IRF3717PBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRF3717PBF
型号: IRF3717PBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

光电二极管
文件: 总10页 (文件大小:188K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95719  
IRF3717PbF  
HEXFET® Power MOSFET  
Applications  
l Synchronous MOSFET for Notebook  
Processor Power  
VDSS  
RDS(on) max  
ID  
4.4m @VGS = 10V  
20V  
20A  
l Synchronous Rectifier MOSFET for  
Isolated DC-DC Converters in  
Networking Systems  
A
A
D
1
2
3
4
8
S
S
S
G
l Lead-Free  
7
D
6
D
Benefits  
l Ultra-Low Gate Impedance  
l Very Low RDS(on)  
5
D
SO-8  
Top View  
l Fully Characterized Avalanche Voltage  
and Current  
Absolute Maximum Ratings  
Parameter  
Max.  
20  
Units  
VDS  
Drain-to-Source Voltage  
V
V
Gate-to-Source Voltage  
± 20  
20  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
@ TA = 25°C  
D
D
@ TA = 70°C  
16  
A
160  
2.5  
1.6  
DM  
P
P
@TA = 25°C  
@TA = 70°C  
Power Dissipation  
Power Dissipation  
W
D
D
Linear Derating Factor  
Operating Junction and  
0.02  
W/°C  
°C  
T
-55 to + 150  
J
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Drain Lead  
Junction-to-Ambient  
Typ.  
–––  
Max.  
20  
Units  
Rθ  
Rθ  
°C/W  
JL  
–––  
50  
JA  
Notes  through „ are on page 10  
www.irf.com  
1
8/10/04  
IRF3717PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
20 ––– –––  
––– 0.014 –––  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
∆Β  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
V
VDSS/ TJ  
V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
–––  
–––  
1.55  
–––  
–––  
–––  
–––  
–––  
57  
3.7  
4.8  
4.4  
5.7  
V
GS = 10V, ID = 20A  
VGS = 4.5V, ID = 16A  
DS = VGS, ID = 250µA  
mΩ  
VGS(th)  
Gate Threshold Voltage  
2.0  
2.45  
V
V
VGS(th)/ TJ  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
-5.4  
–––  
–––  
–––  
––– mV/°C  
IDSS  
1.0  
150  
100  
µA VDS = 16V, VGS = 0V  
V
DS = 16V, VGS = 0V, TJ = 125°C  
GS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA  
S
V
––– -100  
VGS = -20V  
gfs  
Qg  
–––  
22  
–––  
33  
VDS = 10V, ID = 16A  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
6.8  
2.2  
7.3  
5.7  
9.5  
12  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 10V  
Qgs2  
Qgd  
nC VGS = 4.5V  
ID = 16A  
Qgodr  
Gate Charge Overdrive  
See Fig. 16  
Qsw  
Switch Charge (Qgs2 + Qgd)  
Qoss  
td(on)  
tr  
Output Charge  
nC VDS = 10V, VGS = 0V  
Turn-On Delay Time  
Rise Time  
12  
VDD = 10V, VGS = 4.5V  
14  
ID = 16A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
15  
ns Clamped Inductive Load  
6.0  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 2890 –––  
VGS = 0V  
pF VDS = 10V  
ƒ = 1.0MHz  
–––  
–––  
930  
430  
–––  
–––  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
Max.  
32  
Units  
mJ  
Single Pulse Avalanche Energy  
EAS  
IAR  
Avalanche Current  
16  
A
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
IS  
Continuous Source Current  
–––  
–––  
20  
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
G
ISM  
–––  
–––  
160  
S
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
–––  
22  
1.0  
32  
19  
V
T = 25°C, I = 16A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
ns T = 25°C, I = 16A, VDD = 10V  
J F  
Qrr  
di/dt = 100A/µs  
13  
nC  
2
www.irf.com  
IRF3717PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
4.5V  
3.8V  
3.5V  
3.3V  
3.0V  
2.8V  
2.5V  
4.5V  
3.8V  
3.5V  
3.3V  
3.0V  
2.8V  
2.5V  
BOTTOM  
BOTTOM  
1
20µs PULSE WIDTH  
Tj = 25°C  
2.5V  
1
20µs PULSE WIDTH  
Tj = 150°C  
2.5V  
1
0.1  
1
0.1  
10  
100  
0.1  
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 2. Typical Output Characteristics  
Fig 1. Typical Output Characteristics  
1.5  
1.0  
0.5  
1000  
I
= 20A  
D
V
= 10V  
GS  
100  
10  
1
T
= 150°C  
J
T
= 25°C  
J
V
= 10V  
DS  
20µs PULSE WIDTH  
0.1  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
T
J
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance  
Fig 3. Typical Transfer Characteristics  
vs.Temperature  
www.irf.com  
3
IRF3717PbF  
100000  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I =16A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
V
V
= 16V  
= 10V  
rss  
oss  
gd  
= C + C  
DS  
DS  
ds  
gd  
10000  
1000  
100  
C
C
iss  
oss  
C
rss  
1
10  
100  
0
5
10  
15  
20  
25  
30  
V
, Drain-to-Source Voltage (V)  
Q
Total Gate Charge (nC)  
DS  
G
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-Source Voltage  
Drain-to-SourceVoltage  
1000.00  
100.00  
10.00  
1.00  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 150°C  
J
100µsec  
T
= 25°C  
J
1msec  
T
= 25°C  
A
Tj = 150°C  
Single Pulse  
10msec  
V
= 0V  
GS  
0.10  
1
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
0
1
10  
100  
V
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF3717PbF  
20  
15  
10  
5
2.5  
2.0  
1.5  
1.0  
I
= 250µA  
D
0
-75 -50 -25  
0
25  
, Temperature ( °C )  
J
50  
75 100 125 150  
25  
50  
75  
100  
125  
150  
T
T
, Ambient Temperature (°C)  
A
Fig 9. Maximum Drain Current vs.  
Fig 10. Threshold Voltage vs. Temperature  
AmbientTemperature  
100  
D = 0.50  
10  
1
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.02  
0.01  
1.4174  
0.000277  
0.103855  
1.362000  
39.60000  
τ
τ
J τJ  
τ
Cτ  
11.3607  
21.8639  
15.3721  
τ
1τ1  
τ
τ
2 τ2  
3τ3  
4τ4  
0.1  
Ci= τi/Ri  
SINGLE PULSE  
P
DM  
( THERMAL RESPONSE )  
0.01  
t
1
t
2
Notes:  
1. Duty factor D =  
2. Peak T  
t
x
/ t  
Z
1
2
=
P
+ T  
J
DM  
thJA  
A
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
www.irf.com  
5
IRF3717PbF  
150  
100  
50  
I
D
15V  
TOP  
6.5A  
7.5A  
BOTTOM 16A  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
2
V0GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
0
(BR)DSS  
25  
50  
75  
100  
125  
150  
t
p
Starting T , Junction Temperature (°C)  
J
Fig 12c. Maximum Avalanche Energy  
vs. Drain Current  
LD  
VDS  
I
AS  
Fig 12b. Unclamped Inductive Waveforms  
+
-
VDD  
D.U.T  
Current Regulator  
VGS  
Same Type as D.U.T.  
Pulse Width < 1µs  
Duty Factor < 0.1%  
50KΩ  
.2µF  
12V  
Fig 14a. Switching Time Test Circuit  
VDS  
.3µF  
+
V
DS  
D.U.T.  
-
90%  
V
GS  
3mA  
10%  
VGS  
I
I
D
G
Current Sampling Resistors  
td(on)  
td(off)  
tr  
tf  
Fig 13. Gate Charge Test Circuit  
Fig 14b. Switching Time Waveforms  
6
www.irf.com  
IRF3717PbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
D.U.T  
Period  
Period  
+
ƒ
-
*
=10V  
V
GS  
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Vds  
Vgs  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 16. Gate Charge Waveform  
www.irf.com  
7
IRF3717PbF  
Power MOSFET Selection for Non-Isolated DC/DC Converters  
Synchronous FET  
Control FET  
The power loss equation for Q2 is approximated  
by;  
Special attention has been given to the power losses  
in the switching elements of the circuit - Q1 and Q2.  
