IRF4905LPBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRF4905LPBF
型号: IRF4905LPBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

文件: 总11页 (文件大小:358K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97034  
IRF4905SPbF  
IRF4905LPbF  
HEXFET® Power MOSFET  
Features  
O
Advanced Process Technology  
Ultra Low On-Resistance  
150°C Operating Temperature  
Fast Switching  
D
O
O
O
O
O
VDSS = -55V  
RDS(on) = 20mΩ  
Repetitive Avalanche Allowed up to Tjmax  
Some Parameters Are Differrent from  
IRF4905S  
G
ID = -42A  
S
O
Lead-Free  
D
D
Description  
Features of this design are a 150°C junction oper-  
ating temperature, fast switching speed and im-  
proved repetitive avalanche rating . These features  
combine to make this design an extremely efficient  
and reliable device for use in a wide variety of other  
applications.  
S
S
D
D
G
G
D2Pak  
TO-262  
IRF4905LPbF  
IRF4905SPbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
-70  
I
I
I
I
@ T = 25°C  
C
D
D
D
-44  
@ T = 100°C  
C
A
-42  
@ T = 25°C  
C
-280  
DM  
170  
P
@T = 25°C Power Dissipation  
C
W
W/°C  
V
D
1.3  
Linear Derating Factor  
± 20  
V
Gate-to-Source Voltage  
GS  
EAS (Thermally limited)  
140  
790  
Single Pulse Avalanche Energy  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
mJ  
EAS (Tested )  
IAR  
See Fig.12a, 12b, 15, 16  
A
EAR  
Repetitive Avalanche Energy  
Operating Junction and  
mJ  
-55 to + 150  
T
T
J
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
Mounting Torque, 6-32 or M3 screw  
°C  
STG  
300 (1.6mm from case )  
10 lbf in (1.1N m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
0.75  
40  
Units  
RθJC  
RθJA  
Junction-to-Case  
Junction-to-Ambient (PCB Mount, steady state)  
–––  
www.irf.com  
1
8/5/05  
IRF4905S/L  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = -250µA  
V(BR)DSS  
V(BR)DSS/TJ  
RDS(on)  
VGS(th)  
Drain-to-Source Breakdown Voltage  
-55  
–––  
–––  
V
Reference to 25°C, ID = -1mA  
Breakdown Voltage Temp. Coefficient ––– -0.054 ––– V/°C  
V
GS = -10V, ID = -42A  
mΩ  
V
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
-2.0  
19  
–––  
–––  
–––  
–––  
20  
VDS = VGS, ID = -250µA  
VDS = -25V, ID = -42A  
-4.0  
–––  
-25  
gfs  
Forward Transconductance  
S
V
V
DS = -55V, VGS = 0V  
IDSS  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
µA  
DS = -44V, VGS = 0V, TJ = 125°C  
––– -200  
––– 100  
––– -100  
VGS = -20V  
GS = 20V  
ID = -42A  
DS = -44V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
nA  
nC  
V
Qg  
Qgs  
Qgd  
td(on)  
tr  
120  
32  
53  
20  
99  
51  
64  
7.5  
180  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
V
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
VGS = -10V  
VDD = -28V  
ID = -42A  
Rise Time  
R
G = 2.6 Ω  
VGS = -10V  
nH Between lead,  
and center of die contact  
VGS = 0V  
DS = -25V  
td(off)  
tf  
Turn-Off Delay Time  
ns  
Fall Time  
LS  
Internal Source Inductance  
Ciss  
Coss  
Crss  
Coss  
Coss  
Input Capacitance  
––– 3500 –––  
––– 1250 –––  
V
Output Capacitance  
ƒ = 1.0MHz  
Reverse Transfer Capacitance  
Output Capacitance  
–––  
––– 4620 –––  
––– 940 –––  
––– 1530 –––  
450  
–––  
pF  
VGS = 0V, VDS = -1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = -44V, ƒ = 1.0MHz  
Output Capacitance  
V
GS = 0V, VDS = 0V to -44V  
Coss eff.  
Effective Output Capacitance  
Source-Drain Ratings and Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
I
Continuous Source Current  
–––  
–––  
-42  
S
showing the  
(Body Diode)  
A
integral reverse  
I
Pulsed Source Current  
(Body Diode)  
–––  
––– -280  
SM  
p-n junction diode.  
T = 25°C, I = -42A, V = 0V  
V
t
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
–––  
–––  
–––  
–––  
61  
-1.3  
92  
V
J
S
GS  
SD  
T = 25°C, I = -42A, VDD = -28V  
ns  
nC  
J
F
rr  
di/dt = -100A/µs  
Q
150  
220  
rr  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
t
on  
2
www.irf.com  
IRF4905S/L  
1000  
100  
10  
1000  
100  
10  
VGS  
-15V  
-10V  
-8.0V  
-7.0V  
-6.0V  
-5.5V  
-5.0V  
-4.5V  
VGS  
TOP  
TOP  
-15V  
-10V  
-8.0V  
-7.0V  
-6.0V  
-5.5V  
-5.0V  
-4.5V  
BOTTOM  
BOTTOM  
-4.5V  
-4.5V  
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 150°C  
1
1
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
-V , Drain-to-Source Voltage (V)  
-V , Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000.0  
100.0  
10.0  
1.0  
40  
T
= 25°C  
T
= 25°C  
J
J
T
= 150°C  
J
30  
20  
10  
0
T
= 150°C  
J
V
= -25V  
DS  
60µs PULSE WIDTH  
V
= -10V  
DS  
380µs PULSE WIDTH  
0.1  
3
4
5
6
7
8
9
10 11 12 13 14  
0
20  
40  
60  
80  
-V , Gate-to-Source Voltage (V)  
GS  
-I Drain-to-Source Current (A)  
D,  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
Vs. Drain Current  
www.irf.com  
3
IRF4905S/L  
7000  
20  
16  
12  
8
V
C
= 0V,  
f = 1 MHZ  
GS  
I = -42A  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
6000  
5000  
4000  
3000  
2000  
1000  
0
V
= -44V  
C
= C  
DS  
rss  
gd  
VDS= -28V  
VDS= -11V  
C
= C + C  
oss  
ds  
gd  
Ciss  
Coss  
Crss  
4
0
0
40  
80  
120  
160  
200  
1
10  
100  
Q
Total Gate Charge (nC)  
G
-V , Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.0  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100.0  
10.0  
1.0  
T
= 150°C  
100µsec  
10msec  
J
1msec  
LIMITED BY PACKAGE  
T
= 25°C  
J
DC  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
V
= 0V  
GS  
1.6  
1
0.1  
0
1
10  
100  
0.0  
0.4  
0.8  
1.2  
2.0  
-V  
DS  
, Drain-toSource Voltage (V)  
-V , Source-to-Drain Voltage (V)  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF4905S/L  
2.0  
1.5  
1.0  
0.5  
80  
60  
40  
20  
0
I
= -42A  
LIMITED BY PACKAGE  
D
V
= -10V  
GS  
25  
50  
T
75  
100  
125  
150  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
, Case Temperature (°C)  
C
, Junction Temperature (°C)  
J
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current Vs.  
Vs. Temperature  
Case Temperature  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.1165 0.000068  
R1  
τ
JτJ  
τ
Cτ  
τ
0.02  
0.01  
τ
1τ1  
τ
2 τ2  
3τ3  
0.3734 0.002347  
0.2608 0.014811  
0.01  
Ci= τi/Ri  
τ /  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF4905S/L  
L
V
DS  
600  
500  
400  
300  
200  
100  
0
I
D.U.T  
AS  
R
D
G
V
DD  
A
TOP  
-17A  
-30A  
-42A  
I
DRIVER  
-20V  
BOTTOM  
0.01  
t
p
15V  
Fig 12a. Unclamped Inductive Test Circuit  
I
AS  
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
t
p
V
(BR)DSS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
Vs. Drain Current  
Q
G
3.6  
10V  
Q
Q
GD  
GS  
V
G
3.2  
2.8  
2.4  
2.0  
Charge  
I
= -250µA  
D
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
-
V
+
DS  
D.U.T.  
V
GS  
-75 -50 -25  
0
25  
50  
75 100 125 150  
-3mA  
T
, Temperature ( °C )  
J
I
I
D
G
Current Sampling Resistors  
Fig 14. Threshold Voltage Vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF4905S/L  
1000  
100  
10  
Duty Cycle = Single Pulse  
0.01  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
0.05  
0.10  
1
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
160  
120  
80  
40  
0
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
TOP  
BOTTOM 1% Duty Cycle  
= -42A  
Single Pulse  
I
D
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
25  
50  
75  
100  
125  
150  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
Fig 16. Maximum Avalanche Energy  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
www.irf.com  
7
IRF4905S/L  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T**  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
** Reverse Polarity of D.U.T for P-Channel  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for P-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
-
+
VDD  
VGS  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
t
t
r
t
t
f
d(on)  
d(off)  
V
GS  
10%  
90%  
V
DS  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRF4905S/L  
D2Pak Package Outline (Dimensions are shown in millimeters (inches))  
D2Pak Part Marking Information  
THIS IS AN IRF530S WITH  
PART NUMBER  
LOT CODE 8024  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 02, 2000  
IN THE ASSEMBLY LINE "L"  
F530S  
DATE CODE  
YEAR 0 = 2000  
WEEK 02  
Note: "P" in assembly line  
position indicates "Lead-Free"  
ASSEMBLY  
LOT CODE  
LINE L  
OR  
PART NUMBER  
DATE CODE  
INTERNATIONAL  
RECTIFIER  
LOGO  
F530S  
P = DE S I GNAT E S L E AD-F RE E  
PRODUCT (OPTIONAL)  
YEAR 0 = 2000  
ASSEMBLY  
LOT CODE  
WEEK 02  
A= ASSEMBLY SITE CODE  
www.irf.com  
9
IRF4905S/L  
TO-262 Package Outline (Dimensions are shown in millimeters (inches))  
IGBT  
1- GATE  
2- COLLECTOR  
3- EMITTER  
4- COLLECTOR  
TO-262 Part Marking Information  
EXAMPLE: THIS IS AN IRL3103L  
LOT CODE 1789  
ASSEMBLED ON WW 19, 1997  
IN THE ASSEMBLY LINE "C"  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
YEAR 7 = 1997  
WE EK 19  
Note: "P" in assembly line  
pos ition indicates "L ead-F ree"  
AS S E MB LY  
LOT CODE  
LINE C  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
P = DE S IGNAT E S L E AD-F RE E  
PRODUCT (OPTIONAL)  
YEAR 7 = 1997  
AS S E MBL Y  
LOT CODE  
WEEK 19  
A = AS S E MB L Y S IT E CODE  
10  
www.irf.com  
IRF4905S/L  
D2Pak Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Notes:  
†
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.16mH  
RG = 25, IAS = -42A, VGS =-10V. Part not  
recommended for use above this value.  
ƒ Pulse width 1.0ms; duty cycle 2%.  
„ Coss eff. is a fixed capacitance that gives the  
same charging time as Coss while VDS is rising  
This value determined from sample failure population. 100%  
tested to this value in production.  
‡ This is applied to D2Pak, when mounted on 1" square PCB (FR-  
4 or G-10 Material). For recommended footprint and soldering  
techniques refer to application note #AN-994.  
ˆ Rθ is measured at TJ approximately 90°C  
from 0 to 80% VDSS  
.
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 08/05  
www.irf.com  
11  

相关型号:

IRF4905PBF

HEXFET Power MOSFET
INFINEON

IRF4905PBF_15

Advanced Process Technology
INFINEON

IRF4905S

Power MOSFET(Vdss=-55V, Rds(on)=0.02ohm, Id=-74A)
INFINEON

IRF4905S

Advanced Process Technology
KERSEMI

IRF4905SPBF

HEXFET Power MOSFET
INFINEON

IRF4905STRLHR

Power Field-Effect Transistor, 74A I(D), 55V, 0.02ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, D2PAK-3
INFINEON

IRF4905STRLPBF

HEXFET® Power MOSFET
INFINEON

IRF4905STRRPBF

Power Field-Effect Transistor, 42A I(D), 55V, 0.02ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRF4N60

POWER MOSFET
SUNTAC

IRF4N60FP

POWER MOSFET
SUNTAC

IRF500

50W to 500W HIGH POWER WIRE WOUND RESISTORS FLAT SHAPED ALUMINUM HOUSED
ETC

IRF500C10RJ

50W to 500W HIGH POWER WIRE WOUND RESISTORS FLAT SHAPED ALUMINUM HOUSED
ETC