IRF8308MTRPBF [INFINEON]

RoHs Compliant Containing No Lead and Bromide; 符合RoHS标准不含铅和溴化物
IRF8308MTRPBF
型号: IRF8308MTRPBF
厂家: Infineon    Infineon
描述:

RoHs Compliant Containing No Lead and Bromide
符合RoHS标准不含铅和溴化物

文件: 总9页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD -97671  
IRF8308MPbF  
IRF8308MTRPbF  
DirectFET™ Power MOSFET ‚  
Typical values (unless otherwise specified)  
l RoHs Compliant Containing No Lead and Bromide   
l Low Profile (<0.7 mm)  
VDSS  
VGS  
RDS(on)  
RDS(on)  
30V max ±20V max  
1.9mΩ@ 10V 2.7mΩ@ 4.5V  
l Dual Sided Cooling Compatible   
l Ultra Low Package Inductance  
Qg tot Qgd  
Qgs2  
Qrr  
Qoss Vgs(th)  
l Optimized for High Frequency Switching   
l Ideal for CPU Core DC-DC Converters  
l Optimized for Sync. FET socket of Sync. Buck Converter  
l Low Conduction and Switching Losses  
l Compatible with existing Surface Mount Techniques   
l 100% Rg tested  
28nC  
8.2nC 3.5nC  
34nC  
20nC  
1.8V  
DirectFET™ ISOMETRIC  
MX  
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)  
SQ  
SX  
ST  
MQ  
MX  
MT  
MP  
Description  
The IRF8308MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve  
the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible  
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering  
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows  
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.  
The IRF8308MPbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and  
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of  
processors operating at higher frequencies. The IRF8308MPbF has been optimized for parameters that are critical in synchronous buck  
including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF8308MPbF offers particularly low Rds(on) and high Cdv/dt  
immunity for synchronous FET applications.  
Absolute Maximum Ratings  
Max.  
30  
Parameter  
Units  
V
VDS  
Drain-to-Source Voltage  
±20  
27  
Gate-to-Source Voltage  
V
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
I
@ TA = 25°C  
D
D
D
21  
A
@ TA = 70°C  
@ TC = 25°C  
150  
212  
12  
DM  
EAS  
IAR  
Single Pulse Avalanche Energy  
Avalanche Current  
mJ  
A
21  
8
6
4
2
0
12  
10  
8
I = 21A  
V
= 24V  
I
= 27A  
D
DS  
VDS= 15V  
D
6
T
= 125°C  
= 25°C  
8.0  
J
4
T
J
2
0
2.0  
4.0  
6.0  
10.0  
0
20  
40  
60  
80  
V
, Gate-to-Source Voltage (V)  
GS  
Q
Total Gate Charge (nC)  
G
Fig 1. Typical On-Resistance Vs. Gate Voltage  
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage  
Notes:  
„ TC measured with thermocouple mounted to top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
† Starting TJ = 25°C, L = 0.051mH, RG = 25Ω, IAS = 21A.  
 Click on this section to link to the appropriate technical paper.  
‚ Click on this section to link to the DirectFET Website.  
ƒ Surface mounted on 1 in. square Cu board, steady state.  
www.irf.com  
1
5/4/11  
IRF8308MPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250μA  
Reference to 25°C, ID = 1mA  
Parameter  
Min. Typ. Max. Units  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
30  
–––  
–––  
–––  
1.35  
–––  
–––  
–––  
–––  
–––  
130  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
22  
–––  
V
ΔΒVDSS/ΔTJ  
RDS(on)  
––– mV/°C  
V
V
GS = 10V, ID = 27A  
GS = 4.5V, ID = 21A  
1.90 2.50  
2.70 3.50  
mΩ  
VDS = VGS, ID = 100μA  
VGS(th)  
Gate Threshold Voltage  
1.8  
-6.1  
–––  
–––  
–––  
–––  
–––  
28  
2.35  
V
ΔVGS(th)/ΔTJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– mV/°C  
VDS = 24V, VGS = 0V  
1.0  
150  
100  
-100  
–––  
42  
μA  
nA  
S
V
DS = 24V, VGS = 0V, TJ = 125°C  
VGS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
VGS = -20V  
VDS = 15V, ID =21A  
gfs  
Qg  
VDS = 15V  
VGS = 4.5V  
ID = 21A  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
RG  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
8.4  
3.5  
8.2  
7.9  
12  
–––  
–––  
–––  
–––  
–––  
–––  
2.2  
nC  
See Fig. 15  
VDS = 16V, VGS = 0V  
20  
nC  
Gate Resistance  
1.2  
11  
Ω
VDD = 15V, VGS = 4.5V  
ID = 21A  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
Rise Time  
19  
RG= 1.8Ω  
Turn-Off Delay Time  
23  
ns  
Fall Time  
16  
V
GS = 0V  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 4404 –––  
VDS = 15V  
Output Capacitance  
–––  
–––  
885  
424  
–––  
–––  
pF  
ƒ = 1.0MHz  
Reverse Transfer Capacitance  
Diode Characteristics  
Conditions  
Parameter  
Min. Typ. Max. Units  
IS  
MOSFET symbol  
showing the  
Continuous Source Current  
(Body Diode)  
–––  
–––  
150  
A
ISM  
integral reverse  
Pulsed Source Current  
(Body Diode)  
–––  
–––  
212  
p-n junction diode.  
TJ = 25°C, IS = 21A, VGS = 0V  
TJ = 25°C, IF =21A  
di/dt = 300A/μs  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
20  
1.0  
30  
51  
V
ns  
nC  
Qrr  
34  
Notes:  
Repetitive rating; pulse width limited by max. junction temperature.  
‡ Pulse width 400μs; duty cycle 2%.  
2
www.irf.com  
IRF8308MPbF  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
2.8  
Power Dissipation  
Power Dissipation  
Power Dissipation  
W
P
P
P
@TA = 25°C  
@TA = 70°C  
@TC = 25°C  
D
D
D
P
J
1.8  
89  
270  
Peak Soldering Temperature  
Operating Junction and  
°C  
T
T
T
-40 to + 150  
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
45  
Units  
°C/W  
W/°C  
Rθ  
Rθ  
Rθ  
Rθ  
Rθ  
Junction-to-Ambient  
JA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Case  
–––  
–––  
1.4  
JA  
JA  
–––  
1.0  
JC  
Junction-to-PCB Mounted  
Linear Derating Factor  
–––  
J-PCB  
0.022  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R4  
τι (sec)  
Ri (°C/W)  
0.02  
0.01  
1
R3  
R4  
τJ  
0.99292 0.000074  
τa  
τJ  
τ1  
2.171681 0.007859  
τ
τ
3τ3  
τ4  
2τ2  
τ1  
τ4  
24.14602  
17.69469  
0.959  
32.6  
Ci= τi/Ri  
0.1  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
0.01  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient   
Notes:  
Š R is measured at TJ of approximately 90°C.  
ˆ Used double sided cooling, mounting pad with large heatsink.  
‰ Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
θ
‰ Mounted on minimum  
footprint full size board with  
metalized back and with small  
clip heatsink (still air)  
‰ Mounted to a PCB with  
small clip heatsink (still air)  
ƒ Surface mounted on 1 in. square Cu  
(still air).  
www.irf.com  
3
IRF8308MPbF  
1000  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
100  
10  
BOTTOM  
BOTTOM  
2.5V  
2.5V  
1
60μs PULSE WIDTH  
Tj = 25°C  
60μs PULSE WIDTH  
Tj = 150°C  
0.1  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 4. Typical Output Characteristics  
Fig 5. Typical Output Characteristics  
1000  
2.0  
1.5  
1.0  
0.5  
I
= 27A  
D
VGS = 4.5V  
= 10V  
V
100  
10  
1
GS  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
V
= 10V  
DS  
60μs PULSE WIDTH  
0.1  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
J
Fig 7. Normalized On-Resistance vs. Temperature  
Fig 6. Typical Transfer Characteristics  
6
100000  
10000  
1000  
V
C
= 0V,  
f = 1 MHZ  
GS  
Vgs = 3.5V  
Vgs = 4.0V  
Vgs = 4.5V  
Vgs = 5.0V  
Vgs = 10V  
= C + C , C SHORTED  
iss  
gs  
gd ds  
C
= C  
rss  
gd  
5
C
= C + C  
oss  
ds  
gd  
4
3
2
C
iss  
C
oss  
C
rss  
T
= 25°C  
J
1
100  
0
20  
40  
60  
80  
100  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
I , Drain Current (A)  
D
Fig 9. Typical On-Resistance Vs.  
Drain Current and Gate Voltage  
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage  
4
www.irf.com  
IRF8308MPbF  
OPERATION IN THIS AREA  
1000  
100  
10  
1000.0  
100.0  
10.0  
1.0  
LIMITED BY R  
(on)  
DS  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
100μsec  
10msec  
1
T
= 25°C  
A
1msec  
10.0  
Tj = 150°C  
Single Pulse  
V
= 0V  
GS  
1.0  
0.1  
0.1  
0.1  
1.0  
100.0  
0.2  
0.4  
0.6  
0.8  
1.2  
V
, Drain-toSource Voltage (V)  
DS  
V
, Source-to-Drain Voltage (V)  
SD  
Fig 10. Typical Source-Drain Diode Forward Voltage  
Fig11. Maximum Safe Operating Area  
2.5  
2.0  
1.5  
1.0  
0.5  
150  
100  
50  
0
I
= 100μA  
D
-75 -50 -25  
0
25  
50  
75 100 125 150  
25  
50  
75  
100  
125  
150  
T
, Junction Temperature ( °C )  
J
T
, Case Temperature (°C)  
C
Fig 13. Typical Threshold Voltage vs. Junction  
Fig 12. Maximum Drain Current vs. Case Temperature  
Temperature  
50  
I
D
TOP  
BOTTOM  
7.2A  
8.4A  
21A  
40  
30  
20  
10  
0
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
Fig 14. Maximum Avalanche Energy Vs. Drain Current  
www.irf.com  
5
IRF8308MPbF  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
1K  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 15a. Gate Charge Test Circuit  
Fig 15b. Gate Charge Waveform  
V
(BR)DSS  
15V  
t
p
DRIVER  
L
V
DS  
D.U.T  
AS  
VGS  
R
G
+
-
V
DD  
I
A
20V  
0.01  
Ω
t
p
I
AS  
Fig 16b. Unclamped Inductive Waveforms  
Fig 16a. Unclamped Inductive Test Circuit  
RD  
VDS  
VDS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
10%  
VGS  
VGS  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
td(on)  
td(off)  
tr  
tf  
Fig 17a. Switching Time Test Circuit  
Fig 17b. Switching Time Waveforms  
6
www.irf.com  
IRF8308MPbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
D.U.T  
Period  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
di/dt controlled by RG  
Re-Applied  
Voltage  
RG  
+
-
Driver same type as D.U.T.  
Body Diode  
Inductor Current  
Forward Drop  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
DirectFET™ Substrate and PCB Layout, MX Outline  
(Medium Size Can, X-Designation).  
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
S
S
G
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
www.irf.com  
7
IRF8308MPbF  
DirectFET™ Outline Dimension, MX Outline  
(Medium Size Can, X-Designation)  
Please see AN-1035 for DirectFET assembly details, stencil and substrate design recommendations  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE MIN MAX  
MIN  
MAX  
0.250  
0.199  
0.156  
0.018  
0.028  
0.028  
0.056  
0.033  
0.017  
0.040  
0.095  
0.028  
0.003  
0.007  
A
B
C
D
E
F
6.25 6.35  
4.80 5.05  
3.85 3.95  
0.35 0.45  
0.68 0.72  
0.68 0.72  
1.38 1.42  
0.80 0.84  
0.38 0.42  
0.88 1.02  
2.28 2.42  
0.59 0.70  
0.246  
0.189  
0.152  
0.014  
0.027  
0.027  
0.054  
0.031  
0.015  
0.035  
0.090  
0.023  
G
H
J
K
L
M
R
P
0.03 0.08 0.001  
0.08 0.17 0.003  
Dimensions are shown in  
millimeters (inches)  
DirectFET™ Part Marking  
GATE MARKING  
LOGO  
PART NUMBER  
BATCH NUMBER  
DATE CODE  
Line above the last character of  
the date code indicates "Lead-Free"  
8
www.irf.com  
IRF8308MPbF  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF8308MTRPBF). For 1000 parts on 7"  
reel, order IRF8308MTR1PBF  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
METRIC IMPERIAL  
MIN MAX  
TR1 OPTION (QTY 1000)  
METRIC IMPERIAL  
CODE  
MIN  
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
MAX  
N.C  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MIN  
MAX  
N.C  
A
B
C
D
E
F
330.0  
20.2  
12.8  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
177.77  
19.06  
13.5  
1.5  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
58.72  
N.C  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
LOADED TAPE FEED DIRECTION  
DIMENSIONS  
METRIC  
IMPERIAL  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
CODE  
MIN  
7.90  
3.90  
11.90  
5.45  
5.10  
6.50  
1.50  
1.50  
MIN  
MAX  
0.319  
0.161  
0.484  
0.219  
0.209  
0.264  
N.C  
MAX  
8.10  
4.10  
12.30  
5.55  
5.30  
6.70  
N.C  
A
B
C
D
E
F
0.311  
0.154  
0.469  
0.215  
0.201  
0.256  
0.059  
0.059  
G
H
0.063  
1.60  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.05/11  
www.irf.com  
9

相关型号:

IRF830A

HEXFET Power MOSFET
INFINEON

IRF830A

Power MOSFET
VISHAY

IRF830A

Low Gate Charge Qg Results in Simple Drive Requirement
KERSEMI

IRF830A16A

4.5A, 500V, 1.5ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

IRF830AF

4.5A, 500V, 1.5ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

IRF830AJ

4.5A, 500V, 1.5ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

IRF830AL

Power MOSFET(Vdss=500V, Rds(on)max=1.40ohm, Id=5.0A)
INFINEON

IRF830AL

Power MOSFET
VISHAY

IRF830ALPBF

HEXFET㈢ Power MOSFET
INFINEON

IRF830ALPBF

Power MOSFET
VISHAY

IRF830APBF

HEXFET Power MOSFET
INFINEON

IRF830APBF

Power MOSFET
VISHAY