IRF3709ZCL [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRF3709ZCL
型号: IRF3709ZCL
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲
文件: 总11页 (文件大小:310K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95836  
IRF3709ZCS  
IRF3709ZCL  
HEXFET® Power MOSFET  
Applications  
l High Frequency Synchronous Buck  
Converters for Computer Processor Power  
VDSS RDS(on) max  
Qg  
6.3m:  
30V  
17nC  
Benefits  
l Low RDS(on) at 4.5V VGS  
l Low Gate Charge  
l Fully Characterized Avalanche Voltage  
and Current  
D2Pak  
TO-262  
IRF3709ZCS  
IRF3709ZCL  
Absolute Maximum Ratings  
Parameter  
Drain-to-Source Voltage  
Max.  
30  
Units  
V
VDS  
V
Gate-to-Source Voltage  
± 20  
87  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
@ TC = 25°C  
A
D
D
62  
@ TC = 100°C  
350  
79  
DM  
P
P
@TC = 25°C  
Maximum Power Dissipation  
Maximum Power Dissipation  
W
D
D
@TC = 100°C  
40  
Linear Derating Factor  
Operating Junction and  
0.53  
W/°C  
°C  
T
-55 to + 175  
J
T
Storage Temperature Range  
STG  
Soldering Temperature, for 10 seconds  
300 (1.6mm from case)  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
1.89  
40  
Units  
°C/W  
RθJC  
Junction-to-Case  
RθJA  
–––  
Junction-to-Ambient (PCB Mount)  
Notes  through ‡ are on page 11  
www.irf.com  
1
1/16/04  
IRF3709ZCS/L  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
30 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
V
∆ΒVDSS/TJ  
RDS(on)  
Breakdown Voltage Temp. Coefficient ––– 0.021 ––– mV/°C Reference to 25°C, ID = 1mA  
mΩ  
Static Drain-to-Source On-Resistance  
–––  
–––  
1.35  
–––  
–––  
–––  
–––  
–––  
88  
5.0  
6.2  
6.3  
7.8  
VGS = 10V, ID = 21A  
VGS = 4.5V, ID = 17A  
VDS = VGS, ID = 250µA  
VGS(th)  
Gate Threshold Voltage  
–––  
-5.5  
–––  
–––  
–––  
2.25  
V
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– mV/°C  
1.0  
150  
100  
µA  
V
V
DS = 24V, VGS = 0V  
DS = 24V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA VGS = 20V  
GS = -20V  
––– -100  
V
gfs  
–––  
17  
–––  
26  
S
VDS = 15V, ID = 17A  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
td(on)  
tr  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
4.4  
1.7  
6.0  
4.9  
7.7  
11  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 15V  
nC  
VGS = 4.5V  
ID = 17A  
Gate Charge Overdrive  
See Fig. 14a&b  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
nC VDS = 16V, VGS = 0V  
DD = 15V, VGS = 4.5V  
Turn-On Delay Time  
Rise Time  
13  
V
41  
ID = 17A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
16  
ns Clamped Inductive Load  
4.7  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 2130 –––  
V
V
GS = 0V  
–––  
–––  
450  
220  
–––  
–––  
pF  
DS = 15V  
ƒ = 1.0MHz  
Avalanche Characteristics  
Parameter  
Single Pulse Avalanche Energy  
Typ.  
–––  
–––  
–––  
Max.  
Units  
mJ  
A
EAS  
IAR  
60  
17  
Avalanche Current  
Repetitive Avalanche Energy  
EAR  
7.9  
mJ  
Diode Characteristics  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
87  
D
IS  
–––  
–––  
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
G
ISM  
–––  
–––  
350  
S
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
–––  
16  
1.0  
24  
V
T = 25°C, I = 17A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
ns T = 25°C, I = 17A, VDD = 15V  
J F  
Qrr  
di/dt = 100A/µs  
6.2  
9.3  
nC  
2
www.irf.com  
IRF3709ZCS/L  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
9.0V  
7.0V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
9.0V  
7.0V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
BOTTOM  
BOTTOM  
3.0V  
3.0V  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.0  
1.5  
1.0  
0.5  
I
= 42A  
D
V
= 10V  
GS  
T
= 175°C  
J
1
T
= 25°C  
J
V
= 15V  
DS  
60µs PULSE WIDTH  
0.1  
0
1
2
3
4
5
6
7
8
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160 180  
, Junction Temperature (°C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
vs. Temperature  
www.irf.com  
3
IRF3709ZCS/L  
10000  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 17A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
rss  
oss  
gd  
= C + C  
V
V
= 24V  
= 15V  
DS  
DS  
ds  
gd  
C
iss  
1000  
C
oss  
C
rss  
100  
1
10  
100  
0
5
10  
15  
20  
25  
Q
Total Gate Charge (nC)  
V
, Drain-to-Source Voltage (V)  
G
DS  
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.00  
100.00  
10.00  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100µsec  
1msec  
T
= 25°C  
J
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
10msec  
V
= 0V  
GS  
1.00  
0.1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0
1
10  
100  
1000  
V
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF3709ZCS/L  
2.5  
2.0  
1.5  
1.0  
0.5  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Limited By Package  
I
= 250µA  
D
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
25  
50  
75  
100  
125  
150  
175  
T
, Temperature ( °C )  
T
, Case Temperature (°C)  
J
C
Fig 9. Maximum Drain Current vs.  
