IRF6633ATRPBF [INFINEON]

DirectFETTM Power MOSFET; DirectFETTM功率MOSFET
IRF6633ATRPBF
型号: IRF6633ATRPBF
厂家: Infineon    Infineon
描述:

DirectFETTM Power MOSFET
DirectFETTM功率MOSFET

文件: 总9页 (文件大小:264K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97122A  
IRF6633APbF  
IRF6633ATRPbF  
DirectFET™ Power MOSFET ‚  
Typical values (unless otherwise specified)  
l RoHS Compliant   
VDSS  
VGS  
RDS(on)  
RDS(on)  
l Lead-Free (Qualified up to 260°C Reflow)  
l Application Specific MOSFETs  
20V max ±20V max  
4.1mΩ@ 10V 7.0mΩ@ 4.5V  
Qg tot Qgd  
Qgs2  
Qrr  
Qoss Vgs(th)  
l Ideal for CPU Core DC-DC Converters  
l Low Conduction Losses and Switching Losses  
l Low Profile (<0.7mm)  
11nC  
3.9nC 1.7nC  
33nC  
8.5nC  
1.8V  
l Dual Sided Cooling Compatible   
l Compatible with existing Surface Mount Techniques   
DirectFET™ ISOMETRIC  
MU  
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)  
SQ  
SX  
ST  
MQ  
MX  
MT  
MU  
Description  
The IRF6633APbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve  
the lowest on-state resistance in a package that has the footprint of a SO8 and only 0.7 mm profile. The DirectFET package is compatible  
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering  
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows  
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.  
The IRF6633APbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and  
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of  
processors operating at higher frequencies. The IRF6633APbF has been optimized for parameters that are critical in synchronous buck  
operating from 12 volt bus converters including Rds(on) and gate charge to minimize losses.  
Absolute Maximum Ratings  
Max.  
20  
Parameter  
Units  
V
VDS  
Drain-to-Source Voltage  
±20  
16  
Gate-to-Source Voltage  
V
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
I
@ TA = 25°C  
D
D
D
13  
A
@ TA = 70°C  
@ TC = 25°C  
69  
130  
65  
DM  
EAS  
IAR  
Single Pulse Avalanche Energy  
Avalanche Current  
mJ  
A
13  
20  
15  
10  
5
12  
10  
8
I
= 16A  
I = 13A  
D
V
= 16V  
D
DS  
VDS= 10V  
6
T
= 125°C  
= 25°C  
J
4
2
T
J
0
0
2.0  
4.0  
6.0  
8.0  
10.0  
0
5
10  
15  
20  
25  
30  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 1. Typical On-Resistance Vs. Gate Voltage  
Q
Total Gate Charge (nC)  
G
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage  
Notes:  
„ TC measured with thermocouple mounted to top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
† Starting TJ = 25°C, L = 0.77mH, RG = 25Ω, IAS = 13A.  
 Click on this section to link to the appropriate technical paper.  
‚ Click on this section to link to the DirectFET Website.  
ƒ Surface mounted on 1 in. square Cu board, steady state.  
www.irf.com  
1
3/13/08  
IRF6633APbF  
Static @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250μA  
Reference to 25°C, I = 1mA  
Parameter  
Min. Typ. Max. Units  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
20  
–––  
14  
–––  
V
ΔΒVDSS/ΔTJ  
RDS(on)  
–––  
–––  
–––  
1.4  
––– mV/°C  
D
V
GS = 10V, ID = 16A i  
VGS = 4.5V, ID = 13A i  
DS = VGS, ID = 250μA  
4.1  
7.0  
1.8  
-5.0  
–––  
–––  
–––  
–––  
–––  
11  
5.6  
9.4  
2.2  
mΩ  
V
VGS(th)  
Gate Threshold Voltage  
V
ΔVGS(th)/ΔTJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
31  
––– mV/°C  
VDS = 16V, VGS = 0V  
VDS = 16V, VGS = 0V, TJ = 125°C  
VGS = 20V  
1.0  
150  
100  
-100  
–––  
17  
μA  
nA  
S
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
VGS = -20V  
VDS = 10V, ID = 13A  
gfs  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 10V  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
RG  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
2.0  
1.7  
3.9  
3.4  
5.6  
8.5  
1.5  
6.9  
13  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VGS = 4.5V  
nC  
ID = 13A  
See Fig. 15  
VDS = 10V, VGS = 0V  
nC  
Gate Resistance  
Ω
VDD = 16V, VGS = 4.5Vꢁi  
ID = 13A  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
Rise Time  
RG= 1.8 Ω  
Turn-Off Delay Time  
8.4  
7.7  
ns  
Fall Time  
VGS = 0V  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 1410 –––  
VDS = 10V  
ƒ = 1.0MHz  
Output Capacitance  
–––  
–––  
680  
250  
–––  
–––  
pF  
Reverse Transfer Capacitance  
Diode Characteristics  
Conditions  
MOSFET symbol  
Parameter  
Min. Typ. Max. Units  
IS  
Continuous Source Current  
@TC=25°C (Body Diode)  
Pulsed Source Current  
(Body Diode)ꢁg  
–––  
–––  
69  
showing the  
A
ISM  
integral reverse  
–––  
–––  
130  
p-n junction diode.  
TJ = 25°C, IS = 13A, VGS = 0V i  
TJ = 25°C, IF = 13A  
di/dt = 500A/μs i  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
0.8  
20  
33  
1.0  
30  
50  
V
ns  
nC  
Qrr  
Notes:  
Repetitive rating; pulse width limited by max. junction temperature.  
‡ Pulse width 400μs; duty cycle 2%.  
2
www.irf.com  
IRF6633APbF  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
2.3  
Power Dissipation  
Power Dissipation  
Power Dissipation  
W
P
P
P
@TA = 25°C  
@TA = 70°C  
@TC = 25°C  
D
D
D
P
J
1.5  
42  
270  
Peak Soldering Temperature  
Operating Junction and  
°C  
T
T
T
-40 to + 150  
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
55  
Units  
°C/W  
W/°C  
RθJA  
Junction-to-Ambient  
RθJA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Case  
–––  
–––  
3.0  
RθJA  
RθJC  
–––  
1.0  
RθJ-PCB  
Junction-to-PCB Mounted  
Linear Derating Factor  
–––  
0.018  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
1
R1  
R1  
R2  
R2  
R3  
τι (sec)  
Ri (°C/W)  
6.713214 0.003276  
28.70184 0.9822  
R3  
τJ  
τ
aτ  
τJ  
τ1  
τ
τ
3 τ3  
2 τ2  
τ1  
0.1  
19.59917  
41.2  
Ci= τi/Ri  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.01  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient   
Notes:  
Š R is measured at TJ of approximately 90°C.  
ˆ Used double sided cooling, mounting pad with large heatsink.  
‰ Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
θ
‰ Mounted on minimum  
footprint full size board with  
metalized back and with small  
clip heatsink (still air)  
‰ Mounted to a PCB with  
small clip heatsink (still air)  
ƒ Surface mounted on 1 in. square Cu  
(still air).  
www.irf.com  
3
IRF6633APbF  
1000  
100  
10  
1000  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
100  
10  
BOTTOM  
BOTTOM  
2.5V  
1
2.5V  
60μs PULSE WIDTH  
Tj = 150°C  
60μs PULSE WIDTH  
Tj = 25°C  
1
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 4. Typical Output Characteristics  
Fig 5. Typical Output Characteristics  
1000  
2.0  
1.5  
1.0  
0.5  
I
= 16A  
D
VGS = 4.5V  
= 10V  
V
100  
10  
1
GS  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
V
= 10V  
DS  
60μs PULSE WIDTH  
0.1  
1.5  
2.0  
V
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
, Junction Temperature (°C)  
J
, Gate-to-Source Voltage (V)  
GS  
Fig 7. Normalized On-Resistance vs. Temperature  
Fig 6. Typical Transfer Characteristics  
10000  
1000  
100  
V
C
= 0V,  
f = 1 MHZ  
GS  
T
= 25°C  
Vgs = 3.5V  
Vgs = 4.0V  
Vgs = 4.5V  
Vgs = 5.0V  
Vgs = 10V  
J
= C + C , C SHORTED  
iss  
gs  
gd ds  
18  
14  
10  
6
C
= C  
rss  
gd  
C
= C + C  
oss  
ds  
gd  
C
iss  
C
oss  
C
rss  
2
0
20  
40  
60  
80  
100  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
I , Drain Current (A)  
Fig 9. Typical On-Resistance Vs.  
