IRF6623PBF [INFINEON]

DirectFETPower MOSFET;
IRF6623PBF
型号: IRF6623PBF
厂家: Infineon    Infineon
描述:

DirectFETPower MOSFET

开关 脉冲 晶体管
文件: 总9页 (文件大小:244K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97085  
IRF6623PbF  
IRF6623TRPbF  
DirectFET™ Power MOSFET Š  
l RoHS Compliant ‰  
l Lead-Free (Qualified up to 260°C Reflow)  
l Application Specific MOSFETs  
l Ideal for CPU Core DC-DC Converters  
l Low Conduction Losses  
VDSS  
20V  
RDS(on) max  
Qg(typ.)  
5.7m@VGS = 10V  
9.7m@VGS = 4.5V  
11nC  
l High Cdv/dt Immunity  
l Low Profile (<0.7mm)  
l Dual Sided Cooling Compatible ‰  
l Compatible with existing Surface Mount Techniques ‰  
DirectFET™ ISOMETRIC  
ST  
Applicable DirectFET Outline and Substrate Outline (see p.8,9 for details)  
SQ  
SX  
ST  
MQ  
MX  
MT  
Description  
The IRF6623PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packag-  
ing to achieve the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The  
DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and  
vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufac-  
turing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power  
systems, improving previous best thermal resistance by 80%.  
The IRF6623PbF balances both low resistance and low charge along with ultra low package inductance to reduce both  
conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that  
power the latest generation of processors operating at higher frequencies. The IRF6623PbF has been optimized for param-  
eters that are critical in synchronous buck operating from 12 volt bus converters including Rds(on) and gate charge to  
minimize losses in the control FET socket.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VDS  
20  
Drain-to-Source Voltage  
V
±20  
V
Gate-to-Source Voltage  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
55  
I
I
I
I
@ TC = 25°C  
D
D
D
16  
@ TA = 25°C  
@ TA = 70°C  
A
13  
120  
DM  
42  
P
P
P
@TC = 25°C  
@TA = 25°C  
@TA = 70°C  
Power Dissipation  
D
D
D
1.4  
2.1  
Power Dissipation  
W
Power Dissipation  
EAS  
IAR  
43  
Single Pulse Avalanche Energy  
Avalanche Current  
mJ  
A
40  
0.017  
-40 to + 150  
Linear Derating Factor  
W/°C  
°C  
T
T
Operating Junction and  
J
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
58  
Units  
RθJA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Case  
RθJA  
–––  
–––  
3.0  
RθJA  
°C/W  
RθJC  
–––  
1.0  
RθJ-PCB  
Junction-to-PCB Mounted  
–––  
Notes  through Šare on page 2  
www.irf.com  
1
5/3/06  
IRF6623PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
20  
–––  
–––  
V
∆ΒVDSS/TJ  
RDS(on)  
–––  
–––  
–––  
1.4  
15  
––– mV/°C Reference to 25°C, ID = 1mA  
mΩ  
4.4  
7.5  
–––  
-5.4  
–––  
–––  
–––  
–––  
–––  
11  
5.7  
9.7  
2.2  
V
GS = 10V, ID = 15A e  
VGS = 4.5V, ID = 12A e  
DS = VGS, ID = 250µA  
VGS(th)  
Gate Threshold Voltage  
V
V
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
34  
––– mV/°C  
1.0  
150  
100  
-100  
–––  
17  
µA VDS = 16V, VGS = 0V  
V
V
V
DS = 16V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA  
S
GS = 20V  
GS = -20V  
gfs  
VDS = 10V, ID = 12A  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
td(on)  
tr  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
3.3  
1.2  
4.0  
2.5  
5.2  
8.9  
9.7  
40  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 10V  
nC  
VGS = 4.5V  
ID = 12A  
See Fig. 16  
nC VDS = 10V, VGS = 0V  
DD = 16V, VGS = 4.5Vꢁe  