Fig 10. Threshold Voltage vs. Temperature  
Case Temperature  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
0.1  
0.01  
τ
J τJ  
τ
0.832  
0.000221  
τ
Cτ  
0.02  
0.01  
1τ1  
Ci= τi/Ri  
τ
2τ2  
1.058  
0.001171  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF3709ZCS/L  
9.00  
16  
14  
12  
10  
8
Vgs = 10V  
I
= 21A  
D
8.00  
T
= 125°C  
J
7.00  
6.00  
5.00  
4.00  
T
= 125°C  
J
6
T
= 25°C  
J
T
= 25°C  
4
J
2
0
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
70.0  
2
3
4
5
6
7
8
9
10  
I , Drain Current (A)  
D
V
Gate -to -Source Voltage (V)  
GS,  
Fig 12. On-Resistance vs. Drain Current  
Fig 13. On-Resistance vs. Gate Voltage  
Current Regulator  
Same Type as D.U.T.  
Id  
Vds  
50KΩ  
.2µF  
Vgs  
12V  
.3µF  
250  
+
I
V
DS  
D
D.U.T.  
-
TOP  
5.4A  
8.0A  
Vgs(th)  
V
GS  
200  
150  
100  
50  
3mA  
BOTTOM 17A  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 14a&b. Basic Gate Charge Test Circuit  
and Waveform  
15V  
V
(BR)DSS  
DRIVER  
L
t
p
V
DS  
D.U.T  
AS  
R
G
+
-
0
V
DD  
I
A
25  
50  
75  
100  
125  
150  
175  
20V  
0.01  
t
p
I
AS  
Starting T , Junction Temperature (°C)  
J
Fig 16. Maximum Avalanche Energy  
Fig 15a&b. Unclamped Inductive Test circuit  
vs. Drain Current  
and Waveforms  
6
www.irf.com  
IRF3709ZCS/L  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
Driver same type as D.U.T.  
RG  
+
-
Body Diode  
Forward Drop  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
LD  
VDS  
+
-
VDD  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
Fig 18a. Switching Time Test Circuit  
VDS  
90%  
10%  
VGS  
td(on)  
td(off)  
tr  
tf  
Fig 18b. Switching Time Waveforms  
www.irf.com  
7
IRF3709ZCS/L  
Power MOSFET Selection for Non-Isolated DC/DC Converters  
Synchronous FET  
Control FET  
The power loss equation for Q2 is approximated  
by;  
Special attention has been given to the power losses  
in the switching elements of the circuit - Q1 and Q2.  
Power losses in the high side switch Q1, also called  
the Control FET, are impacted by the Rds(on) of the  
MOSFET, but these conduction losses are only about  
one half of the total losses.  
P = P  
+ P + P*  
loss  
conduction  
drive  
output  
P = Irms 2 × Rds(on)  
loss ( )  
Power losses in the control switch Q1 are given  
by;  
+ Q × V × f  
(
)
g
g
Qoss  
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
+
×V × f + Q × V × f  
(
)
in  
rr  
in  
2  
This can be expanded and approximated by;  
*dissipated primarily in Q1.  
P
= I 2 × Rds(on)  
(
)
loss  
rms  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
Qgd  
ig  
Qgs2  
ig  
+ I ×  
× V × f + I ×  
× V × f  
in  
in  
+ Q × V × f  
(
)
g
g
Qoss  
+
×V × f  
in  
2
This simplified loss equation includes the terms Qgs2  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
and Qoss which are new to Power MOSFET data sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 16.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached and the time the drain cur-  
rent rises to Idmax at which time the drain voltage be-  
gins to change. Minimizing Qgs2 is a critical factor in  
reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure A shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
Figure A: Qoss Characteristic  
8
www.irf.com  
IRF3709ZCS/L  
D2Pak Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak Part Marking Information  
www.irf.com  
9
IRF3709ZCS/L  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
IGBT  
1- GATE  
2- COLLEC-  
TOR  
TO-262 Part Marking Information  
10  
www.irf.com  
IRF3709ZCS/L  
D2Pak Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
TRL  
11.60 (.457)  
11.40 (.449)  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Notes:  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.42mH, RG = 25,  
IAS = 17A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ Coss eff. is a fixed capacitance that gives the same  
This is applied to D2Pak, when mounted on 1" square PCB (FR-  
4 or G-10 Material). For recommended footprint and soldering  
techniques refer to application note #AN-994.  
† Calculated continuous current based on maximum allowable  
junction temperature. Package limitation current is 42A.  
‡ R is measured at TJ of approximately 90°C.  
θ
charging time as Coss while VDS is rising from 0 to  
80% VDSS  
.
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 01/04  
www.irf.com  
11  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY