IRF6636PBF [INFINEON]

Ideal for CPU Core DC-DC Converters;
IRF6636PBF
型号: IRF6636PBF
厂家: Infineon    Infineon
描述:

Ideal for CPU Core DC-DC Converters

文件: 总10页 (文件大小:288K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97219  
IRF6636PbF  
IRF6636TRPbF  
DirectFET™ Power MOSFET ‚  
Typical values (unless otherwise specified)  
l RoHs Compliant   
l Lead-Free (Qualified up to 260°C Reflow)  
l Application Specific MOSFETs  
l Ideal for CPU Core DC-DC Converters  
l Low Conduction Losses  
VDSS  
VGS  
RDS(on)  
RDS(on)  
20V max ±20V max  
3.2m@ 10V 4.6m@ 4.5V  
Qg tot Qgd  
Qgs2  
Qrr  
Qoss Vgs(th)  
l High Cdv/dt Immunity  
18nC  
6.1nC 1.9nC 7.3nC  
10nC  
1.8V  
l Low Profile (<0.7mm)  
l Dual Sided Cooling Compatible   
l Compatible with existing Surface Mount Techniques   
DirectFET™ ISOMETRIC  
ST  
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)  
SQ  
SX  
ST  
MQ  
MX  
MT  
Description  
The IRF6636PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve  
the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is  
compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection  
soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET pack-  
age allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.  
The IRF6636PbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and  
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of  
processors operating at higher frequencies. The IRF6636PbF has been optimized for parameters that are critical in synchronous buck  
operating from 12 volt buss converters including Rds(on) and gate charge to minimize losses in the control FET socket.  
Absolute Maximum Ratings  
Max.  
20  
Parameter  
Units  
V
VDS  
Drain-to-Source Voltage  
±20  
18  
V
Gate-to-Source Voltage  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
I
@ TA = 25°C  
D
D
D
15  
@ TA = 70°C  
@ TC = 25°C  
A
81  
140  
28  
DM  
EAS  
IAR  
Single Pulse Avalanche Energy  
Avalanche Current  
mJ  
A
14  
20  
15  
10  
5
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
I = 14A  
I
= 18A  
D
D
V
V
= 16V  
= 10V  
DS  
DS  
T
= 125°C  
J
T
= 25°C  
J
0
0
1
2
3
4
5
6
7
8
9
10  
0
10  
20  
30  
Q
Total Gate Charge (nC)  
G
V
Gate -to -Source Voltage (V)  
GS,  
Fig 1. Typical On-Resistance vs. Gate Voltage  
Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage  
Notes:  
„ TC measured with thermocouple mounted to top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
† Starting TJ = 25°C, L = 0.27mH, RG = 25, IAS = 14A.  
 Click on this section to link to the appropriate technical paper.  
‚ Click on this section to link to the DirectFET Website.  
ƒ Surface mounted on 1 in. square Cu board, steady state.  
www.irf.com  
1
05/29/06  
IRF6636PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250µA  
Parameter  
Min. Typ. Max. Units  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
20  
–––  
–––  
–––  
1.55  
–––  
–––  
–––  
–––  
–––  
52  
–––  
–––  
V
Reference to 25°C, I = 1mA  
∆ΒVDSS/TJ  
RDS(on)  
15  
––– mV/°C  
D
VGS = 10V, ID = 18A i  
VGS = 4.5V, ID = 14A i  
VDS = VGS, ID = 250µA  
3.2  
4.6  
–––  
-6.4  
–––  
–––  
–––  
–––  
–––  
18  
4.5  
6.4  
mΩ  
VGS(th)  
Gate Threshold Voltage  
2.45  
V
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– mV/°C  
VDS = 16V, VGS = 0V  
1.0  
150  
100  
-100  
–––  
27  
µA  
nA  
S
VDS = 16V, VGS = 0V, TJ = 125°C  
VGS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
VGS = -20V  
VDS = 10V, ID = 14A  
gfs  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 10V  
VGS = 4.5V  
ID = 14A  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
RG  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
5.9  
1.9  
6.1  
4.1  
8.0  
10  
–––  
–––  
nC  
–––  
–––  
–––  
1.5  
See Fig. 15  
VDS = 10V, VGS = 0V  
nC  
Gate Resistance  
–––  
14  
VDD = 16V, VGS = 4.5Vꢁi  
ID = 14A  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Rise Time  
19  
Clamped Inductive Load  
See Fig. 16 & 17  
VGS = 0V  
Turn-Off Delay Time  
16  
ns  
Fall Time  
6.2  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 2420 –––  
VDS = 10V  
Output Capacitance  
–––  
–––  
780  
360  
–––  
–––  
pF  
ƒ = 1.0MHz  
Reverse Transfer Capacitance  
Diode Characteristics  
Conditions  
MOSFET symbol  
Parameter  
Min. Typ. Max. Units  
IS  
Continuous Source Current  
–––  
–––  
52  
showing the  
(Body Diode)  
A
ISM  
integral reverse  
Pulsed Source Current  
(Body Diode)ꢁe  
–––  
–––  
140  
p-n junction diode.  
TJ = 25°C, IS = 14A, VGS = 0V i  
TJ = 25°C, IF = 14A  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
16  
1.0  
24  
11  
V
ns  
nC  
Qrr  
di/dt = 100A/µs iꢁSee Fig. 18  
7.3  
Notes:  
Repetitive rating; pulse width limited by max. junction temperature.  
‡ Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRF6636PbF  
Absolute Maximum Ratings  
Max.  
2.2  
Parameter  
Units  
W
P
P
P
@TA = 25°C  
@TA = 70°C  
@TC = 25°C  
Power Dissipation  
Power Dissipation  
Power Dissipation  
D
D
D
P
J
1.4  
42  
270  
T
T
T
Peak Soldering Temperature  
Operating Junction and  
°C  
-40 to + 150  
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
58  
Units  
°C/W  
W/°C  
Rθ  
Rθ  
Rθ  
Rθ  
Rθ  
Junction-to-Ambient  
JA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Case  
–––  
–––  
3.0  
JA  
JA  
–––  
1.0  
JC  
Junction-to-PCB Mounted  
Linear Derating Factor  
–––  
J-PCB  
0.017  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
1
Ri (°C/W) τi (sec)  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
R5  
R5  
0.6677  
AτA 1.0463  
1.5612  
0.000066  
0.000896  
0.004386  
τ
τ
J τJ  
τ
0.1  
τ
1τ1  
τ
τ
τ
2τ2  
3 τ3  
4 τ4  
5 τ5  
29.2822 0.686180  
25.4550 32  
Ci= τi/Ri  
SINGLE PULSE  
/
( THERMAL RESPONSE )  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
Notes:  
‹ R is measured at TJ of approximately 90°C.  
‰ Used double sided cooling , mounting pad.  
Š Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
θ
Š Mounted on minimum  
footprint full size board with  
metalized back and with small  
clip heatsink (still air)  
‰ Mounted to a PCB with  
small clip heatsink (still air)  
ƒ Surface mounted on 1 in. square Cu  
(still air).  
www.irf.com  
3
IRF6636PbF  
1000  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
100  
10  
BOTTOM  
BOTTOM  
2.5V  
60µs PULSE WIDTH  
Tj = 150°C  
60µs PULSE WIDTH  
Tj = 25°C  
2.5V  
1
1
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 4. Typical Output Characteristics  
Fig 5. Typical Output Characteristics  
1.5  
1.0  
0.5  
1000  
100  
10  
I
= 18A  
V
= 10V  
D
DS  
60µs PULSE WIDTH  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
V
V
= 10V  
GS  
GS  
1
= 4.5V  
0.1  
1
2
3
4
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
T
J
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 7. Normalized On-Resistance vs. Temperature  
Fig 6. Typical Transfer Characteristics  
100000  
10000  
1000  
50  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
T
= 25°C  
C
C
C
+ C , C  
SHORTED  
J
iss  
gs  
gd  
ds  
= C  
rss  
oss  
gd  
= C + C  
Vgs = 3.0V  
Vgs = 3.5V  
Vgs = 4.0V  
Vgs = 4.5V  
Vgs = 5.0V  
Vgs = 10V  
40  
30  
20  
10  
0
ds  
gd  
C
C
C
iss  
oss  
rss  
100  
0
20  
40  
60  
80  
100 120 140  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
I , Drain Current (A)  
D
Fig 9. Typical On-Resistance vs.  
Drain Current and Gate Voltage  
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage  
4
www.irf.com  
IRF6636PbF  
1000  
100  
10  
1
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100µsec  
1msec  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
10msec  
1
T
T
= 25°C  
0.1  
0.01  
A
J
= 150°C  
V
= 0V  
GS  
Single Pulse  
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
, Source-to-Drain Voltage (V)  
0.01  
0.10  
V , Drain-to-Source Voltage (V)  
DS  
1.00  
10.00  
100.00  
V
SD  
Fig11. Maximum Safe Operating Area  
Fig 10. Typical Source-Drain Diode Forward Voltage  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
I
= 50µA  
D
-75 -50 -25  
0
25 50 75 100 125 150  
25  
50  
T
75  
100  
125  
