IRFB4321 [INFINEON]

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. ;
IRFB4321
型号: IRFB4321
厂家: Infineon    Infineon
描述:

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 

文件: 总9页 (文件大小:285K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97103B  
IRFB4321PbF  
HEXFET® Power MOSFET  
Applications  
l Motion Control Applications  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l Hard Switched and High Frequency Circuits  
VDSS  
RDS(on) typ.  
150V  
12m  
15m  
:
:
max.  
Benefits  
ID  
85A  
l Low RDSON Reduces Losses  
l Low Gate Charge Improves the Switching  
Performance  
l Improved Diode Recovery Improves Switching &  
EMI Performance  
D
S
D
l 30V Gate Voltage Rating Improves Robustness  
l Fully Characterized Avalanche SOA  
S
G
D
G
TO-220AB  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current d  
Max.  
85 c  
60  
Units  
A
330  
PD @TC = 25°C  
350  
Maximum Power Dissipation  
Linear Derating Factor  
W
2.3  
W/°C  
V
VGS  
±30  
Gate-to-Source Voltage  
Single Pulse Avalanche Energy e  
EAS (Thermally limited)  
120  
mJ  
°C  
TJ  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw  
Thermal Resistance  
Parameter  
Junction-to-Case g  
Typ.  
–––  
0.50  
–––  
Max.  
0.43  
–––  
62  
Units  
RθJC  
RθCS  
RθJA  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient g  
°C/W  
www.irf.com  
1
12/9/10  
IRFB4321PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
150 ––– –––  
––– 150 ––– mV/°C Reference to 25°C, ID = 1mA  
Conditions  
VGS = 0V, ID = 250μA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
V
ΔV(BR)DSS/ΔTJ  
RDS(on)  
–––  
3.0  
12  
15  
5.0  
20  
VGS = 10V, ID = 33A  
mΩ  
V
VGS(th)  
–––  
VDS = VGS, ID = 250μA  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
––– –––  
μA  
VDS = 150V, VGS = 0V  
1.0  
mA VDS = 150V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
––– ––– 100  
––– ––– -100  
nA  
V
GS = 20V  
VGS = -20V  
RG(int)  
–––  
0.8  
–––  
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Qg  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
130 ––– –––  
Conditions  
VDS = 25V, ID = 50A  
S
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
71  
24  
110  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
nC ID = 50A  
VDS = 75V  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
21  
VGS = 10V  
18  
ns VDD = 98V  
ID = 50A  
60  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
25  
RG = 2.5Ω  
VGS = 10V  
35  
Ciss  
Coss  
Crss  
Input Capacitance  
pF VGS = 0V  
VDS = 50V  
4460  
390  
82  
Output Capacitance  
Reverse Transfer Capacitance  
ƒ = 1.0MHz  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
85  
IS  
Continuous Source Current  
––– –––  
A
D
S
(Body Diode)  
Pulsed Source Current  
showing the  
integral reverse  
ISM  
––– ––– 330  
A
G
(Body Diode)  
Diode Forward Voltage  
p-n junction diode.  
TJ = 25°C, IS = 50A, VGS = 0V  
ID = 50A  
VSD  
trr  
––– –––  
––– 89  
1.3  
V
ns  
nC  
A
Reverse Recovery Time  
Reverse Recovery Charge  
Reverse Recovery Current  
Forward Turn-On Time  
130  
Qrr  
IRRM  
ton  
VR = 128V,  
di/dt = 100A/μs  
––– 300 450  
––– 6.5 –––  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
„ Pulse width 400μs; duty cycle 2%.  
Rθ is measured at TJ approximately 90°C  
 Calculated continuous current based on maximum allowable junction  
temperature. Package limitation current is 75A  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.095mH  
RG = 25Ω, IAS = 50A, VGS =10V. Part not recommended for use  
above this value.  
2
www.irf.com  
IRFB4321PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
TOP  
TOP  
BOTTOM  
BOTTOM  
5.0V  
1
60μs PULSE WIDTH  
Tj = 175°C  
60μs PULSE WIDTH  
Tj = 25°C  
5.0V  
1
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
1000  
100  
10  
I
= 50A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
= 25V  
J
1
V
DS  
60μs PULSE WIDTH  
0.1  
3.0  
4.0  
V
5.0  
6.0  
7.0  
8.0  
9.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
20  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 50A  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
= 120V  
C
= C  
DS  
rss  
gd  
16  
12  
8
VDS= 75V  
VDS= 30V  
C
= C + C  
ds  
oss  
gd  
Ciss  
Coss  
4
Crss  
V
0
0
20  
40  
60  
80  
100  
120  
1
10  
100  
Q
Total Gate Charge (nC)  
G
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFB4321PbF  
1000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100μsec  
1msec  
100  
T
= 175°C  
J
10  
1
10msec  
T
= 25°C  
J
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
DC  
V
= 0V  
GS  
0.1  
0.1  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1
10  
100  
1000  
V
, Source-to-Drain Voltage (V)  
V
, Drain-toSource Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
190  
180  
170  
160  
150  
140  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LIMITED BY PACKAGE  
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
C
T
, Junction Temperature (°C)  
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
500  
I
D
TOP  
13A  
20A  
50A  
400  
300  
200  
100  
0
BOTTOM  
0
20  
40  
60  
80  
100 120 140 160  
25  
50  
75  
100  
125  
150  
175  
V
Drain-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
DS,  
J
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
4
www.irf.com  
IRFB4321PbF  
1
D = 0.50  
0.20  
0.1  
R1  
R1  
R2  
R2  
R3  
R3  
τι (sec)  
0.10  
Ri (°C/W)  
τ
J τJ  
τ
τ
Cτ  
0.085239 0.000052  
0.18817 0.00098  
0.176912 0.008365  
0.05  
0.02  
0.01  
τ
1τ1  
τ
2τ2  
3τ3  
Ci= τi/Ri  
Ci= τi/Ri  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Allowed avalanche Current vs avalanche  
Duty Cycle = Single Pulse  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
120  
100  
80  
60  
40  
20  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1% Duty Cycle  
= 50A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFB4321PbF  
6.0  
40  
30  
20  
10  
0
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250μA  
5.0  
4.0  
3.0  
2.0  
I
= 33A  
F
V
= 128V  
R
T
= 125°C  
= 25°C  
J
T
J
1.0  
100 200 300 400 500 600 700 800 900 1000  
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
di / dt - (A / μs)  
T
f
J
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage Vs. Temperature  
40  
3200  
2800  
2400  
2000  
1600  
1200  
800  
30  
20  
I
= 50A  
I
= 33A  
F
F
10  
0
V
= 128V  
V
= 128V  
R
R
T
= 125°C  
= 25°C  
T
= 125°C  
= 25°C  
J
400  
J
T
T
J
J
0
100 200 300 400 500 600 700 800 900 1000  
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / μs)  
di / dt - (A / μs)  
f
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
3200  
2800  
2400  
2000  
1600  
1200  
800  
I
= 50A  
F
V
= 128V  
= 125°C  
= 25°C  
R
T
400  
J
J
T
0
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / μs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFB4321PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1μs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
Vgs(th)  
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRFB4321PbF  
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))  
TO-220AB Part Marking Information  
EXAMPLE: THIS IS AN IRF1010  
PART NUMBER  
LOT CODE 1789  
ASSEMBLED ON WW 19, 2000  
IN THE ASSEMBLY LINE "C"  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
YEAR 0 = 2000  
WE EK 19  
Note: "P" in assembly lineposition  
indicates "Lead - F ree"  
AS S E MB L Y  
LOT CODE  
LINE C  
TO-220AB packages are not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 12/10  
8
www.irf.com  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement  
of intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may  
contain dangerous substances. For information on  
the types in question please contact your nearest  
Infineon Technologies office.  
In addition, any information given in this document  
is subject to customers compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and  
standards concerning customers products and any  
use of the product of Infineon Technologies in  
customers applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of  
the product or any consequences of the use thereof  
can reasonably be expected to result in personal  
injury.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customers technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

IRFB4321GPBF

HEXFETPower MOSFET
INFINEON

IRFB4321PBF

HEXFET Power MOSFET
INFINEON

IRFB4332

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB4332PBF

PDP SWITCH
INFINEON

IRFB4410

HEXFET Power MOSFET
INFINEON

IRFB4410PBF

HEXFET Power MOSFET
INFINEON

IRFB4410Z

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB4410ZGPBF

HEXFETPower MOSFET
INFINEON

IRFB4410ZPBF

HEXFET Power MOSFET
INFINEON

IRFB4410ZTRLPBF

Power Field-Effect Transistor, 75A I(D), 100V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, LEAD FREE, PLASTIC PACKAGE-3
INFINEON

IRFB4410ZTRRPBF

Power Field-Effect Transistor, 75A I(D), 100V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, LEAD FREE, PLASTIC PACKAGE-3
INFINEON

IRFB4510GPBF

Power Field-Effect Transistor
INFINEON