Power losses in the high side switch Q1, also called  
the Control FET, are impacted by the Rds(on) of the  
MOSFET, but these conduction losses are only about  
one half of the total losses.  
P = P  
+ P + P*  
loss  
conduction  
drive  
output  
P = Irms 2 × Rds(on)  
loss ( )  
Power losses in the control switch Q1 are given  
by;  
+ Q × V × f  
(
)
g
g
Qoss  
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
+
×V × f + Q × V × f  
(
)
in  
rr  
in  
2  
This can be expanded and approximated by;  
*dissipated primarily in Q1.  
P
= I 2 × Rds(on )  
(
)
loss  
rms  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
Qgd  
ig  
Qgs2  
ig  
+ I ×  
× V × f + I ×  
× V × f  
in  
in  
+ Q × V × f  
(
)
g
g
Qoss  
+
×V × f  
in  
2
This simplified loss equation includes the terms Qgs2  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
and Qoss which are new to Power MOSFET data sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 16.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached and the time the drain cur-  
rent rises to Idmax at which time the drain voltage be-  
gins to change. Minimizing Qgs2 is a critical factor in  
reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure A shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
Figure A: Qoss Characteristic  
8
www.irf.com  
IRF3717PbF  
SO-8 Package Outline  
Dimensions are shown in millimeters (inches)  
INCHES  
MILLIMETERS  
DIM  
A
D
B
MIN  
.0532  
MAX  
.0688  
.0098  
.020  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
5
A
E
A1 .0040  
b
c
.013  
8
1
7
2
6
3
5
.0075  
.189  
.0098  
.1968  
.1574  
6
H
D
E
e
0.25 [.010]  
A
.1497  
4
.050 BASIC  
1.27 BASIC  
e 1 .025 BASIC  
0.635 BASIC  
H
K
L
y
.2284  
.0099  
.016  
0°  
.2440  
.0196  
.050  
8°  
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
e
6X  
e1  
K x 45°  
A
C
y
0.10 [.004]  
8X c  
A1  
B
8X L  
8X b  
0.25 [.010]  
7
C
A
F OOT PRINT  
8X 0.72 [.028]  
NOT ES :  
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.  
2. CONT ROLLING DIMENS ION: MILLIMET ER  
3. DIMENS IONS ARE SHOWN IN MILLIMETERS [INCHES].  
4. OUT L INE CONF OR MS T O JE DE C OU T L INE MS -012AA.  
5
6
7
DIMENS ION DOES NOT INCLUDE MOLD PROT RUSIONS .  
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].  
6.46 [.255]  
DIMENS ION DOES NOT INCLUDE MOLD PROT RUSIONS .  
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].  
DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO  
ASUBSTRATE.  
3X 1.27 [.050]  
8X 1.78 [.070]  
SO-8 Part Marking  
EXAMPLE: THIS IS AN IRF7101 (MOSFET)  
DATE CODE (YWW)  
P = DE S I GNAT E S L E AD-F R E E  
PRODUCT (OPTIONAL)  
Y= LAST DIGIT OF THE YEAR  
XXXX  
F7101  
WW = WEEK  
INTERNATIONAL  
RECTIFIER  
LOGO  
A = ASSEMBLYSITE CODE  
LOT CODE  
PART NUMBER  
www.irf.com  
9
IRF3717PbF  
SO-8 Tape and Reel  
Dimensions are shown in millimeters (inches)  
TERMINAL NUMBER 1  
12.3 ( .484 )  
11.7 ( .461 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
NOTES:  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
330.00  
(12.992)  
MAX.  
14.40 ( .566 )  
12.40 ( .488 )  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
Notes:  
 Repetitive rating; pulse width limited by max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.26mH, RG = 25, IAS = 16A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ When mounted on 1 inch square copper board.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualifications Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.08/04  
10  
www.irf.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY