IRF6609TR1PBF [INFINEON]

Power Field-Effect Transistor, 31A I(D), 20V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3;
IRF6609TR1PBF
型号: IRF6609TR1PBF
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 31A I(D), 20V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3

瞄准线 开关 脉冲 晶体管
文件: 总11页 (文件大小:264K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97091A  
IRF6609PbF  
IRF6609TRPbF  
DirectFET™ Power MOSFET ‚  
l RoHS Compliant   
l Lead-Free (Qualified up to 260°C Reflow)  
l Application Specific MOSFETs  
VDSS  
20V  
RDS(on) max  
2.0m@VGS = 10V  
2.6m@VGS = 4.5V  
Qg  
46nC  
l Ideal for CPU Core DC-DC Converters  
l Low Conduction Losses and Switching Losses  
l High Cdv/dt Immunity  
l Low Profile (<0.7mm)  
l Dual Sided Cooling Compatible   
l Compatible with existing Surface Mount Techniques   
DirectFET™ ISOMETRIC  
MT  
Applicable DirectFET Outline and Substrate Outline (see p.8,9 for details)  
SQ SX ST MQ MX MT  
Description  
The IRF6609PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve  
the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compat-  
ible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection  
soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET  
package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.  
The IRF6609PbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and  
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation  
of processors operating at higher frequencies. The IRF6609PbF has been optimized for parameters that are critical in synchronous buck  
operating from 12 volt bus converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6609PbF offers  
particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications.  
Absolute Maximum Ratings  
Parameter  
Drain-to-Source Voltage  
Max.  
20  
Units  
V
VDS  
V
I
Gate-to-Source Voltage  
±20  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
@ TC = 25°C  
150  
31  
D
I
I
I
@ TA = 25°C  
@ TA = 70°C  
A
D
D
25  
250  
89  
DM  
P
P
P
@TC = 25°C  
@TA = 25°C  
@TA = 70°C  
Power Dissipation  
D
D
D
Power Dissipation  
1.8  
2.8  
W
Power Dissipation  
Linear Derating Factor  
Operating Junction and  
0.022  
-40 to + 150  
W/°C  
°C  
T
T
J
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Ambient  
Typ.  
–––  
12.5  
20  
Max.  
45  
Units  
Rθ  
JA  
RθJA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Case  
–––  
–––  
1.4  
RθJA  
°C/W  
RθJC  
–––  
1.0  
RθJ-PCB  
Junction-to-PCB Mounted  
–––  
Notes  through Šare on page 10  
www.irf.com  
1
7/3/06  
IRF6609PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
BVDSS  
Drain-to-Source Breakdown Voltage  
20  
–––  
–––  
V
VGS = 0V, ID = 250µA  
∆ΒVDSS/TJ  
RDS(on)  
Breakdown Voltage Temp. Coefficient –––  
Static Drain-to-Source On-Resistance –––  
–––  
15  
––– mV/°C Reference to 25°C, ID = 1mA  
mΩ  
1.6  
2.0  
2.6  
V
V
GS = 10V, ID = 31A  
GS = 4.5V, ID = 25A  
2.0  
VGS(th)  
Gate Threshold Voltage  
1.55  
–––  
–––  
–––  
–––  
–––  
91  
–––  
-6.1  
–––  
–––  
–––  
2.45  
V
VDS = VGS, ID = 250µA  
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– mV/°C  
1.0  
150  
100  
µA  
nA  
S
V
V
V
V
V
DS = 16V, VGS = 0V  
DS = 16V, VGS = 0V, TJ = 150°C  
GS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
––– -100  
GS = -20V  
gfs  
–––  
46  
15  
4.7  
15  
11  
20  
26  
24  
95  
26  
9.8  
–––  
69  
DS = 10V, ID = 25A  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
td(on)  
tr  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 10V  
nC VGS = 4.5V  
ID = 17A  
See Fig. 16  
nC VDS = 10V, VGS = 0V  
Turn-On Delay Time  
VDD = 16V, VGS = 4.5V  
Rise Time  
ID = 25A  
td(off)  
tf  
Turn-Off Delay Time  
ns Clamped Inductive Load  
Fall Time  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 6290 –––  
––– 1850 –––  
V
V
GS = 0V  
Output Capacitance  
pF  
DS = 10V  
Reverse Transfer Capacitance  
–––  
860  
–––  
ƒ = 1.0MHz  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
Units  
mJ  
A
Single Pulse Avalanche Energy  
Avalanche Current  
EAS (Thermally limited)  
240  
IAR  
See Fig. 12, 13, 18a,  
18b,  
Repetitive Avalanche Energy  
EAR  
mJ  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
S
IS  
Continuous Source Current  
–––  
–––  
89  
MOSFET symbol  
(Body Diode)  
A
showing the  
G
ISM  
Pulsed Source Current  
–––  
–––  
250  
integral reverse  
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
–––  
–––  
–––  
0.80  
32  
1.2  
48  
39  
V
T = 25°C, I = 25A, V = 0V  
J S GS  
ns T = 25°C, I = 25A  
J
F
Qrr  
Reverse Recovery Charge  
26  
nC di/dt = 100A/µs  
2
www.irf.com  
IRF6609PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
7.0V  
4.5V  
4.0V  
3.5V  
3.2V  
2.9V  
2.7V  
7.0V  
4.5V  
4.0V  
3.5V  
3.2V  
2.9V  
2.7V  
BOTTOM  
BOTTOM  
1
2.7V  
1
2.7V  
1
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 150°C  
0.1  
1
0.1  
10  
100  
0.1  
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000.0  
1.5  
I
= 31A  
D
V
= 10V  
GS  
100.0  
10.0  
1.0  
T
= 150°C  
J
1.0  
T
= 25°C  
J
V
= 10V  
DS  
60µs PULSE WIDTH  
0.1  
0.5  
2.0  
3.0  
4.0  
5.0  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
V
, Gate-to-Source Voltage (V)  
GS  
, Junction Temperature (°C)  
J
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
vs. Temperature  
www.irf.com  
3
IRF6609PbF  
100000  
12  
10  
8
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 17A  
D
C
C
C
+ C , C  
SHORTED  
V
= 20V  
iss  
gs  
gd  
ds  
DS  
VDS= 10V  
= C  
rss  
oss  
gd  
= C + C  
ds  
gd  
10000  
1000  
100  
Ciss  
6
Coss  
Crss  
4
2
0
0
20  
40  
60  
80  
100  
120  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q
Total Gate Charge (nC)  
G
V
DS  
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.0  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100.0  
10.0  
1.0  
1msec  
T
= 150°C  
100µsec  
J
10msec  
1
T
= 25°C  
J
Tc = 25°C  
Tj = 150°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.1  
1
10  
100  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
V
, Drain-to-Source Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 7. Typical Source-Drain Diode  
Fig 8. Maximum Safe Operating Area  
Forward Voltage  
4
www.irf.com  
IRF6609PbF  
2.5  
2.0  
1.5  
1.0  
150  
120  
90  
60  
30  
0
I
= 250µA  
D
-75 -50 -25  
0
25  
50  
75 100 125 150  
25  
50  
75  
100  
125  
150  
T
, Temperature ( °C )  
T
J
, Junction Temperature (°C)  
J
Fig 10. Threshold Voltage vs. Temperature  
Fig 9. Maximum Drain Current vs.  
Case Temperature  
100  
D = 0.50  
10  
1
0.20  
0.10  
0.05  
0.02  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.1  
0.6784  
17.299  
17.566  
9.4701  
0.00086  
0.57756  
8.94  
τ
τ
J τJ  
τ
Cτ  
τ
1τ1  
τ
τ
2τ2  
3τ3  
4τ4  
0.01  
0.001  
0.0001  
Ci= τi/Ri  
106  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
www.irf.com  
5
IRF6609PbF  
10000  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
1000  
Duty Cycle = Single Pulse  
100  
10  
0.01  
1
0.05  
0.10  
0.1  
0.01  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
1.0E+00  
1.0E+01  
tav (sec)  
Fig 12. Typical Avalanche Current vs.Pulsewidth  
250  
Notes on Repetitive Avalanche Curves , Figures 12, 13:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 16a, 16b.  
Single Pulse  
= 25A  
I
D
200  
150  
100  
50  
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 12, 13).  
tav = Average time in avalanche.  
0
25  
50  
75  
100  
125  
150  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Fig 13. Maximum Avalanche Energy  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
vs. Temperature  
6
www.irf.com  
IRF6609PbF  
10  
8
1000  
800  
600  
400  
200  
0
I
= 31A  
I
D
D
TOP  
11A  
14A  
BOTTOM 25A  
6
4
T
T
= 125°C  
J
J
2
= 25°C  
8.0  
0
2.0  
4.0  
6.0  
10.0  
25  
50  
75  
100  
125  
150  
V
, Gate-to-Source Voltage (V)  
GS  
Starting T , Junction Temperature (°C)  
J
Fig 14. On-Resistance Vs. Gate Voltage  
Fig 15. Maximum Avalanche Energy  
Vs. Drain Current  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
1K  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 16a. Gate Charge Test Circuit  
LD  
Fig 16b. Gate Charge Waveform  
VDS  
VDS  
90%  
+
-
VDD  
D.U.T  
VGS  
10%  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 17a. Switching Time Test Circuit  
Fig 17b. Switching Time Waveforms  
15V  
V
(BR)DSS  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
R
G
V
DD  
-
I
A
AS  
2V  
VGS  
0.01  
t
p
I
AS  
Fig 18a. Unclamped Inductive Test Circuit  
Fig 18b. Unclamped Inductive Waveforms  
www.irf.com  
7
IRF6609PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 19. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
DirectFET™ Substrate and PCB Layout, MT Outline  
(Medium Size Can, T-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
S
S
G
8
www.irf.com  
IRF6609PbF  
DirectFET™ Outline Dimension, MT Outline  
(Medium Size Can, T-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
DIMENSIONS  
IMPERIAL  
METRIC  
MAX MIN  
CODE MIN  
MAX  
0.250  
0.199  
0.156  
0.018  
0.032  
0.036  
0.072  
0.040  
0.026  
0.039  
0.104  
0.0274  
0.0031  
0.007  
6.35 0.246  
5.05 0.189  
A
B
C
D
E
F
6.25  
4.80  
3.85  
0.35  
0.78  
0.88  
1.78  
0.98  
0.63  
0.88  
2.46  
0.616  
0.020  
0.08  
3.95  
0.45  
0.152  
0.014  
0.82 0.031  
0.92 0.035  
1.82  
1.02  
G
H
J
0.070  
0.039  
0.67 0.025  
1.01 0.035  
K
L
2.63  
0.097  
0.676  
M
R
P
0.0235  
0.080 0.0008  
0.17 0.003  
DirectFET™ Part Marking  
www.irf.com  
9
IRF6609PbF  
DirectFET™ Tape & Reel Dimension  
(Showing component orientation).  
LOADED TAPE FEED DIRECTION  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6609TRPBF). For 1000 parts on 7"  
reel, order IRF6609TR1PBF  
DIMENSIONS  
METRIC  
REEL DIMENSIONS  
IMPERIAL  
STANDARD OPTION (QTY 4800)  
TR1 OPTION (QTY 1000)  
IMPERIAL  
MIN  
MAX  
12.992 N.C  
METRIC  
MAX  
IMPERIAL  
CODE  
MIN  
7.90  
3.90  
11.90  
5.45  
5.10  
6.50  
1.50  
1.50  
MAX  
8.10  
4.10  
12.30  
5.55  
5.30  
6.70  
N.C  
MIN  
MAX  
0.319  
0.161  
0.484  
0.219  
0.209  
0.264  
N.C  
METRIC  
MAX  
CODE  
MIN  
MIN  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
A
B
C
D
E
F
0.311  
0.154  
0.469  
0.215  
0.201  
0.256  
0.059  
0.059  
A
B
C
D
E
F
330.0  
20.2  
12.8  
1.5  
177.77  
19.06  
13.5  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
N.C  
0.795  
0.504  
0.059  
3.937  
N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
0.520  
N.C  
N.C  
12.8  
N.C  
100.0  
N.C  
N.C  
58.72  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
1.60  
0.063  
Notes:  
 Click on this section to link to the appropriate technical paper. † Surface mounted on 1 in. square Cu board.  
‚ Click on this section to link to the DirectFET Website.  
ƒ Repetitive rating; pulse width limited by max. junction  
temperature.  
„ Starting TJ = 25°C, L = 0.75mH, RG = 25, IAS = 25A.  
Pulse width 400µs; duty cycle 2%.  
‡ Used double sided cooling, mounting pad.  
ˆ Mounted on minimum footprint full size board with  
metalized back and with small clip heatsink.  
‰ TC measured with thermal couple mounted to top  
(Drain) of part.  
Š R is measured at TJ of approximately 90°C.  
θ
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.07/06  
10  
www.irf.com  
Note: For the most current drawings please refer to the IR website at:  
http://www.irf.com/package/  

相关型号:

IRF6609TRPBF

Power Field-Effect Transistor, 31A I(D), 20V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6610

HEXFET Power MOSFET Silicon Technology with the advanced DirectFETTM
INFINEON

IRF6610TR1PBF

Power Field-Effect Transistor, 15A I(D), 20V, 0.0068ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, ISOMETRIC-3
INFINEON

IRF6610TRPBF

Power Field-Effect Transistor, 15A I(D), 20V, 0.0068ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-2
INFINEON

IRF6611

DirectFET Power MOSFET
INFINEON

IRF6611PBF

DirectFET Power MOSFET
INFINEON

IRF6611TRPBF

Power Field-Effect Transistor, 32A I(D), 30V, 0.0026ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6612

HEXFET Power MOSFET
INFINEON

IRF66121PBF

RoHs Compliant
INFINEON

IRF6612PBF

RoHs Compliant
INFINEON

IRF6612PBF_15

Ideal for CPU Core DC-DC Converters
INFINEON

IRF6612TR1

HEXFET Power MOSFET
INFINEON