IRF7807VPBF [INFINEON]

HEXFET㈢ Power MOSFET; HEXFET㈢功率MOSFET
IRF7807VPBF
型号: IRF7807VPBF
厂家: Infineon    Infineon
描述:

HEXFET㈢ Power MOSFET
HEXFET㈢功率MOSFET

晶体 小信号场效应晶体管
文件: 总8页 (文件大小:192K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD-95210  
IRF7807VPbF  
HEXFET® Power MOSFET  
• N Channel Application Specific MOSFET  
• Ideal for Mobile DC-DC Converters  
• Low Conduction Losses  
• Low Switching Losses  
A
D
1
2
3
4
8
7
S
S
• 100% RG Tested  
• Lead-Free  
D
6
5
S
D
D
Description  
G
This new device employs advanced HEXFET Power  
MOSFET technology to achieve an unprecedented  
balance of on-resistance and gate charge. The  
reduction of conduction and switching losses makes  
it ideal for high efficiency DC-DC Converters that  
power the latest generation of mobile microprocessors.  
SO-8  
Top View  
DEVICE CHARACTERISTICSꢀ  
IRF7807V  
A pair of IRF7807V devices provides the best cost/  
performance solution for system voltages, such as  
3.3V and 5V.  
17 mΩ  
9.5 nC  
3.4 nC  
RDS(on)  
QG  
QSW  
QOSS  
12 nC  
Absolute Maximum Ratings  
Parameter  
Symbol  
IRF7807V  
Units  
VDS  
30  
Drain-Source Voltage  
V
VGS  
±20  
Gate-Source Voltage  
TA = 25°C  
TA = 70°C  
Continuous Drain or Source  
(VGS 4.5V)  
8.3  
I
D
A
6.6  
66  
I
Pulsed Drain Current  
DM  
TA = 25°C  
TA = 70°C  
2.5  
Power Dissipation  
P
W
°C  
A
D
1.6  
-55 to 150  
TJ , T  
IS  
Junction & Storage Temperature Range  
Continuous Source Current (Body Diode)  
STG  
2.5  
66  
Pulsed Source Current  
ISM  
Thermal Resistance  
Parameter  
Symbol  
RθJA  
Typ  
–––  
–––  
Max  
50  
Units  
Maximum Junction-to-Ambient  
°C/W  
RθJL  
20  
Maximum Junction-to-Lead  
11/3/04  
IRF7807VPbF  
Electrical Characteristics  
Parameter  
Drain-Source Breakdown Voltage  
Static Drain-Source On-Resistance  
Gate Threshold Voltage  
Symbol Min Typ Max Units  
Conditions  
VGS = 0V, ID = 250µA  
VGS = 4.5V, ID = 7.0A  
VDS = VGS, ID = 250µA  
VDS = 30V, VGS = 0  
BVDSS  
RDS(on)  
VGS(th)  
30  
––– –––  
V
mΩ  
V
–––  
17 25  
1.0 ––– 3.0  
––– ––– 100  
––– ––– 20  
––– ––– 100  
IDSS  
Drain-Source Leakage Current  
µA  
VDS = 24V, VGS = 0  
VDS = 24V, VGS = 0, TJ = 100°C  
IGSS  
QG  
Gate-Source Leakage Current*  
Total Gate Charge*  
Pre-Vth Gate-Source Charge  
Post-Vth Gate-Source Charge  
Gate-to-Drain Charge  
Switch Charge (Qgs2 + Qgd)  
Output Charge*  
––– ––– ±100 nA  
––– 9.5 14  
V
V
GS = ± 20V  
GS = 5V, ID = 7.0A  
VDS = 16V  
QGS1  
QGS2  
QGD  
QSW  
QOSS  
RG  
––– 2.3 –––  
––– 1.0 –––  
––– 2.4 –––  
––– 3.4 5.2  
nC  
VDS = 16V, VGS = 0  
–––  
12 16.8  
Gate Resistance  
0.9 ––– 2.8  
––– 6.3 –––  
––– 1.2 –––  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
Rise Time  
VDD = 16V  
ID = 7A  
ns  
Turn-Off Delay Time  
Fall Time  
–––  
11 –––  
VGS = 5V, RG = 2Ω  
Resistive Load  
––– 2.2 –––  
Source-Drain Ratings and Characteristics  
Parameter  
Min Typ Max Units  
Conditions  
Symbol  
IS = 7.0A ,VGS = 0V  
VSD  
Diode Forward Voltage*  
––– ––– 1.2  
V
di/dt = 700A/µs  
VDS = 16V, VGS = 0V, IS = 7.0A  
Qrr  
Reverse Recovery Charge  
–––  
64 –––  
nC  
Reverse Recovery Charge  
(with Parallel Schottsky)  
di/dt = 700A/µs , (with 10BQ040)  
Qrr(s)  
–––  
41 –––  
V
DS = 16V, VGS = 0V, IS = 7.0A  
Notes:  

‚
ƒ
„
Repetitive rating; pulse width limited by max. junction temperature.  
Pulse width 400 µs; duty cycle 2%.  
When mounted on 1 inch square copper board  
Typ = measured - Qoss  
Typical values of RDS(on) measured at VGS = 4.5V, QG, QSW and QOSS  
measured at VGS = 5.0V, IF = 7.0A.  
†
Rθ is measured at TJ approximately 90°C  
*
Device are 100% tested to these parameters.  
2
www.irf.com  
IRF7807VPbF  
Power MOSFET Selection for DC/DC  
Converters  
Control FET  
4
Drain Current  
1
Special attention has been given to the power losses  
in the switching elements of the circuit - Q1 and Q2.  
Power losses in the high side switch Q1, also called  
the Control FET, are impacted by the Rds(on) of the  
MOSFET, but these conduction losses are only about  
one half of the total losses.  
Gate Voltage  
t2  
t3  
t1  
VGTH  
t0  
Power losses in the control switch Q1 are given  
by;  
2
Drain Voltage  
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
This can be expanded and approximated by;  
Figure 1: Typical MOSFET switching waveform  
P
= I 2 × Rds(on )  
(
)
loss  
rms  
Synchronous FET  
Qgd  
ig  
Qgs2  
ig  
The power loss equation for Q2 is approximated  
by;  
+ I ×  
× V × f + I ×  
× V × f  
in  
in  
+ Q × V × f  
(
)
P = P  
+ P + P*  
g
g
loss  
conduction  
drive  
output  
+
×V × f  
P = Irms 2 × Rds(on)  
Qoss  
in  
loss ( )  
2
+ Q × V × f  
(
)
g
g
This simplified loss equation includes the terms Qgs2  
and Qoss which are new to Power MOSFET data sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 1.  
Qoss  
+
×V × f + Q × V × f  
(
)
in  
rr  
in  
2  
*dissipated primarily in Q1.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached (t1) and the time the drain  
current rises to Idmax (t2) at which time the drain volt-  
age begins to change. Minimizing Qgs2 is a critical fac-  
tor in reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure 2 shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
www.irf.com  
3
IRF7807VPbF  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
Spice model for IRF7807V can be downloaded in  
machine readable format at www.irf.com.  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
Figure 2: Qoss Characteristic  
Typical Mobile PC Application  
The performance of these new devices has been tested  
in circuit and correlates well with performance predic-  
tions generated by the system models. An advantage of  
this new technology platform is that the MOSFETs it  
produces are suitable for both control FET and synchro-  
nous FET applications. This has been demonstrated with  
the 3.3V and 5V converters. (Fig 3 and Fig 4). In these  
applications the same MOSFET IRF7807V was used for  
both the control FET (Q1) and the synchronous FET  
(Q2). This provides a highly effective cost/performance  
solution.  
3.3V Supply : Q1=Q2= IRF7807V  
5.0V Supply : Q1=Q2= IRF7807V  
95  
94  
93  
92  
91  
93  
92  
91  
90  
89  
88  
87  
90  
Vin=24V  
89  
Vin=14V  
86  
85  
84  
83  
Vin=24V  
Vin=14V  
Vin=10V  
88  
Vin=10V  
87  
86  
1
2
3
4
5
1
2
3
4
5
Load current (A)  
Load current (A)  
Figure 3  
Figure 4  
4
www.irf.com  
IRF7807VPbF  
2.0  
1.5  
1.0  
0.5  
0.0  
5
4
3
2
1
0
7.0A  
=
I
D
I
D
=
7.0A  
V
= 16V  
DS  
V
=4.5V  
GS  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
°
0
2
4
6
8
10  
12  
T , Junction Temperature ( C)  
J
Q
, Total Gate Charge (nC)  
G
Fig 6. Typical Gate Charge Vs.  
Fig 5. Normalized On-Resistance  
Gate-to-Source Voltage  
Vs. Temperature  
100  
10  
1
0.030  
°
T = 150 C  
J
0.025  
0.020  
0.015  
0.010  
I
= 7.0A  
°
D
T = 25 C  
J
V
= 0 V  
GS  
1.0  
0.1  
0.2  
0.4  
0.6  
0.8  
1.2  
2.0  
4.0  
V
6.0  
8.0  
10.0  
12.0  
14.0  
16.0  
V
,Source-to-Drain Voltage (V)  
SD  
Gate -to -Source Voltage (V)  
GS,  
Fig 8. Typical Source-Drain Diode  
Fig 7. On-Resistance Vs. Gate Voltage  
Forward Voltage  
www.irf.com  
5
IRF7807VPbF  
100  
D = 0.50  
0.20  
10  
0.10  
0.05  
P
2
DM  
0.02  
1
t
1
0.01  
t
2
SINGLE PULSE  
(THERMAL RESPONSE)  
Notes:  
1. Duty factor D =  
t / t  
1
2. Peak T = P  
J
x Z  
+ T  
A
DM  
thJA  
0.1  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
t , Rectangular Pulse Duration (sec)  
1
Figure 9. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
6
www.irf.com  
IRF7807VPbF  
SO-8 Package Outline  
Dimensions are shown in milimeters (inches)  
INCHES  
MILLIMETERS  
DIM  
A
D
B
MIN  
.0532  
MAX  
.0688  
.0098  
.020  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
5
A
E
A1 .0040  
b
c
D
E
.013  
8
1
7
2
6
3
5
.0075  
.189  
.0098  
.1968  
.1574  
6
H
0.25 [.010]  
A
.1497  
4
e
.050 BASIC  
1.27 BASIC  
0.635 BASIC  
e1 .025 BASIC  
H
K
L
.2284  
.0099  
.016  
0°  
.2440  
.0196  
.050  
8°  
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
e
6X  
y
e1  
A
K x 45°  
A
C
y
0.10 [.004]  
8X c  
A1  
B
8X L  
8X b  
0.25 [.010]  
7
C
F OOT PRINT  
8X 0.72 [.028]  
NOT ES :  
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.  
2. CONTROLLING DIMENSION: MILLIMETER  
3. DIMENS IONS ARE S HOWN IN MIL L IME T E RS [INCHES ].  
4. OUT L INE CONF OR MS T O JEDEC OU T LINE MS -012AA.  
5
6
7
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].  
6.46 [.255]  
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].  
DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO  
ASUBSTRATE.  
3X 1.27 [.050]  
8X 1.78 [.070]  
SO-8 Part Marking Information (Lead-Free)  
EXAMPLE: THIS IS AN IRF7101 (MOSFET)  
DAT E CODE (YWW)  
P = DE S IGNAT E S L E AD-F RE E  
PRODUCT (OPTIONAL)  
Y = LAST DIGIT OF THE YEAR  
WW = WE E K  
XXXX  
F7101  
INTERNATIONAL  
RECTIFIER  
LOGO  
A = AS S E MB LY S IT E CODE  
LOT CODE  
PART NUMBER  
www.irf.com  
7
IRF7807VPbF  
SO-8 Tape and Reel  
Dimensions are shown in milimeters (inches)  
TERMINAL NUMBER 1  
12.3 ( .484 )  
11.7 ( .461 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
NOTES:  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
330.00  
(12.992)  
MAX.  
14.40 ( .566 )  
12.40 ( .488 )  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 11/04  
8
www.irf.com  

相关型号:

IRF7807VPBF-1

Industry-standard pinout SO-8 Package
INFINEON

IRF7807VPBF-1_15

Industry-standard pinout SO-8 Package
INFINEON

IRF7807VTR

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

IRF7807VTRPBF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET,
INFINEON

IRF7807Z

HEXFET Power MOSFET
INFINEON

IRF7807ZPBF

HEXFET Power MOSFET
INFINEON

IRF7807ZTR

Control FET for Notebook Processor Power
INFINEON

IRF7807ZTRPBF

Control FET for Notebook Processor Power
INFINEON

IRF7807ZUPBF

HEXFET Power MOSFET
INFINEON

IRF7809

TRANSISTOR | MOSFET | N-CHANNEL | 30V V(BR)DSS | 17A I(D) | SO
ETC

IRF7809A

Chipset for DC-DC Converters
INFINEON

IRF7809ATR

Power Field-Effect Transistor, 14.5A I(D), 30V, 0.0085ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, SO-8
INFINEON