Turn-On Delay Time  
V
Rise Time  
ID = 12A  
td(off)  
tf  
Turn-Off Delay Time  
12  
ns Clamped Inductive Load  
Fall Time  
4.5  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 1360 –––  
VGS = 0V  
Output Capacitance  
–––  
–––  
630  
240  
–––  
–––  
pF  
VDS = 10V  
Reverse Transfer Capacitance  
ƒ = 1.0MHz  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
–––  
–––  
53  
MOSFET symbol  
D
S
(Body Diode)  
A
showing the  
G
ISM  
Pulsed Source Current  
–––  
–––  
120  
integral reverse  
(Body Diode)ꢁc  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
0.81  
20  
1.0  
30  
18  
V
TJ = 25°C, IS = 12A, VGS = 0V e  
Reverse Recovery Time  
Reverse Recovery Charge  
ns TJ = 25°C, IF = 12A  
di/dt = 100A/µs e  
nC  
Qrr  
12  
Notes:  
† Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‡ TC measured with thermal couple mounted to top (Drain) of  
part.  
‚ Starting TJ = 25°C, L = 0.61mH,  
RG = 25, IAS = 12A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ Surface mounted on 1 in. square Cu board.  
Used double sided cooling, mounting pad.  
ˆ R is measured at TJ of approximately 90°C.  
‰ Click on this section to link to the appropriate technical paper.  
Š Click on this section to link to the DirectFET Website.  
θ
2
www.irf.com  
IRF6623PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
BOTTOM  
BOTTOM  
1
2.5V  
2.5V  
1
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 150°C  
0.1  
1
0.1  
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
1.5  
1.0  
0.5  
I
= 15A  
D
V
= 10V  
GS  
100  
10  
1
T
= 150°C  
J
T
= 25°C  
J
V
= 10V  
DS  
60µs PULSE WIDTH  
0.1  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
V
, Gate-to-Source Voltage (V)  
GS  
, Junction Temperature (°C)  
J
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance vs. Temperature  
10000  
12  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 11A  
C
C
C
+ C , C  
SHORTED  
D
V
= 20V  
iss  
gs  
gd  
ds  
DS  
VDS= 10V  
= C  
rss  
oss  
gd  
10  
8
= C + C  
ds  
gd  
Ciss  
1000  
6
Coss  
4
Crss  
2
0
100  
0
10  
Total Gate Charge (nC)  
G
20  
30  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q
V
DS  
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage  
www.irf.com  
3
IRF6623PbF  
1000.0  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100.0  
100µsec  
T
= 150°C  
J
10.0  
1.0  
1msec  
10msec  
T
= 25°C  
V
1
J
Tc = 25°C  
Tj = 150°C  
Single Pulse  
= 0V  
GS  
0.1  
0.1  
0
1
10  
100  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 7. Typical Source-Drain Diode Forward Voltage  
Fig 8. Maximum Safe Operating Area  
60  
2.5  
2.0  
1.5  
1.0  
50  
40  
30  
20  
10  
0
I
= 250µA  
D
25  
50  
75  
100  
125  
150  
-75 -50 -25  
0
25  
50  
75 100 125 150  
T
J
, Junction Temperature (°C)  
T , Temperature ( °C )  
J
Fig 10. Threshold Voltage vs. Temperature  
Fig 9. Maximum Drain Current vs. Case Temperature  
100  
D = 0.50  
0.20  
10  
0.10  
0.05  
1
0.1  
0.02  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
2.023  
19.48  
21.78  
14.71  
0.000678  
0.240237  
2.0167  
58  
τ
τ
τ
Aτ  
J τJ  
τ
τ
1τ1  
τ
τ
2τ2  
3τ3  
4τ4  
Ci= τi/Ri  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
4
www.irf.com  
IRF6623PbF  
200  
160  
120  
80  
20  
16  
12  
8
I
I
= 15A  
D
5.2A  
7.9A  
D
TOP  
BOTTOM 12A  
T
T
= 125°C  
= 25°C  
J
40  
J
4
0
2.0  
4.0  
6.0  
8.0  
10.0  
25  
50  
75  
100  
125  
150  
V
, Gate-to-Source Voltage (V)  
GS  
Starting T , Junction Temperature (°C)  
J
Fig 12. On-Resistance Vs. Gate Voltage  
Fig 13. Maximum Avalanche Energy Vs. Drain Current  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
0.01Ω  
t
p
I
AS  
Fig 14b. Unclamped Inductive Waveforms  
Fig 14a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 15b. Switching Time Waveforms  
Fig 15a. Switching Time Test Circuit  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
Vgs(th)  
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 16a. Gate Charge Test Circuit  
Fig 16b. Gate Charge Waveform  
www.irf.com  
5
IRF6623PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
di/dt controlled by RG  
RG  
+
-
Body Diode  
Inductor Current  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
DirectFET™ Substrate and PCB Layout, ST Outline  
(Small Size Can, T-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
S
S
G
6
www.irf.com  
IRF6623PbF  
DirectFET™ Outline Dimension, ST Outline  
(Small Size Can, T-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
DIMENSIONS  
IMPERIAL  
METRIC  
MAX MIN  
CODE  
MIN  
MAX  
0.191  
0.156  
0.112  
0.018  
0.024  
0.024  
0.031  
0.022  
0.012  
0.039  
0.090  
0.0274  
0.0031  
0.007  
4.85  
3.95  
2.85  
0.45  
0.62  
0.62  
A
B
C
D
E
F
0.187  
0.146  
0.108  
0.014  
0.023  
0.023  
4.75  
3.70  
2.75  
0.35  
0.58  
0.58  
0.75  
0.53  
0.26  
0.88  
2.18  
0.616  
0.020  
0.08  
0.79 0.030  
0.57  
0.30 0.010  
G
H
J
0.021  
0.98  
K
L
0.035  
0.086  
0.0235  
0.0008  
0.003  
2.28  
0.676  
0.080  
0.17  
M
R
P
DirectFET™ Part Marking  
www.irf.com  
7
IRF6623PbF  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6623TRPBF). For 1000 parts on 7"  
reel, order IRF6623TR1PBF  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
TR1 OPTION (QTY 1000)  
METRIC  
MAX  
IMPERIAL  
METRIC  
MAX  
IMPERIAL  
CODE  
MIN  
MIN  
MAX  
N.C  
MIN  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
330.0  
20.2  
12.8  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
177.77 N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
19.06  
13.5  
1.5  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
N.C  
58.72  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
Loaded Tape Feed Direction  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE  
MIN  
7.90  
3.90  
11.90  
5.45  
4.00  
5.00  
1.50  
1.50  
MIN  
MAX  
0.319  
0.161  
0.484  
0.219  
0.165  
0.205  
N.C  
MAX  
8.10  
4.10  
12.30  
5.55  
4.20  
5.20  
N.C  
A
B
C
D
E
F
0.311  
0.154  
0.469  
0.215  
0.158  
0.197  
0.059  
0.059  
G
H
1.60  
0.063  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.5/06  
8
www.irf.com  
Note: For the most current drawings please refer to the IR website at:  
http://www.irf.com/package/  

相关型号:

IRF6623PBF_15

Ideal for CPU Core DC-DC Converters
INFINEON

IRF6623TR1PBF

Power Field-Effect Transistor, 16A I(D), 20V, 0.0057ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6623TRPBF

Power Field-Effect Transistor, 16A I(D), 20V, 0.0057ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6626

DirectFET TM Power MOSFET
INFINEON

IRF6626PBF

RoHs Compliant
INFINEON

IRF6626TR1

RoHS compliant containing no lead or bromide
INFINEON

IRF6626TR1PBF

RoHs Compliant
INFINEON

IRF6628PBF

DirectFET Power MOSFET
INFINEON

IRF6628TRPBF

DirectFET Power MOSFET
INFINEON

IRF6629PBF

DirectFET Power MOSFET
INFINEON

IRF6629TRPBF

DirectFET Power MOSFET
INFINEON

IRF6631

DirectFET Power MOSFET
INFINEON