IRF3711ZL [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRF3711ZL
型号: IRF3711ZL
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

文件: 总12页 (文件大小:299K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94757A  
IRF3711Z  
IRF3711ZS  
IRF3711ZL  
HEXFET® Power MOSFET  
Applications  
l High Frequency Synchronous Buck  
Converters for Computer Processor Power  
VDSS RDS(on) max  
Qg  
6.0m:  
20V  
16nC  
Benefits  
l Low RDS(on) at 4.5V VGS  
l Ultra-Low Gate Impedance  
l Fully Characterized Avalanche Voltage  
and Current  
D2Pak  
IRF3711ZS  
TO-262  
IRF3711ZL  
TO-220AB  
IRF3711Z  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VDS  
Drain-to-Source Voltage  
20  
V
V
Gate-to-Source Voltage  
± 20  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
92  
65  
380  
I
I
I
@ TC = 25°C  
A
D
D
@ TC = 100°C  
DM  
P
P
@TC = 25°C  
Maximum Power Dissipation  
Maximum Power Dissipation  
79  
40  
W
D
D
@TC = 100°C  
Linear Derating Factor  
Operating Junction and  
0.53  
W/°C  
°C  
T
-55 to + 175  
J
T
Storage Temperature Range  
STG  
Soldering Temperature, for 10 seconds  
Mounting Torque, 6-32 or M3 screw  
300 (1.6mm from case)  
10 lbf in (1.1N m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
1.89  
–––  
62  
Units  
°C/W  
RθJC  
Junction-to-Case  
RθCS  
RθJA  
RθJA  
0.50  
–––  
Case-to-Sink, Flat Greased Surface  
Junction-to-Ambient  
–––  
40  
Junction-to-Ambient (PCB Mount)  
Notes  through ‡ are on page 12  
www.irf.com  
1
10/30/03  
IRF3711Z/S/L  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
20 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
V
∆ΒVDSS/TJ  
RDS(on)  
Breakdown Voltage Temp. Coefficient ––– 0.013 ––– V/°C Reference to 25°C, ID = 1mA  
mΩ  
Static Drain-to-Source On-Resistance  
–––  
–––  
1.55  
–––  
–––  
–––  
–––  
–––  
46  
4.8  
5.9  
6.0  
7.3  
VGS = 10V, ID = 15A  
VGS = 4.5V, ID = 12A  
VDS = VGS, ID = 250µA  
VGS(th)  
Gate Threshold Voltage  
2.0  
2.45  
V
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
-5.6  
–––  
–––  
–––  
––– mV/°C  
1.0  
150  
100  
µA  
V
V
DS = 16V, VGS = 0V  
DS = 16V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA VGS = 20V  
GS = -20V  
––– -100  
V
gfs  
–––  
16  
–––  
24  
S
VDS = 10V, ID = 12A  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
td(on)  
tr  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
4.6  
1.4  
5.3  
4.7  
6.7  
9.5  
12  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 10V  
nC  
V
GS = 4.5V  
D = 12A  
See Fig. 16  
I
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
nC VDS = 10V, VGS = 0V  
DD = 10V, VGS = 4.5V  
Turn-On Delay Time  
Rise Time  
V
16  
ID = 12A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
15  
ns Clamped Inductive Load  
5.4  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 2150 –––  
V
V
GS = 0V  
–––  
–––  
680  
320  
–––  
–––  
pF  
DS = 10V  
ƒ = 1.0MHz  
Avalanche Characteristics  
Parameter  
Single Pulse Avalanche Energy  
Typ.  
–––  
–––  
–––  
Max.  
Units  
mJ  
A
EAS  
IAR  
130  
12  
Avalanche Current  
Repetitive Avalanche Energy  
EAR  
7.9  
mJ  
Diode Characteristics  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
92  
D
IS  
–––  
–––  
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
G
ISM  
–––  
–––  
380  
S
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
–––  
16  
1.0  
24  
V
T = 25°C, I = 12A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
ns T = 25°C, I = 12A, VDD = 10V  
J F  
Qrr  
di/dt = 100A/µs  
6.0  
9.0  
nC  
2
www.irf.com  
IRF3711Z/S/L  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
9.0V  
7.0V  
5.0V  
4.5V  
4.0V  
3.5V  
9.0V  
7.0V  
5.0V  
4.5V  
4.0V  
3.5V  
BOTTOM 3.0V  
BOTTOM 3.0V  
3.0V  
3.0V  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
1
1
0.1  
1
10  
0.1  
1
10  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
2.0  
1.5  
1.0  
0.5  
I
= 30A  
T
= 25°C  
D
J
V
= 10V  
GS  
T
= 175°C  
J
100  
10  
1
V
= 10V  
DS  
60µs PULSE WIDTH  
2.0  
3.0  
V
4.0  
5.0  
6.0  
7.0  
8.0  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160 180  
, Gate-to-Source Voltage (V)  
GS  
, Junction Temperature (°C)  
J
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
vs. Temperature  
www.irf.com  
3
IRF3711Z/S/L  
10000  
12  
10  
8
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 12A  
D
V
= 15V  
C
C
C
+ C , C  
SHORTED  
DS  
iss  
gs  
gd  
ds  
= C  
VDS= 10V  
rss  
oss  
gd  
= C + C  
ds  
gd  
Ciss  
6
1000  
Coss  
Crss  
4
2
0
100  
0
5
10 15 20 25 30 35 40  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q
Total Gate Charge (nC)  
G
V
DS  
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.0  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100.0  
10.0  
1.0  
T
= 175°C  
J
100µsec  
T
= 25°C  
J
1msec  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
10msec  
1
0.1  
0
1
10  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
V
, Drain-toSource Voltage (V)  
V
, Source-toDrain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF3711Z/S/L  
100  
80  
60  
40  
20  
0
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
LIMITED BY PACKAGE  
I
= 250µA  
D
25  
50  
75  
100  
125  
150  
175  
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
, Temperature ( °C )  
T
, Case Temperature (°C)  
C
T
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Threshold Voltage vs. Temperature  
Case Temperature  
10  
1
0.1  
D = 0.50  
0.20  
0.10  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
τ
JτJ  
τ
τ
0.05  
0.894  
0.600  
0.401  
0.000306  
0.001019  
0.006662  
Cτ  
τ
1τ1  
τ
2 τ2  
3τ3  
0.02  
0.01  
Ci= τi/Ri  
Ci= τi/Ri  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF3711Z/S/L  
600  
500  
400  
300  
200  
100  
0
0.02  
I
I
= 15A  
D
D
TOP  
7.3A  
8.6A  
12A  
BOTTOM  
0.01  
T
= 125°C  
= 25°C  
J
T
J
0.00  
2.0  
4.0  
6.0  
8.0  
10.0  
25  
50  
75  
100  
125  
150  
175  
V
, Gate-to-Source Voltage (V)  
GS  
Starting T , Junction Temperature (°C)  
J
Fig 12. On-Resistance Vs. Gate Voltage  
Fig 13c. Maximum Avalanche Energy  
vs. Drain Current  
15V  
LD  
VDS  
DRIVER  
+
L
+
V
DS  
-
VDD  
D.U.T  
AS  
R
G
V
D.U.T  
DD  
-
I
A
VGS  
V
GS  
0.01Ω  
t
p
Pulse Width < 1µs  
Duty Factor < 0.1%  
Fig 13a. Unclamped Inductive Test Circuit  
Fig 14a. Switching Time Test Circuit  
VDS  
V
(BR)DSS  
t
p
90%  
10%  
VGS  
td(on)  
td(off)  
tr  
tf  
I
AS  
Fig 14b. Switching Time Waveforms  
Fig 13b. Unclamped Inductive Waveforms  
6
www.irf.com  
IRF3711Z/S/L  
Driver Gate Drive  
P.W.  
P.W.  
D =  
Period  
D.U.T  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
RG  
+
-
Body Diode  
Forward Drop  
Inductor Curent  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Current Regulator  
Vds  
Same Type as D.U.T.  
Vgs  
50KΩ  
.2µF  
.3µF  
12V  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 17. Gate Charge Waveform  
Fig 16. Gate Charge Test Circuit  
www.irf.com  
7
IRF3711Z/S/L  
Power MOSFET Selection for Non-Isolated DC/DC Converters  
Synchronous FET  
Control FET  
The power loss equation for Q2 is approximated  
by;  
Special attention has been given to the power losses  
in the switching elements of the circuit - Q1 and Q2.  
Power losses in the high side switch Q1, also called  
the Control FET, are impacted by the Rds(on) of the  
MOSFET, but these conduction losses are only about  
one half of the total losses.  
P = P  
+ P + P*  
drive output  
loss  
conduction  
P = Irms 2 × Rds(on)  
loss ( )  
Power losses in the control switch Q1 are given  
by;  
+ Q × V × f  
(
)
g
g
Qoss  
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
+
×V × f + Q × V × f  
in rr in  
(
)
2  
This can be expanded and approximated by;  
*dissipated primarily in Q1.  
P
= I 2 × Rds(on)  
(
)
loss  
rms  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
Qgd  
ig  
Qgs2  
ig  
+ I ×  
× V × f + I ×  
× V × f  
in  
in  
+ Q × V × f  
(
Qoss  
)
g
g
+
×V × f  
in  
2
This simplified loss equation includes the terms Qgs2  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
and Qoss which are new to Power MOSFET data sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 16.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached and the time the drain cur-  
rent rises to Idmax at which time the drain voltage be-  
gins to change. Minimizing Qgs2 is a critical factor in  
reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure A shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
Figure A: Qoss Characteristic  
8
www.irf.com  
IRF3711Z/S/L  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
10.54 (.415)  
10.29 (.405)  
- B -  
3.78 (.149)  
3.54 (.139)  
2.87 (.113)  
2.62 (.103)  
4.69 (.185)  
4.20 (.165)  
1.32 (.052)  
1.22 (.048)  
- A -  
6.47 (.255)  
6.10 (.240)  
4
15.24 (.600)  
14.84 (.584)  
1.15 (.045)  
MIN  
LEAD ASSIGNMENTS  
1 - GATE  
1
2
3
2 - DRAIN  
3 - SOURCE  
4 - DRAIN  
14.09 (.555)  
13.47 (.530)  
4.06 (.160)  
3.55 (.140)  
0.93 (.037)  
0.69 (.027)  
0.55 (.022)  
3X  
3X  
0.46 (.018)  
1.40 (.055)  
3X  
1.15 (.045)  
0.36 (.014)  
M
B A M  
2.92 (.115)  
2.64 (.104)  
2.54 (.100)  
2X  
NOTES:  
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
2 CONTROLLING DIMENSION : INCH  
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.  
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.  
TO-220AB Part Marking Information  
EXAMPLE: THIS IS AN IRF1010  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 19, 1997  
IN THE ASSEMBLY LINE "C"  
DATE CODE  
YEAR 7 = 1997  
ASSEMBLY  
LOT CODE  
WEEK 19  
LINE C  
For GB Production  
EXAMPLE: THIS IS AN IRF1010  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW19, 1997  
IN THE ASSEMBLY LINE "C"  
DATE CODE  
LOT CODE  
www.irf.com  
9
IRF3711Z/S/L  
D2Pak Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak Part Marking Information  
THIS IS AN IRF530S WITH  
LOT CODE 8024  
ASSEMBLED ON WW 02, 2000  
IN THE ASSEMBLY LINE "L"  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
F530S  
DATE CODE  
YEAR 0 = 2000  
WEEK 02  
ASSEMBLY  
LOT CODE  
LINE L  
For GB Production  
THIS IS AN IRF530S WITH  
LOT CODE 8024  
PART NUMBER  
DATE CODE  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 02, 2000  
IN THE ASSEMBLY LINE "L"  
F530S  
LOT CODE  
10  
www.irf.com  
IRF3711Z/S/L  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
IGBT  
1- GATE  
2- COLLEC-  
TOR  
TO-262 Part Marking Information  
EXAMPLE: THIS IS AN IRL3103L  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 19, 1997  
IN THE ASSEMBLY LINE "C"  
DATE CODE  
YEAR 7 = 1997  
WEEK 19  
ASSEMBLY  
LOT CODE  
LINE C  
www.irf.com  
11  
IRF3711Z/S/L  
D2Pak Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
TRL  
11.60 (.457)  
11.40 (.449)  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Notes:  
„ This is only applied to TO-220AB pakcage.  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‚ Starting TJ = 25°C, L = 1.8mH, RG = 25,  
This is applied to D2Pak, when mounted on 1" square PCB (FR-  
4 or G-10 Material). For recommended footprint and soldering  
techniques refer to application note #AN-994.  
I
AS = 12A.  
† Calculated continuous current based on maximum allowable  
ƒ Pulse width 400µs; duty cycle 2%.  
junction temperature. Package limitation current is 30A.  
‡ Rθ is measured at TJ approximately 90°C  
TO-220AB package is not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 10/03  
12  
www.irf.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY