect at least two 10uF 1206 ceramic capacitors and a 0.1uF  
0402 ceramic capacitor. Place the capacitors as close as possible to VIN2 pins (16 and 17)  
and PGND pins (19 and 20). The 0.1uF 0402 capacitor should be on the same side of the  
PCB as the IRF3546.  
15-17  
VIN2  
18  
GATEL2  
SW2  
Gate connection of the Channel 2 synchronous MOSFET Q4.  
High Current Switch Node output for Channel 2. Connected to Source of Q3 and Drain of  
Q4.  
21-28  
High Current Switch Node output for Channel 1. Connected to Source of Q1 and Drain of  
Q2.  
29-36  
37  
SW1  
GATEL1  
Gate connection of the Channel 1 synchronous MOSFET Q2.  
www.irf.com | © 2013 International Rectifier  
May 29, 2013 | Final  
4
60A Dual Integrated Power Block  
IRF3546  
ABSOLUTE MAXIMUM RATINGS  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
These are stress ratings only and functional operation of the device at these or any other conditions beyond those  
indicated in the operational sections of the specifications are not implied.  
Parameter  
Drain-to-Source Voltage  
Q1 and Q3 Max.  
Q2 and Q4 Max.  
Units  
VDS  
25  
V
V
A
VGS  
Gate-to-Source Voltage  
±20  
ID @TC = 25°C  
Continuous Drain Current, VGS @ 10V  
16  
20  
ID @TC = 70°C  
Continuous Drain Current, VGS @ 10V  
Pulse Drain Current  
13  
130  
16  
160  
A
A
IDM  
EAS  
Single Pulse Avalanche Energy  
50 NOTE 1  
200 NOTE 2  
mJ  
THERMAL INFORMATION  
Thermal Resistance, Junction to Top (θJC_TOP  
)
11.3 °C/W  
Thermal Resistance, Junction to PCB (pin 28) (θJB)  
Thermal Resistance (θJA) NOTE 3  
Maximum Operating Junction Temperature  
Maximum Storage Temperature Range  
MSL Rating  
1.6 °C/W  
18.4 °C/W  
-40°C to 150°C  
-55°C to 150°C  
MSL3  
Reflow Temperature  
260°C  
Notes  
1. TJ =25°C, L =100uH, RG =50, IAS =32A.  
2. TJ =25°C, L =100uH, RG =50, IAS =63A.  
3. Thermal Resistance (θJA) is measured with the component mounted on a high effective thermal conductivity test board in free air.  
Refer to International Rectifier Application Note AN-994 for details.  
www.irf.com | © 2013 International Rectifier  
May 29, 2013 | Final  
5
60A Dual Integrated Power Block  
IRF3546  
ELECTRICAL SPECIFICATIONS  
The electrical characteristics involve the spread of values guaranteed within the recommended operating  
conditions. Typical values represent the median values, which are related to 25°C.  
ELECTRICAL CHARACTERISTICS  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Efficiency  
Note 2  
Note 3  
94  
93  
%
%
Power Block per-channel Peak Efficiency  
η
Control MOSFETs (Q1 and Q3)  
Drain-to-Source On-Resistance  
RDS(ON)_4.5V_25°C  
RDS(ON)_10V_25°C  
VGS=4.5V, ID=13A, TJ=25°C  
VGS=10V, ID=27A, TJ=25°C  
4.1  
3.2  
4.8  
3.9  
mꢀ  
mꢀ  
Drain-to-Source On-Resistance  
Drain-to-Source Breakdown Voltage  
BVDSS  
VGS=0V, ID=250uA, TJ=25°C  
TJ=25°C -125°C, Note 1  
25  
V
Breakdown Voltage Temperature  
Coefficient  
BVDSS / TJ  
0.02  
V/°C  
Drain-to-Source Leakage Current  
Gate-to-Source Forward Leakage Current  
Gate-to-Source Reverse Leakage Current  
Gate Threshold Voltage  
IDSS  
VDS=20V, VGS=0V, TJ=25°C  
VGS=16V  
1
μA  
nA  
IGSS  
100  
-100  
2.1  
IGSS  
VGS=-16V  
nA  
VGS(th)  
VGS(th)  
VDS= VGS, ID=35uA  
VDS= VGS, ID=35uA  
1.1  
1.6  
V
Gate Threshold Voltage Coefficient  
Total Gate Charge  
-5.7  
mV/°C  
VDS= 13V, VGS=4.5V, ID=13A,  
Note 1  
Qg  
9.7  
15  
nC  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Qgs1  
Qgs2  
Qgd  
VDS= 13V, VGS=4.5V, ID=13A  
VDS= 13V, VGS=4.5V, ID=13A  
VDS= 13V, VGS=4.5V, ID=13A  
VDS= 13V, VGS=4.5V, ID=13A  
VDS= 13V, VGS=4.5V, ID=13A  
VDS= 16V, VGS=0V  
2.3  
1.8  
3.1  
2.9  
4.9  
13  
nC  
nC  
nC  
nC  
nC  
nC  
Gate Charge Overdrive  
Qgodr  
QSW  
Qoss  
Rg  
Switch Charge (Qgs2 +Qgd  
Output Charge  
)
Gate Resistance  
0.6  
Turn-On Delay Time  
VDD= 13V, VGS=4.5V, ID=13A,  
RG=1.8 ꢀ  
td(on)  
tr  
7.5  
12  
ns  
ns  
ns  
ns  
Rise Time  
VDD= 13V, VGS=4.5V, ID=13A,  
RG=1.8 ꢀ  
Turn-Off Delay Time  
Fall Time  
VDD= 13V, VGS=4.5V, ID=13A,  
RG=1.8 ꢀ  
td  
6.7  
4.2  
VDD= 13V, VGS=4.5V, ID=13A,  
RG=1.8 ꢀ  
tf  
Input Capacitance  
Output Capacitance  
Ciss  
Coss  
Crss  
VSD  
VGS= 0V, VDS=13V, f=1.0MHz  
VGS= 0V, VDS=13V, f=1.0MHz  
VGS= 0V, VDS=13V, f=1.0MHz  
VGS=0V, IS=13A, TJ=25°C  
1310  
380  
90  
pF  
pF  
pF  
V
Reverse Transfer Capacitance  
Diode Forward Voltage  
0.72  
0.80  
0.88  
23  
Reverse Recovery Time  
TJ=25°C, IF=30A, VDD=13V,  
di/dt=200A/us, Note 1  
trr  
15  
10  
ns  
Reverse Recovery Charge  
TJ=25°C, IF=30A, VDD=13V,  
di/dt=200A/us, Note 1  
Qrr  
15  
nC  
www.irf.com | © 2013 International Rectifier  
May 29, 2013 | Final  
6
60A Dual Integrated Power Block  
IRF3546  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Synchronous MOSFETs (Q2 and Q4)  
Drain-to-Source On-Resistance  
RDS(ON)_4.5V_25°C  
RDS(ON)_10V_25°C  
VGS=4.5V, ID=16A, TJ=25°C  
VGS=10V, ID=30A, TJ=25°C  
1.8  
2.2  
1.8  
mꢀ  
mꢀ  
Drain-to-Source On-Resistance  
1.35  
Drain-to-Source Breakdown Voltage  
BVDSS  
VGS=0V, ID=1mA, TJ=25°C  
TJ=25°C -125°C, Note 1  
VDS=20V, VGS=0V, TJ=25°C  
25  
V
Breakdown Voltage Temperature  
Coefficient  
BVDSS / TJ  
IDSS  
0.02  
V/°C  
uA  
Drain-to-Source Leakage Current  
250  
Gate-to-Source Forward Leakage Current  
Gate-to-Source Reverse Leakage Current  
Gate Threshold Voltage  
IGSS  
VGS=16V  
100  
-100  
2.1  
nA  
nA  
IGSS  
VGS=-16V  
VGS(th)  
VGS(th)  
VDS= VGS, ID=100uA  
VDS= VGS, ID=1mA  
1.1  
1.6  
V
Gate Threshold Voltage Coefficient  
Total Gate Charge  
-5.4  
mV/°C  
VDS= 13V, VGS,=4.5V, ID=30A,  
Note 1  
Qg  
22  
33  
nC  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Qgs1  
Qgs2  
Qgd  
VDS= 13V, VGS=4.5V, ID=30A  
VDS= 13V, VGS=4.5V, ID=30A  
VDS= 13V, VGS=4.5V, ID=30A  
VDS= 13V, VGS=4.5V, ID=30A  
VDS= 13V, VGS=4.5V, ID=30A  
VDS= 16V, VGS=0V  
5.1  
3.1  
6.0  
6.7  
9.1  
23  
nC  
nC  
nC  
nC  
nC  
nC  
Gate Charge Overdrive  
Qgodr  
QSW  
Qoss  
Rg  
Switch Charge (Qgs2 +Qgd  
Output Charge  
)
Gate Resistance  
0.4  
Turn-On Delay Time  
VDD= 13V, VGS=4.5V, ID=16A,  
RG=1.3 ꢀ  
td(on)  
tr  
13  
15  
16  
6.6  
ns  
ns  
ns  
ns  
Rise Time  
VDD= 13V, VGS=4.5V, ID=16A,  
RG=1.3 ꢀ  
Turn-Off Delay Time  
Fall Time  
VDD= 13V, VGS=4.5V, ID=16A,  
RG=1.3 ꢀ  
td  
VDD= 13V, VGS=4.5V, ID=16A,  
RG=1.3 ꢀ  
tf  
Input Capacitance  
Output Capacitance  
Ciss  
Coss  
Crss  
VSD  
VSD  
VGS= 0V, VDS=13V, f=1.0MHz  
VGS= 0V, VDS=13V, f=1.0MHz  
VGS= 0V, VDS=13V, f=1.0MHz  
VGS=0V, IS=30A, TJ=25°C  
VGS=0V, IS=13A, TJ=25°C  
2880  
950  
pF  
pF  
pF  
V
Reverse Transfer Capacitance  
Diode Forward Voltage  
Diode Forward Voltage  
Reverse Recovery Time  
180  
0.63  
0.54  
0.70  
0.60  
0.77  
0.66  
V
TJ=25°C, IF=30A, VDD=13V,  
di/dt=200A/us, Note 1  
trr  
23  
30  
35  
45  
ns  
Reverse Recovery Charge  
TJ=25°C, IF=30A, VDD=13V,  
di/dt=200A/us, Note 1  
Qrr  
nC  
Notes  
1. Guaranteed by design but not tested in production  
2. VIN=12V, VOUT=1.2V, ƒSW = 300kHz, L=210nH (0.29m), VCC=6.8V, CIN=47uF x 4, COUT =470uF x3, 400LFM airflow, no heat sink, 25°C  
ambient temperature, and 8-layer PCB of 3.7” (L) x 2.6” (W). PWM controller loss and inductor loss are not included.  
3. VIN=12V, VOUT=1.2V, ƒSW = 400kHz, L=150nH (0.29m), VCC=6.8V, CIN=47uF x 4, COUT =470uF x3, no airflow, no heat sink, 25°C  
ambient temperature, and 8-layer PCB of 3.7” (L) x 2.6” (W). PWM controller loss and inductor loss are not included.  
www.irf.com | © 2013 International Rectifier  
May 29, 2013 | Final  
7
60A Dual Integrated Power Block  
IRF3546  
TYPICAL OPERATING CHARACTERISTICS  
TA = 25°C, no heat sink, no air flow, 8-layer PCB board of 3.7” (L) x 2.6” (W), unless specified otherwise.  
1000  
1000  
100  
100  
VGS  
10V  
5V  
4.5V  
3.5V  
3.3V  
3V  
VGS  
10V  
5V  
4.5V  
3.5V  
3.3V  
3V  
TOP  
10  
1
10  
1
TOP  
2.8V  
2.8V  
BOTTOM 2.5V  
BOTTOM 2.5V  
0.1  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
VDS, Drain-to-Source Voltage (V)  
VDS, Drain-to-Source Voltage (V)  
Figure 4: Q1 & Q3 Typical Output Characteristics  
Figure 7: Q2 & Q4 Typical Output Characteristics  
1000  
1000  
100  
100  
VGS  
VGS  
TOP  
10V  
5V  
4.5V  
3.5V  
3.3V  
3V  
TOP  
10V  
5V  
4.5V  
3.5V  
3.3V  
3V  
10  
1
10  
1
2.8V  
2.8V  
<=60us PULSE WIDTH  
1
<=60us PULSE WIDTH  
1
BOTTOM 2.5V  
BOTTOM 2.5V  
0.1  
0.1  
0.1  
10  
100  
0.1  
10  
100  
VDS, Drain-to-Source Voltage (V)  
VDS, Drain-to-Source Voltage (V)  
Figure 8: Q2 & Q4 Typical Output Characteristics @150oC  
Figure 5: Q1 & Q3 Typical Output Characteristics @150oC  
1000  
1000  
VDS=15V, <=60us PULSE WIDTH  
VDS=15V, <=60us PULSE WIDTH  
100  
100  
TJ=150oC  
TJ=25oC  
TJ=-40oC  
TJ=150oC  
TJ=25oC  
TJ=-40oC  
10  
10  
1
1
0.1  
0.1  
1
1.5  
2
2.5  
3
3.5  
4
1
1.5  
2
2.5  
3
3.5  
4
VGS, Gate-to-Source Voltage (V)  
VGS, Gate-to-Source Voltage (V)  
Figure 9: Q2 and Q4 Typical Transfer Characteristics  
May 29, 2013 | Final  
Figure 6: Q1 and Q3 Typical Transfer Characteristics  
www.irf.com | © 2013 International Rectifier  
8
60A Dual Integrated Power Block  
IRF3546  
TYPICAL OPERATING CHARACTERISTICS (CONTINUE)  
TA = 25°C, no heat sink, no air flow, 8-layer PCB board of 3.7” (L) x 2.6” (W), unless specified otherwise.  
6
12  
ID = 30A  
ID = 27A  
5
4
3
2
1
0
10  
8
6
TJ =125oC  
TJ =125oC  
4
TJ =25oC  
2
TJ =25oC  
0
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
VGS, Gate-to-Source Voltage (V)  
VGS, Gate-to-Source Voltage (V)  
Figure 10: Q1 & Q3 Typical On-Resistance  
Figure 13: Q2 & Q4 Typical On-Resistance  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
ID = 27A  
GS = 10V  
ID = 30A  
VGS = 10V  
V
-40  
-20  
0
20  
40  
60  
80  
100 120  
140  
160  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
160  
TJ, Junction Temperature (oC)  
TJ, Junction Temperature (oC)  
Figure 14: Q2 & Q4 On-Resistance vs. Temperature  
Figure 11: Q1 & Q3 On-Resistance vs. Temperature  
10000  
10000  
VGS = 0V  
VGS = 0V  
f =1MHz  
f =1MHz  
Ciss  
Ciss  
1000  
Coss  
Coss  
1000  
Crss  
100  
Crss  
10  
100  
1
10  
100  
1
10  
100  
VGS, Drain-to-Source Voltage (V)  
VGS, Drain-to-Source Voltage (V)  
Figure 15: Q2 & Q4 Typical Capacitance vs.  
Drain-Source Voltage  
Figure 12: Q1 & Q3 Typical Capacitance vs.  
Drain-Source Voltage  
www.irf.com | © 2013 International Rectifier  
May 29, 2013 | Final  
9
60A Dual Integrated Power Block  
IRF3546  
TYPICAL OPERATING CHARACTERISTICS (CONTINUE)  
TA = 25°C, no heat sink, no air flow, 4-layer PCB board of 3.7” (L) x 2.6” (W), unless specified otherwise.  
4.0  
10  
9
8
7
6
5
4
3
2
1
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VGS = 4.5V  
VGS = 6V  
VGS = 4.5V  
VGS = 6V  
V
GS = 7V  
GS = 8V  
GS = 10V  
V
GS = 7V  
GS = 8V  
GS = 10V  
V
V
V
V
0
20  
40  
60  
80  
100 120  
140  
160  
180  
200  
0
20  
40  
60  
80  
100  
120  
140  
160  
ID, Drain Current (A)  
ID, Drain Current (A)  
Figure 19: Q2 & Q4 Typical On-Resistance  
Figure 16: Q1 & Q3 Typical On-Resistance  
1000  
100  
10  
1
1000  
100  
10  
1
TJ = 150oC  
TJ = 150oC  
TJ = 25oC  
T
J = 25oC  
TJ = -40oC  
T
J = -40oC  
0
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
1.1 1.2  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
1.1 1.2  
VSD, Source-Drain Forward Voltage (V)  
VSD, Source-Drain Forward Voltage (V)  
Figure 20: Q2 & Q4 Drain-Source Diode Characteristics  
Figure 17: Q1 & Q3 Drain-Source Diode Characteristics  
2.5  
2.0  
2.5  
2.0  
ID = 100mA  
1.5  
1.5  
ID = 10mA  
ID = 10mA  
ID = 1mA  
1.0  
1.0  
0.5  
0.0  
ID = 0.25mA  
D = 0.1mA  
ID = 0.035mA  
I
0.5  
0.0  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
160  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
160  
TJ, Junction Temperature (oC)  
TJ, Junction Temperature (oC)  
Figure 21: Q2 & Q4 Typical Threshold Voltage vs.  
Junction Temperature  
Figure 18: Q1 & Q3 Typical Threshold Voltage vs.  
Junction Temperature  
www.irf.com | © 2013 International Rectifier  
May 29, 2013 | Final  
10  
60A Dual Integrated Power Block  
IRF3546  
TYPICAL OPERATING CHARACTERISTICS (CONTINUE)  
TA = 25°C, no heat sink, no air flow, 8-layer PCB board of 3.7” (L) x 2.6” (W), unless specified otherwise.  
400  
350  
300  
250  
200  
150  
100  
50  
3000  
2500  
2000  
1500  
1000  
500  
ID = 5A  
ID = 6.5A  
ID = 11A  
ID = 30A  
ID = 8.7A  
ID = 30A  
0
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
TJ, Starting Junction Temperature (oC)  
TJ, Starting Junction Temperature (oC)  
Figure 22: Q1 & Q3 Single Pulse Avalanche Energy  
Figure 25: Q2 & Q4 Single Pulse Avalanche Energy  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
TA, Ambient Temperature (oC)  
TA, Ambient Temperature (oC)  
Figure 23: Q1 & Q3 Maximum Drain Current vs. Temperature  
Figure 26: Q2 & Q4 Maximum Drain Current vs. Temperature  
1000  
1000  
OPERATION IN THIS AREA LIMITED BY RDS(on)  
OPERATION IN THIS AREA LIMITED BY RDS(on)  
100  
100us  
1ms  
100  
10  
1
100us  
1ms  
10  
10ms  
10ms  
1
DC  
DC  
TA = 25oC  
0
TA = 25oC  
TJ = 150oC  
0
TJ = 150oC  
Single Pulse  
Single Pulse  
0
0
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
VDS, Drain-to-Source Voltage (V)  
VDS, Drain-to-Source Voltage (V)  
Figure 24: Q1 & Q3 Maximum Safe Operating Area  
Figure 27: Q2 & Q4 Maximum Safe Operating Area  
www.irf.com | © 2013 International Rectifier  
May 29, 2013 | Final  
11  
60A Dual Integrated Power Block  
IRF3546  
GENERAL DESCRIPTION  
PCB LAYOUT CONSIDERATION  
The IRF3546 contains two pairs of integrated high  
and low side N-channel MOSFETs. It is suitable for  
high switching frequency operation.  
PCB layout and design is important to driver  
performance in voltage regulator circuits due to the  
high current slew rate (di/dt) during MOSFET  
switching.  
The IRF3546 can be driven as two independent  
power stages or as one power stage in a two-phase  
interleaved converter .  
Locate all power components in each phase as  
close to each other as practically possible in order to  
minimize parasitics and losses, allowing for  
reasonable airflow.  
APPLICATION INFORMATION  
Input supply decoupling capacitors should be  
physically located close to their respective pins.  
Figure 3 shows a typical two phase, high density  
application circuit for the IRF3546.  
High current paths like the gate driver traces should  
be as wide and short as practically possible.  
GATEL1 and GATEL2 interconnect trace inductances  
should be minimized to prevent Cdv/dt turn-on of the low  
side MOSFET.  
SUPPLY DECOUPLING CAPACITOR  
At least two 10uF 1206 ceramic capacitors and one  
0.1uF 0402 ceramic capacitor are recommended for  
decoupling the VIN to PGND connection of each  
MOSFET pair. The 0.1uF 0402 capacitor should be  
on the same side of the PCB as the IRF3546 and  
next to the VIN and PGND pins. Adding additional  
capacitance and use of capacitors with lower ESR  
and mounted with low inductance routing will  
improve efficiency and reduce overall system noise,  
especially in high current applications.  
The ground connection should be as close as  
possible to the low-side MOSFET source.  
Use of a copper plane under and around the device  
and thermal vias to connect to buried copper layers  
improves the thermal performance substantially.  
www.irf.com | © 2013 International Rectifier  
May 29, 2013 | Final  
12  
60A Dual Integrated Power Block  
IRF3546  
METAL AND COMPONENT PLACEMENT  
Center pad land length and width should be  
Lead land width should be equal to nominal  
part lead width. The minimum lead to lead  
spacing should be 0.2mm to prevent  
shorting.  
equal to maximum part pad length and width.  
Only 0.30mm diameter via shall be placed in  
the area of the power pad lands and  
connected to power planes to minimize the  
noise effect and to improve thermal  
performance.  
Lead land length should be equal to  
maximum part lead length +0.15 - 0.3 mm  
outboard extension and 0 to + 0.05mm  
inboard extension. The outboard extension  
ensures a large and visible toe fillet, and the  
inboard extension will accommodate any part  
misalignment and  
ensure a fillet.  
Figure 28: Metal and Component Placement  
www.irf.com | © 2013 International Rectifier  
May 29, 2013 | Final  
13  
60A Dual Integrated Power Block  
IRF3546  
SOLDER RESIST  
At the inside corner of the solder resist  
The solder resist should be pulled away  
from the metal lead lands by a minimum  
of 0.06mm. The solder resist miss-alignment  
is a maximum of 0.05mm and it is  
where the lead land groups meet, it is  
recommended to provide a fillet so a solder  
resist width of 0.17mm remains.  
recommended that the low power signal lead  
lands are all Non Solder Mask Defined  
(NSMD). Therefore pulling the S/R 0.06mm  
will always ensure NSMD pads.  
The power land pads VIN1, VIN2, PGND,  
SW1 and SW2 should be Solder Mask  
Defined (SMD).  
Ensure that the solder resist in-between the  
lead lands and the pad land is 0.15mm due  
to the high aspect ratio of the solder resist  
strip separating the lead lands from the pad  
land.  
The minimum solder resist width is 0.13mm  
typical.  
Figure 29: Solder Resist  
www.irf.com | © 2013 International Rectifier  
May 29, 2013 | Final  
14  
60A Dual Integrated Power Block  
IRF3546  
STENCIL DESIGN  
The power pads VIN1, VIN2, PGND, SW1  
and SW2, land pad apertures should be  
approximately 65% to 75% area of solder on  
the center pad. If too much solder is  
deposited on the center pad the part will float  
and the lead lands will be open. Solder paste  
on large pads is broken down into small  
sections with a minimum gap of 0.2mm  
between allowing for out-gassing during  
solder reflow.  
The stencil apertures for the lead lands  
should be approximately 65% to 75% of the  
area of the lead lands depending on stencil  
thickness. Reducing the amount of solder  
deposited will minimize the occurrence of  
lead shorts. Since for 0.5mm pitch devices  
the leads are only 0.25mm wide, the stencil  
apertures should not be made narrower;  
openings in stencils < 0.25mm wide are  
difficult to maintain repeatable solder release.  
The maximum length and width of the land  
pad stencil aperture should be equal to the  
solder resist opening minus an annular  
0.2mm pull back to decrease the incidence of  
shorting the center land to the lead lands  
when the part is pushed into the solder paste.  
The low power signal stencil lead land  
apertures should therefore be shortened in  
length to keep area ratio of 65% to 75% while  
centered on lead land.  
Figure 30: Stencil Design  
www.irf.com | © 2013 International Rectifier  
May 29, 2013 | Final  
15  
60A Dual Integrated Power Block  
IRF3546  
MARKING INFORMATION  
F3546M  
?YWW?  
xxxx  
Assembly Site(?)/Date(YWW)/M/arking Code(?)  
Lot Code  
Figure 31: PQFN 6mm x 8mm  
www.irf.com | © 2013 International Rectifier  
May 29, 2013 | Final  
16  
60A Dual Integrated Power Block  
IRF3546  
PACKAGE INFORMATION  
Figure 32: PQFN 6mm x 8mm  
www.irf.com | © 2013 International Rectifier  
May 29, 2013 | Final  
17  
60A Dual Integrated PowIRblockTM  
IRF3546  
Data and specifications subject to change without notice.  
This product will be designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.  
www.irf.com  
www.irf.com | © 2013 International Rectifier  
May 29, 2013 | Final  
18  

相关型号:

IRF36

Inductors
VISHAY

IRF360

TRANSISTORS N-CHANNEL(Vdss=400V, Rds(on)=0.20ohm, Id=25A)
INFINEON

IRF3610S

Power Field-Effect Transistor, 103A I(D), 100V, 0.0116ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRF3610SPBF

High Efficiency Synchronous Rectification in SMPS, Uninterruptible Power Supply
INFINEON

IRF3610STRL

Power Field-Effect Transistor, 103A I(D), 100V, 0.0116ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRF3610STRLPBF

Power Field-Effect Transistor, 103A I(D), 100V, 0.0116ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF3610STRPBF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET,
INFINEON

IRF3610STRR

Power Field-Effect Transistor, 103A I(D), 100V, 0.0116ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRF362

TRANSISTOR | MOSFET | N-CHANNEL | 400V V(BR)DSS | 22A I(D) | TO-204AE
ETC

IRF36ER101K

General Fixed Inductor, 1 ELEMENT, 100 uH, FERRITE-CORE, GENERAL PURPOSE INDUCTOR, AXIAL LEADED, HALOGEN FREE AND ROHS COMPLIANT
VISHAY

IRF36ER1R5J

General Fixed Inductor, 1 ELEMENT, 1.5 uH, FERRITE-CORE, GENERAL PURPOSE INDUCTOR, AXIAL LEADED, HALOGEN FREE AND ROHS COMPLIANT
VISHAY

IRF36ER271K

General Fixed Inductor, 1 ELEMENT, 270 uH, FERRITE-CORE, GENERAL PURPOSE INDUCTOR, AXIAL LEADED, HALOGEN FREE AND ROHS COMPLIANT
VISHAY