150  
T
, Temperature ( °C )  
J
, Case Temperature (°C)  
C
Fig 13. Threshold Voltage vs. Temperature  
Fig 12. Maximum Drain Current vs. Case Temperature  
120  
I
D
TOP  
6.4A  
9.8A  
100  
80  
60  
40  
20  
0
BOTTOM 14A  
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
Fig 14. Maximum Avalanche Energy vs. Drain Current  
www.irf.com  
5
IRF6636PbF  
Current Regulator  
Same Type as D.U.T.  
Id  
Vds  
50KΩ  
Vgs  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 15a. Gate Charge Test Circuit  
Fig 15b. Gate Charge Waveform  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
VGS  
R
G
V
DD  
-
I
A
20V  
0.01  
t
p
I
AS  
Fig 16b. Unclamped Inductive Waveforms  
Fig 16a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
td(on)  
td(off)  
tr  
Pulse Width < 1µs  
Duty Factor < 0.1%  
tf  
Fig 17a. Switching Time Test Circuit  
Fig 17b. Switching Time Waveforms  
6
www.irf.com  
IRF6636PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
di/dt controlled by RG  
Re-Applied  
Voltage  
RG  
+
-
Driver same type as D.U.T.  
Body Diode  
Inductor Current  
Forward Drop  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
DirectFET™ Substrate and PCB Layout, ST Outline ƒ  
(Small Size Can, T-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
S
S
G
www.irf.com  
7
IRF6636PbF  
DirectFET™ Outline Dimension, ST Outline  
(Small Size Can, T-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
DIMENSIONS  
IMPERIAL  
MIN  
4.85 0.187  
METRIC  
MAX  
CODE  
MIN  
MAX  
0.191  
0.156  
0.112  
0.018  
0.024  
0.024  
0.031  
0.022  
0.012  
0.039  
0.090  
0.0274  
0.0031  
0.007  
A
B
C
D
E
F
4.75  
3.70  
2.75  
0.35  
0.58  
0.58  
0.75  
0.53  
0.26  
0.88  
2.18  
0.616  
0.020  
0.08  
3.95  
2.85  
0.146  
0.108  
0.45 0.014  
0.62  
0.62  
0.79  
0.57  
0.30  
0.98  
2.28  
0.676  
0.023  
0.023  
0.030  
0.021  
0.010  
0.035  
0.086  
0.0235  
G
H
J
K
L
M
R
P
0.080 0.0008  
0.17  
0.003  
DirectFET™ Part Marking  
8
www.irf.com  
IRF6636PbF  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6636TRPBF). For 1000 parts on 7"  
reel, order IRF6636TR1PBF  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
TR1 OPTION (QTY 1000)  
METRIC  
MAX  
IMPERIAL  
METRIC  
MAX  
IMPERIAL  
CODE  
MIN  
MIN  
MAX  
N.C  
MIN  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
330.0  
20.2  
12.8  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
177.77 N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
19.06  
13.5  
1.5  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
58.72  
N.C  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
Loaded Tape Feed Direction  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE  
MIN  
0.311  
MAX  
0.319  
0.161  
0.484  
0.219  
0.165  
0.205  
N.C  
MIN  
7.90  
3.90  
11.90  
5.45  
4.00  
5.00  
1.50  
1.50  
MAX  
A
B
C
D
E
F
8.10  
4.10  
12.30  
5.55  
4.20  
5.20  
N.C  
0.154  
0.469  
0.215  
0.158  
0.197  
0.059  
0.059  
G
H
1.60  
0.063  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.05/06  
www.irf.com  
9
Note: For the most current drawings please refer to the IR website at:  
http://www.irf.com/package/  

相关型号:

IRF6636PBF_15

Ideal for CPU Core DC-DC Converters
INFINEON

IRF6636TRPBF

Power Field-Effect Transistor, 18A I(D), 20V, 0.0045ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6637

DirectFETPower MOSFET
INFINEON

IRF6637PBF

Power Field-Effect Transistor, 14A I(D), 30V, 0.0077ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-2
INFINEON

IRF6637TR1

DirectFETPower MOSFET
INFINEON

IRF6637TR1PBF

Power Field-Effect Transistor, 14A I(D), 30V, 0.0077ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-2
INFINEON

IRF6637TRPBF

Power Field-Effect Transistor, 14A I(D), 30V, 0.0077ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6638PBF

DirectFET Power MOSFET
INFINEON

IRF6638TRPBF

DirectFET Power MOSFET
INFINEON

IRF6641PBF

Latest MOSFET silicon technology
INFINEON

IRF6641PBF_15

Latest MOSFET silicon technology
INFINEON

IRF6641TR1PBF

DirectFET TM MOSFET
INFINEON