IRF6610TR1PBF [INFINEON]

Power Field-Effect Transistor, 15A I(D), 20V, 0.0068ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, ISOMETRIC-3;
IRF6610TR1PBF
型号: IRF6610TR1PBF
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 15A I(D), 20V, 0.0068ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, ISOMETRIC-3

开关 脉冲 晶体管
文件: 总10页 (文件大小:237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97012  
IRF6610  
DirectFETPower MOSFET ꢀ  
Typical values (unless otherwise specified)  
Lead and Bromide Free ꢁ  
VDSS  
20V max ±20V max  
VGS  
RDS(on)  
5.2m@ 10V 8.2m@ 4.5V  
RDS(on)  
Low Profile (<0.7 mm)  
Dual Sided Cooling Compatible ꢁ  
Ultra Low Package Inductance  
Optimized for High Frequency Switching ꢁ  
Ideal for CPU Core DC-DC Converters  
Qg tot Qgd  
11nC  
Qgs2  
1.3nC  
Qrr  
Qoss Vgs(th)  
3.6nC  
6.4nC 5.9nC  
2.1V  
Optimized for both Sync.FET and some Control FET  
applicationꢁ  
Low Conduction and Switching Losses  
Compatible with existing Surface Mount Techniques ꢁ  
DirectFETISOMETRIC  
SQ  
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)ꢁ  
SQ  
SX  
ST  
MQ  
MX  
MT  
MP  
Description  
The IRF6610 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the  
lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is compatible  
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering  
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows  
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.  
The IRF6610 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching  
losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors  
operating at higher frequencies. The IRF6610 has been optimized for parameters that are critical in synchronous buck operating from 12 volt  
buss converters including Rds(on) and gate charge to minimize losses in the control FET socket.  
Absolute Maximum Ratings  
Max.  
20  
Parameter  
Units  
V
VDS  
Drain-to-Source Voltage  
±20  
15  
V
Gate-to-Source Voltage  
GS  
Continuous Drain Current, VGS @ 10V ꢃ  
Continuous Drain Current, VGS @ 10V ꢃ  
Continuous Drain Current, VGS @ 10V ꢄ  
Pulsed Drain Current ꢅ  
I
I
I
I
@ TA = 25°C  
D
D
D
12  
@ TA = 70°C  
@ TC = 25°C  
A
66  
120  
13  
DM  
EAS  
IAR  
Single Pulse Avalanche Energy ꢆ  
Avalanche Current ꢅ  
mJ  
A
12  
30  
25  
20  
15  
10  
5
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
I
= 15A  
I = 12A  
D
D
V
V
= 16V  
DS  
DS  
= 10V  
T
= 125°C  
J
T
= 25°C  
6
J
0
3
4
5
7
8
9
10  
0
2
4
6
8
10  
12  
14  
16  
Q
Total Gate Charge (nC)  
G
V
Gate -to -Source Voltage (V)  
GS,  
Fig 1. Typical On-Resistance vs. Gate Voltage  
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage  
Notes:  
TC measured with thermocouple mounted to top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
Starting TJ = 25°C, L = 0.18mH, RG = 25, IAS = 12A.  
Click on this section to link to the appropriate technical paper.  
Click on this section to link to the DirectFET Website.  
Surface mounted on 1 in. square Cu board, steady state.  
www.irf.com  
1
05/25/05  
IRF6610  
Static @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250µA  
Parameter  
Min. Typ. Max. Units  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
20  
–––  
–––  
–––  
1.65  
–––  
–––  
–––  
–––  
–––  
41  
–––  
–––  
V
Reference to 25°C, I = 1mA  
∆ΒVDSS/TJ  
RDS(on)  
15  
––– mV/°C  
D
VGS = 10V, ID = 15A ꢁ  
VGS = 4.5V, ID = 12A ꢁ  
VDS = VGS, ID = 250µA  
5.2  
8.2  
2.1  
-5.2  
–––  
–––  
–––  
–––  
–––  
11  
6.8  
mΩ  
10.7  
2.55  
VGS(th)  
Gate Threshold Voltage  
V
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– mV/°C  
VDS = 16V, VGS = 0V  
VDS = 16V, VGS = 0V, TJ = 125°C  
VGS = 20V  
1.0  
150  
100  
-100  
–––  
17  
µA  
nA  
S
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
VGS = -20V  
VDS = 10V, ID = 12A  
gfs  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 10V  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
RG  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
3.9  
1.3  
3.6  
2.4  
4.9  
5.9  
2.0  
12  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VGS = 4.5V  
ID = 12A  
nC  
See Fig. 15  
VDS = 10V, VGS = 0V  
nC  
Gate Resistance  
VDD = 16V, VGS = 4.5V ꢁ  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
ID = 12A  
Rise Time  
51  
Clamped Inductive Load  
Turn-Off Delay Time  
15  
ns  
Fall Time  
5.7  
VGS = 0V  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 1520 –––  
VDS = 10V  
ƒ = 1.0MHz  
Output Capacitance  
–––  
–––  
440  
220  
–––  
–––  
pF  
Reverse Transfer Capacitance  
Diode Characteristics  
Conditions  
MOSFET symbol  
showing the  
Parameter  
Min. Typ. Max. Units  
IS  
Continuous Source Current  
–––  
–––  
2.8  
(Body Diode)  
A
ISM  
integral reverse  
Pulsed Source Current  
–––  
–––  
120  
p-n junction diode.  
(Body Diode)  
TJ = 25°C, IS = 12A, VGS = 0V ꢁ  
TJ = 25°C, IF = 12A  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
12  
1.0  
18  
V
ns  
nC  
Qrr  
di/dt = 100A/µs ꢁ  
2.4  
3.6  
Notes:  
Pulse width 400µs; duty cycle 2%.  
Repetitive rating; pulse width limited by max. junction temperature.  
2
www.irf.com  
IRF6610  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
2.2  
P
P
P
@TA = 25°C  
@TA = 70°C  
@TC = 25°C  
Power Dissipation ꢁ  
Power Dissipation ꢁ  
Power Dissipation ꢄ  
W
D
D
D
P
J
1.4  
42  
270  
T
T
T
Peak Soldering Temperature  
Operating Junction and  
°C  
-40 to + 150  
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Ambient ꢁꢅ  
Junction-to-Ambient ꢀꢅ  
Typ.  
–––  
12.5  
20  
Max.  
58  
Units  
°C/W  
W/°C  
RθJA  
RθJA  
–––  
–––  
3.0  
RθJA  
Junction-to-Ambient ꢃꢅ  
Junction-to-Case ꢄꢅ  
RθJC  
–––  
1.4  
RθJ-PCB  
Junction-to-PCB Mounted  
Linear Derating Factor ꢁ  
–––  
0.017  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
Ri (°C/W) τi (sec)  
0.02  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
R5  
R5  
1
1.6195  
0.000126  
0.001354  
0.375850  
7.41  
τ
τ
J τJ  
τ
AτA  
2.14056  
22.2887  
20.0457  
11.9144  
τ
1τ1  
τ
τ
τ
2τ2  
3τ3  
4τ4  
5τ5  
0.1  
Ci= τi/Ri  
Ci= τi/Ri  
99  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ꢁ  
Notes:  
TC measured with thermocouple incontact with top (Drain) of part.  
Surface mounted on 1 in. square Cu board, steady state.  
R is measured at TJ of approximately 90°C.  
Used double sided cooling , mounting pad.  
Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
θ
Mounted on minimum  
footprint full size board with  
metalized back and with small  
clip heatsink (still air)  
3
Mounted to a PCB with  
small clip heatsink (still air)  
Surface mounted on 1 in. square Cu  
board (still air).  
www.irf.com  
IRF6610  
1000  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
100  
10  
1
BOTTOM  
BOTTOM  
60µs PULSE WIDTH  
Tj = 25°C  
2.5V  
1
0.1  
60µs PULSE WIDTH  
Tj = 150°C  
2.5V  
0.01  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 4. Typical Output Characteristics  
Fig 5. Typical Output Characteristics  
1000  
1.5  
1.0  
0.5  
V
= 10V  
I
= 15A  
DS  
60µs PULSE WIDTH  
V
V
= 10V  
D
GS  
GS  
= 4.5V  
100  
10  
1
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
0.1  
1
2
3
4
5
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
T
J
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 6. Typical Transfer Characteristics  
Fig 7. Normalized On-Resistance vs. Temperature  
40  
10000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
T
= 25°C  
J
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
rss  
oss  
gd  
= C + C  
Vgs = 3.5V  
Vgs = 4.0V  
Vgs = 4.5V  
Vgs = 5.0V  
Vgs = 10V  
ds  
gd  
30  
20  
10  
0
C
iss  
1000  
C
oss  
C
rss  
100  
0
20  
40  
60  
80  
100 120 140  
1
10  
, Drain-to-Source Voltage (V)  
100  
V
DS  
I , Drain Current (A)  
D
Fig 9. Typical On-Resistance Vs.  
Drain Current and Gate Voltage  
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage  
4
www.irf.com  
IRF6610  
1000  
100  
10  
1
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100µsec  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
1
T
T
= 25°C  
A
J
1msec  
= 150°C  
V
= 0V  
GS  
Single Pulse  
10msec  
0
0.1  
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3  
, Source-to-Drain Voltage (V)  
0.10  
1.00  
10.00  
100.00  
V
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 10. Typical Source-Drain Diode Forward Voltage  
Fig11. Maximum Safe Operating Area  
70  
2.5  
2.0  
1.5  
1.0  
60  
50  
40  
30  
20  
10  
0
I
= 250µA  
D
25  
50  
T
75  
100  
125  
150  
-75 -50 -25  
0
25 50 75 100 125 150  
, Case Temperature (°C)  
T
, Temperature ( °C )  
C
J
Fig 12. Maximum Drain Current vs. Case Temperature  
Fig 13. Typical Threshold Voltage vs. Junction  
Temperature  
60  
50  
40  
30  
20  
10  
0
I
TOP  
D
3.6A  
5.3A  
BOTTOM 12A  
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
Fig 14. Maximum Avalanche Energy Vs. Drain Current  
www.irf.com  
5
IRF6610  
Current Regulator  
Same Type as D.U.T.  
Id  
Vds  
50KΩ  
Vgs  
.2µF  
.3µF  
12V  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 15a. Gate Charge Test Circuit  
Fig 15b. Gate Charge Waveform  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
VGS  
R
G
V
DD  
-
I
A
20V  
0.01Ω  
t
p
I
AS  
Fig 16c. Unclamped Inductive Waveforms  
Fig 16b. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
td(on)  
td(off)  
tr  
Pulse Width < 1µs  
Duty Factor < 0.1%  
tf  
Fig 17a. Switching Time Test Circuit  
Fig 17b. Switching Time Waveforms  
6
www.irf.com  
IRF6610  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
-
Reverse  
Recovery  
Current  
Body Diode Forward  
- ꢄ  
Current  
di/dt  
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  
V
DD  
VDD  
di/dt controlled by RG  
Re-Applied  
Voltage  
RG  
+
-
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Body Diode  
Inductor Current  
Forward Drop  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
DirectFETSubstrate and PCB Layout, SQ Outline  
(Small Size Can, Q-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes  
all recommendations for stencil and substrate designs.  
www.irf.com  
7
IRF6610  
DirectFETOutline Dimension, SQ Outline  
(Small Size Can, Q-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes  
all recommendations for stencil and substrate designs.  
DIMENSIONS  
IMPERIAL  
METRIC  
MAX MIN  
CODE  
MIN  
MAX  
0.191  
0.156  
0.112  
0.018  
0.020  
0.020  
0.036  
0.032  
N/A  
4.85  
3.95  
A
B
C
D
E
F
4.75  
3.70  
2.75  
0.35  
0.48  
0.48  
0.88  
0.78  
N/A  
0.187  
0.146  
2.85 0.108  
0.45 0.014  
0.52  
0.52  
0.019  
0.019  
0.92 0.035  
0.82 0.031  
G
H
J
N/A  
N/A  
0.97 0.037  
2.10 0.079  
K
L
0.93  
2.00  
0.59  
0.03  
0.08  
0.038  
0.083  
0.028  
0.003  
0.007  
0.70  
0.08  
M
N
P
0.023  
0.001  
0.17 0.003  
DirectFETPart Marking  
8
www.irf.com  
IRF6610  
DirectFETTape & Reel Dimension  
(Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6610). For 1000 parts on 7" reel,  
order IRF6610TR1  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000)  
METRIC  
IMPERIAL  
METRIC  
MIN MAX  
IMPERIAL  
CODE  
MIN  
MAX  
N.C  
MIN  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MIN  
330.0  
20.2  
12.8  
1.5  
MAX  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
177.77  
19.06  
13.5  
1.5  
6.9  
N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
58.72  
N.C  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
Loaded Tape Feed Direction  
DIMENSIONS  
METRIC  
MAX  
8.10  
IMPERIAL  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
CODE  
MIN  
MAX  
0.319  
0.161  
0.484  
0.219  
0.165  
0.205  
N.C  
MIN  
7.90  
3.90  
11.90  
5.45  
4.00  
5.00  
1.50  
1.50  
A
B
C
D
E
F
0.311  
0.154  
0.469  
0.215  
0.158  
0.197  
0.059  
0.059  
4.10  
12.30  
5.55  
4.20  
5.20  
G
H
N.C  
1.60  
0.063  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.05/05  
www.irf.com  
9
Note: For the most current drawings please refer to the IR website at:  
http://www.irf.com/package/  

相关型号:

IRF6610TRPBF

Power Field-Effect Transistor, 15A I(D), 20V, 0.0068ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-2
INFINEON

IRF6611

DirectFET Power MOSFET
INFINEON

IRF6611PBF

DirectFET Power MOSFET
INFINEON

IRF6611TRPBF

Power Field-Effect Transistor, 32A I(D), 30V, 0.0026ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6612

HEXFET Power MOSFET
INFINEON

IRF66121PBF

RoHs Compliant
INFINEON

IRF6612PBF

RoHs Compliant
INFINEON

IRF6612PBF_15

Ideal for CPU Core DC-DC Converters
INFINEON

IRF6612TR1

HEXFET Power MOSFET
INFINEON

IRF6612TR1PBF

Power Field-Effect Transistor, 24A I(D), 30V, 0.0033ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6612TRPBF

RoHs Compliant
INFINEON

IRF6613

HEXFET Power MOSFET
INFINEON