IRF6898MTRPBF [INFINEON]

Power Field-Effect Transistor, 35A I(D), 25V, 0.0011ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3;
IRF6898MTRPBF
型号: IRF6898MTRPBF
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 35A I(D), 25V, 0.0011ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3

开关 脉冲 晶体管
文件: 总9页 (文件大小:257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRF6898MPbF  
IRF6898MTRPbF  
HEXFET® Power MOSFET plus Schottky Diode ‚  
Typical values (unless otherwise specified)  
l RoHs Compliant Containing No Lead and Bromide ‚  
l Integrated Monolithic Schottky Diode  
l Low Profile (<0.7 mm)  
lDual Sided Cooling Compatible   
l Low Package Inductance  
VDSS  
VGS  
RDS(on)  
RDS(on)  
25V max ±16V max  
0.8mΩ@ 10V 1.2mΩ@ 4.5V  
Qg tot Qgd  
Qgs2  
Qrr  
Qoss Vgs(th)  
l Optimized for High Frequency Switching  
l Ideal for CPU Core DC-DC Converters  
l Optimized for Sync. FET socket of Sync. Buck Converter  
l Low Conduction and Switching Losses  
l Compatible with existing Surface Mount Techniques   
l 100% Rg tested  
41nC  
15nC 4.7nC 66nC 43nC  
1.6V  
S
G
D
D
S
DirectFET™ ISOMETRIC  
MX  
MP  
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)  
SQ  
SX  
ST  
MQ  
MT  
MX  
Description  
The IRF6898MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve  
the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible  
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering  
techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual  
sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.  
The IRF6898MPbF balances industry leading on-state resistance while minimizing gate charge along with low gate resistance to reduce both  
conduction and switching losses. This part contains an integrated Schottky diode to reduce the Qrr of the body drain diode further reducing  
the losses in a Synchronous Buck circuit. The reduced losses make this product ideal for high frequency/high efficiency DC-DC converters  
that power high current loads such as the latest generation of microprocessors. The IRF6898MPbF has been optimized for parameters that  
are critical in synchronous buck converter’s Sync FET sockets.  
Absolute Maximum Ratings  
Max.  
25  
Parameter  
Units  
V
VDS  
Drain-to-Source Voltage  
±16  
35  
Gate-to-Source Voltage  
V
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
I
@ TA = 25°C  
D
D
D
28  
A
@ TA = 70°C  
@ TC = 25°C  
213  
280  
473  
28  
DM  
EAS  
IAR  
Single Pulse Avalanche Energy  
Avalanche Current  
mJ  
A
3.0  
2.0  
1.0  
0.0  
14  
12  
10  
8
I = 28A  
D
V
V
= 20V  
I
= 35A  
DS  
D
= 13V  
DS  
T
= 125°C  
J
6
4
2
T
= 25°C  
J
0
2
4
6
8
10  
12  
14  
16  
0
20  
40  
60  
80  
100  
120  
Q
Total Gate Charge (nC)  
V
Gate -to -Source Voltage (V)  
G
GS,  
Fig 1. Typical On-Resistance vs. Gate Voltage  
Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage  
Notes:  
„TC measured with thermocouple mounted to top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
† Starting TJ = 25°C, L = 1.21mH, RG = 50Ω, IAS = 28A.  
Click on this section to link to the appropriate technical paper.  
‚ Click on this section to link to the DirectFET Website.  
ƒSurface mounted on 1 in. square Cu board, steady state.  
1
www.irf.com  
© 2013 International Rectifier  
March 21, 2013  
IRF6898MTRPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
25  
–––  
–––  
V
VGS = 0V, ID = 1.0mA  
ΔΒVDSS/ΔTJ  
RDS(on)  
––– 0.02 ––– V/°C ID = 10mA ( 25°C-125°C)  
Static Drain-to-Source On-Resistance –––  
–––  
0.8  
1.2  
1.1  
1.6  
2.1  
VGS = 10V, ID = 35A  
VGS = 4.5V, ID = 28A  
VDS = VGS, ID = 100μA  
mΩ  
VGS(th)  
ΔVGS(th)/ΔTJ  
IDSS  
Gate Threshold Voltage  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
1.1  
–––  
–––  
–––  
–––  
175  
–––  
–––  
–––  
–––  
–––  
1.6  
V
-4.9  
–––  
–––  
––– mV/°C VDS = VGS, ID = 10mA  
500  
100  
μA  
VDS = 20V, VGS = 0V  
IGSS  
nA VGS = 16V  
VGS = -16V  
––– -100  
gfs  
–––  
41  
–––  
62  
S
VDS =13V, ID =28A  
Qg  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
RG  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
15  
–––  
–––  
–––  
–––  
VDS = 13V  
4.7  
15  
nC VGS = 4.5V  
ID = 28A  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
6.3  
See Fig.15  
––– 19.7 –––  
–––  
–––  
–––  
–––  
–––  
–––  
43  
0.3  
18  
46  
24  
19  
–––  
–––  
–––  
–––  
–––  
–––  
nC VDS = 16V, VGS = 0V  
Ω
Gate Resistance  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
VDD = 13V, VGS = 4.5V  
Rise Time  
ID = 28A  
ns RG= 1.8Ω  
See Fig.17  
Turn-Off Delay Time  
Fall Time  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 5435 –––  
––– 1780 –––  
VGS = 0V  
pF VDS = 13V  
ƒ = 1.0MHz  
Output Capacitance  
Reverse Transfer Capacitance  
–––  
359  
–––  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS  
Continuous Source Current  
D
S
–––  
–––  
35  
showing the  
(Body Diode)  
A
G
integral reverse  
p-n junction diode.  
ISM  
Pulsed Source Current  
(Body Diode)  
–––  
–––  
280  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
––– 0.75  
V
TJ = 25°C, IS = 28A, VGS = 0V  
32  
66  
48  
99  
ns TJ = 25°C, IF =28A  
di/dt = 300A/μs  
nC  
Qrr  
Notes:  
‡ Pulse width 400μs; duty cycle 2%.  
2
www.irf.com  
© 2013 International Rectifier  
March 21, 2013  
IRF6898MTRPbF  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
2.1  
P
P
P
@TA = 25°C  
@TA = 70°C  
@TC = 25°C  
Power Dissipation  
Power Dissipation  
Power Dissipation  
W
D
D
D
P
J
1.3  
78  
270  
Peak Soldering Temperature  
Operating Junction and  
°C  
T
T
T
-40 to + 150  
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
60  
Units  
°C/W  
W/°C  
RθJA  
Junction-to-Ambient  
RθJA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Case  
–––  
–––  
1.6  
RθJA  
RθJC  
–––  
1.0  
RθJ-PCB  
Junction-to-PCB Mounted  
Linear Derating Factor  
–––  
0.017  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
1
0.1  
0.01  
0.001  
0.0001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
t
, Rectangular Pulse Duration (sec)  
1
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ƒ  
Notes:  
Š R is measured at TJ of approximately 90°C.  
ˆ Used double sided cooling , mounting pad with large heatsink.  
‰ Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
θ
‰ Mounted on minimum  
footprint full size board with  
metalized back and with small  
clip heatsink (still air)  
‰ Mounted to a PCB with  
small clip heatsink (still air)  
ƒ Surface mounted on 1 in. square Cu  
(still air).  
3
www.irf.com  
© 2013 International Rectifier  
March 21, 2013  
IRF6898MTRPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
3.5V  
3.0V  
2.8V  
2.5V  
2.3V  
5.0V  
4.5V  
3.5V  
3.0V  
2.8V  
2.5V  
2.3V  
BOTTOM  
BOTTOM  
1
2.3V  
0.1  
0.01  
2.3V  
1
60μs PULSE WIDTH  
Tj = 150°C  
60μs PULSE WIDTH  
Tj = 25°C  
1
0.1  
1
10  
100  
0.1  
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 4. Typical Output Characteristics  
Fig 5. Typical Output Characteristics  
1000  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
I
= 35A  
V
V
= 10V  
D
GS  
GS  
= 4.5V  
T = 150°C  
J
100  
10  
1
T = 25°C  
J
T = -40°C  
J
V
= 15V  
DS  
60μs PULSE WIDTH  
0.1  
1.5  
2.0  
2.5  
3.0  
3.5  
-60 -40 -20  
0
20 40 60 80 100 120140 160  
T
J
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 6. Typical Transfer Characteristics  
Fig 7. Normalized On-Resistance vs. Temperature  
6.0  
100000  
10000  
1000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
Vgs = 3.5V  
Vgs = 4.5V  
Vgs = 5.0V  
Vgs = 7.0V  
Vgs = 8.0V  
Vgs = 10V  
Vgs = 12V  
Vgs = 15V  
T
= 25°C  
J
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
= C  
rss  
oss  
gd  
= C + C  
ds  
gd  
C
iss  
C
oss  
C
rss  
100  
0
25  
50 75 100 125 150 175 200  
1
10  
, Drain-to-Source Voltage (V)  
100  
V
I , Drain Current (A)  
D
DS  
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 9. Typical On-Resistance vs.  
Drain Current and Gate Voltage  
4
www.irf.com © 2013 International Rectifier  
March 21, 2013  
IRF6898MTRPbF  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
1msec  
10msec  
100μsec  
DC  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
1
Ta = 25°C  
Tj = 150°C  
V
= 0V  
Single Pulse  
GS  
0.1  
1
0.01  
0.1  
1
10  
100  
0.1  
0.4  
0.7  
1.0  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 10. Typical Source-Drain Diode Forward Voltage  
Fig 11. Maximum Safe Operating Area  
2.5  
2.0  
1.5  
1.0  
225  
200  
175  
150  
125  
100  
75  
I
= 10mA  
D
50  
25  
0
-75 -50 -25  
0
25 50 75 100 125 150  
25  
50  
T
75  
100  
125  
150  
T
, Temperature ( °C )  
, Case Temperature (°C)  
J
C
Fig 12. Maximum Drain Current vs. Case Temperature  
Fig 13. Typical Threshold Voltage vs. Junction  
Temperature  
2000  
1800  
1600  
1400  
1200  
1000  
800  
I
D
TOP  
1.7A  
2.5A  
BOTTOM 28A  
600  
400  
200  
0
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
Fig 14. Maximum Avalanche Energy vs. Drain Current  
© 2013 International Rectifier  
5
www.irf.com  
March 21, 2013  
IRF6898MTRPbF  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
Vgs(th)  
20K  
Qgs1  
Qgs2  
Qgodr  
Qgd  
Fig 15a. Gate Charge Test Circuit  
Fig 15b. Gate Charge Waveform  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
V
R
D.U.T  
AS  
GS  
G
V
DD  
-
I
A
20V  
t
0.01Ω  
p
I
AS  
Fig 16b. Unclamped Inductive Waveforms  
Fig 16a. Unclamped Inductive Test Circuit  
RD  
V
DS  
VDS  
90%  
VGS  
D.U.T.  
RG  
+VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 17a. Switching Time Test Circuit  
www.irf.com © 2013 International Rectifier  
Fig 17b. Switching Time Waveforms  
March 21, 2013  
6
IRF6898MTRPbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
D.U.T  
Period  
Period  
+
V***  
=10V  
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
Current  
„
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
*
VDD  
**  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* Use P-Channel Driver for P-Channel Measurements  
** Reverse Polarity for P-Channel  
*** VGS = 5V for Logic Level Devices  
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs  
DirectFET™ Board Footprint, MX Outline  
(Medium Size Can, X-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET plus.  
This includes all recommendations for stencil and substrate designs.  
G=GATE  
D=DRAIN  
S=SOURCE  
D
D
D
D
S
S
G
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
7
www.irf.com  
© 2013 International Rectifier  
March 21, 2013  
IRF6898MTRPbF  
DirectFET™ Outline Dimension, MX Outline  
(Medium Size Can, X-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFETplus.  
This includes all recommendations for stencil and substrate designs.  
DIMENSIONS  
IMPERIAL  
METRIC  
MIN  
CODE MIN  
MAX  
6.35  
5.05  
3.95  
0.45  
0.72  
0.72  
1.42  
0.84  
0.42  
1.01  
2.41  
MAX  
0.250  
0.201  
0.156  
0.018  
0.028  
0.028  
0.056  
0.033  
0.017  
0.039  
0.095  
0.023  
0.003  
0.007  
A
B
C
D
E
F
0.246  
0.189  
0.152  
0.014  
0.027  
0.027  
0.054  
0.032  
0.015  
0.035  
0.090  
0.021  
0.001  
0.003  
6.25  
4.80  
3.85  
0.35  
0.68  
0.68  
1.38  
0.80  
0.38  
0.88  
2.28  
G
H
J
K
L
M
R
P
0.535 0.595  
0.020 0.080  
0.17  
0.08  
DirectFET™ Part Marking  
GATE MARKING  
LOGO  
PART NUMBER  
BATCH NUMBER  
DATE CODE  
Line above the last character of  
the date code indicates "Lead-Free"  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
8
www.irf.com  
© 2013 International Rectifier  
March 21, 2013  
IRF6898MTRPbF  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
LOADED TAPE FEED DIRECTION  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6898MTRPBF). For 1000 parts on 7"  
reel, order IRF6898MTR1PBF  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
METRIC IMPERIAL  
TR1 OPTION (QTY 1000)  
METRIC IMPERIAL  
DIMENSIONS  
METRIC  
CODE  
MIN  
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MIN  
MAX  
N.C  
MAX  
N.C  
MIN  
MAX  
N.C  
IMPERIAL  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
A
B
C
D
E
F
330.0  
20.2  
12.8  
1.5  
177.77  
19.06  
13.5  
1.5  
CODE  
MIN  
MIN  
7.90  
3.90  
11.90  
5.45  
5.10  
6.50  
1.50  
1.50  
MAX  
8.10  
4.10  
12.30  
5.55  
5.30  
6.70  
N.C  
MAX  
0.319  
0.161  
0.484  
0.219  
0.209  
0.264  
N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
N.C  
N.C  
A
B
C
D
E
F
0.311  
0.154  
0.469  
0.215  
0.201  
0.256  
0.059  
0.059  
0.520  
N.C  
13.2  
N.C  
12.8  
N.C  
100.0  
N.C  
N.C  
58.72  
N.C  
N.C  
N.C  
18.4  
14.4  
15.4  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
G
H
1.60  
0.063  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
Revision History  
Date  
Comments  
Updated header Qrr from 32nC to 66nC on page1  
3/15/2013  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA  
To contact International Rectifier, please visit http://www.irf.com/whoto-call/  
9
www.irf.com  
© 2013 International Rectifier  
March 21, 2013  

相关型号:

IRF6N40

POWER MOSFET
SUNTAC

IRF6N60

POWER MOSFET
SUNTAC

IRF6N60FP

POWER MOSFET
SUNTAC

IRF710

2.0A, 400V, 3.600 Ohm, N-Channel Power MOSFET
INTERSIL

IRF710

N-Channel Power MOSFETs, 2.25A, 350-400V
FAIRCHILD

IRF710

Power MOSFET
VISHAY

IRF710

Power Field-Effect Transistor, 2A I(D), 400V, 3.6ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220, 3 PIN
SAMSUNG

IRF710

IRF710
TI

IRF710

2A, 400V, 3.6ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
ROCHESTER

IRF710-005

Power Field-Effect Transistor, 2A I(D), 400V, 3.6ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
VISHAY

IRF710-012PBF

Power Field-Effect Transistor, 2A I(D), 400V, 3.6ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB,
VISHAY

IRF710-713

N-Channel Power MOSFETs, 2.25A, 350-400V
FAIRCHILD