Drain Current and Gate Voltage  
D
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage  
4
www.irf.com  
IRF6633APbF  
1000  
100  
10  
1000.0  
100.0  
10.0  
1.0  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
100μsec  
1msec  
1
10msec  
10.0  
T
= 25°C  
A
Tj = 150°C  
Single Pulse  
V
= 0V  
GS  
1.0  
0.1  
0.1  
0.1  
1.0  
100.0  
0.2  
0.4  
0.6  
0.8  
1.2  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 10. Typical Source-Drain Diode Forward Voltage  
Fig11. Maximum Safe Operating Area  
2.0  
1.5  
1.0  
0.5  
70  
60  
50  
40  
30  
20  
10  
0
I
= 250μA  
D
-75 -50 -25  
0
25  
50  
75 100 125 150  
25  
50  
75  
100  
125  
150  
T
, Junction Temperature ( °C )  
J
T
, Case Temperature (°C)  
C
Fig 13. Typical Threshold Voltage vs. Junction  
Fig 12. Maximum Drain Current vs. Case Temperature  
Temperature  
240  
I
D
TOP  
1.45A  
1.8A  
13A  
200  
160  
120  
80  
BOTTOM  
40  
0
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
Fig 14. Maximum Avalanche Energy Vs. Drain Current  
www.irf.com  
5
IRF6633APbF  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
1K  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 15a. Gate Charge Test Circuit  
Fig 15b. Gate Charge Waveform  
V
(BR)DSS  
15V  
t
p
DRIVER  
L
V
DS  
D.U.T  
AS  
VGS  
R
G
+
-
V
DD  
I
A
20V  
0.01  
Ω
t
p
I
AS  
Fig 16b. Unclamped Inductive Waveforms  
Fig 16a. Unclamped Inductive Test Circuit  
RD  
VDS  
VDS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
10%  
VGS  
VGS  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
td(on)  
td(off)  
tr  
tf  
Fig 17a. Switching Time Test Circuit  
Fig 17b. Switching Time Waveforms  
6
www.irf.com  
IRF6633APbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
di/dt controlled by RG  
Re-Applied  
Voltage  
RG  
+
-
Driver same type as D.U.T.  
Body Diode  
Inductor Current  
Forward Drop  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
DirectFET™ Substrate and PCB Layout, MU Outline  
(Medium Size Can, U-Designation).  
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
S
S
G
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
www.irf.com  
7
IRF6633APbF  
DirectFET™ Outline Dimension, MU Outline  
(Medium Size Can, U-Designation).  
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE MIN MAX  
MIN  
MAX  
0.250  
0.201  
0.156  
0.018  
0.030  
0.032  
0.031  
0.022  
0.012  
0.061  
0.118  
0.028  
0.003  
0.007  
A
B
C
D
E
F
6.25 6.35  
4.80 5.05  
3.85 3.95  
0.35 0.45  
0.73 0.77  
0.78 0.82  
0.75 0.79  
0.53 0.57  
0.26 0.30  
1.43 1.56  
2.88 3.01  
0.59 0.70  
0.03 0.08  
0.08 0.17  
0.246  
0.189  
0.152  
0.014  
0.029  
0.031  
0.030  
0.021  
0.010  
0.056  
0.113  
0.023  
0.001  
0.003  
G
H
J
K
L
M
N
P
DirectFET™ Part Marking  
GATE MARKING  
LOGO  
PART NUMBER  
BATCH NUMBER  
DATE CODE  
Line above the last character of  
the date code indicates "Lead-Free"  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
8
www.irf.com  
IRF6633APbF  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6633ATRPbF). For 1000 parts on 7"  
reel, order IRF6633ATR1PbF  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
TR1 OPTION (QTY 1000)  
METRIC  
MAX  
IMPERIAL  
METRIC  
MIN MAX  
IMPERIAL  
CODE  
MIN  
MAX  
N.C  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MIN  
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
330.0  
20.2  
12.8  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
177.77 N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
19.06  
13.5  
1.5  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
58.72  
N.C  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
LOADED TAPE FEED DIRECTION  
DIMENSIONS  
METRIC  
IMPERIAL  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
CODE  
MIN  
7.90  
3.90  
11.90  
5.45  
5.10  
6.50  
1.50  
1.50  
MIN  
0.311  
0.154  
0.469  
0.215  
0.201  
0.256  
0.059  
0.059  
MAX  
0.319  
0.161  
0.484  
0.219  
0.209  
0.264  
N.C  
MAX  
8.10  
4.10  
12.30  
5.55  
5.30  
6.70  
N.C  
A
B
C
D
E
F
G
H
1.60  
0.063  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.03/08  
www.irf.com  
9

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY