IRFI4321PBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRFI4321PBF
型号: IRFI4321PBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

文件: 总8页 (文件大小:282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97104  
IRFI4321PbF  
HEXFET® Power MOSFET  
Applications  
l Motion Control Applications  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l Hard Switched and High Frequency Circuits  
VDSS  
RDS(on) typ.  
150V  
12.2m:  
16m:  
34A  
max.  
Benefits  
l Low RDSON Reduces Losses  
l Low Gate Charge Improves the Switching  
Performance  
l Improved Diode Recovery Improves Switching &  
EMI Performance  
ID  
D
S
D
l 30V Gate Voltage Rating Improves Robustness  
l Fully Characterized Avalanche SOA  
S
G
D
G
TO-220AB Full-Pak  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current c  
Max.  
34  
Units  
A
21  
140  
PD @TC = 25°C  
46  
Maximum Power Dissipation  
Linear Derating Factor  
W
0.37  
W/°C  
V
VGS  
±30  
Gate-to-Source Voltage  
Single Pulse Avalanche Energy d  
EAS (Thermally limited)  
170  
mJ  
°C  
TJ  
-55 to + 150  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw  
Thermal Resistance  
Parameter  
Junction-to-Case f  
Junction-to-Ambient f  
Typ.  
–––  
–––  
Max.  
2.73  
65  
Units  
RθJC  
RθJA  
°C/W  
www.irf.com  
1
6/23/06  
IRFI4321PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
150 ––– –––  
––– 190 ––– mV/°C Reference to 25°C, ID = 1mAe  
Conditions  
VGS = 0V, ID = 250µA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
V
V(BR)DSS/TJ  
RDS(on)  
––– 12.2  
3.0 –––  
16  
5.0  
20  
V
V
V
V
GS = 10V, ID = 20A e  
mΩ  
V
VGS(th)  
DS = VGS, ID = 250µA  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
––– –––  
µA  
mA  
DS = 150V, VGS = 0V  
1.0  
DS = 150V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
––– ––– 100  
––– ––– -100  
nA VGS = 20V  
GS = -20V  
V
RG(int)  
–––  
0.8  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 20A  
nC ID = 20A  
DS = 75V  
VGS = 10V e  
DD = 75V  
50  
––– –––  
S
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
73  
24  
110  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
V
20  
18  
ns  
V
29  
ID = 20A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
27  
RG = 2.5Ω  
VGS = 10V e  
20  
Ciss  
Coss  
Crss  
Input Capacitance  
pF  
VGS = 0V  
4440  
390  
84  
Output Capacitance  
Reverse Transfer Capacitance  
VDS = 50V  
ƒ = 1.0MHz  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
––– –––  
34  
A
MOSFET symbol  
D
S
(Body Diode)  
Pulsed Source Current  
showing the  
integral reverse  
G
ISM  
––– ––– 140  
A
(Body Diode)ꢀc  
Diode Forward Voltage  
p-n junction diode.  
TJ = 25°C, IS = 20A, VGS = 0V e  
ID = 20A  
VSD  
trr  
––– –––  
––– 86  
1.3  
V
ns  
nC  
A
Reverse Recovery Time  
Reverse Recovery Charge  
Reverse Recovery Current  
Forward Turn-On Time  
130  
Qrr  
IRRM  
ton  
VR = 128V,  
––– 310 470  
––– 6.7 –––  
di/dt = 100A/µs e  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ Rθ is measured at TJ approximately 90°C  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.85mH  
RG = 25, IAS = 20A, VGS =10V. Part not recommended for use  
above this value.  
2
www.irf.com  
IRFI4321PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
TOP  
TOP  
BOTTOM  
BOTTOM  
5.0V  
1
60µs PULSE WIDTH  
60µs PULSE WIDTH  
5.0V  
1
Tj = 25°C  
Tj = 150°C  
0.1  
1
0.1  
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I
= 20A  
V
= 25V  
D
DS  
60µs PULSE WIDTH  
V
= 10V  
GS  
T
= 150°C  
J
T
= 25°C  
J
1
0.1  
3.0  
4.0  
5.0  
6.0  
7.0  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
V
, Gate-to-Source Voltage (V)  
GS  
, Junction Temperature (°C)  
J
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
20  
V
C
= 0V,  
f = 1 MHZ  
I
= 20A  
GS  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
= 120V  
DS  
C
= C  
rss  
gd  
16  
12  
8
VDS= 75V  
VDS= 30V  
C
= C + C  
ds  
oss  
gd  
Ciss  
Coss  
4
Crss  
V
0
0
20  
40  
60  
80  
100  
120  
1
10  
100  
1000  
Q
Total Gate Charge (nC)  
G
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFI4321PbF  
1000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100  
1msec  
T
= 150°C  
J
10  
1
100µsec  
10msec  
1
T
= 25°C  
V
J
Tc = 25°C  
Tj = 150°C  
Single Pulse  
DC  
= 0V  
1.0  
GS  
0.1  
0.1  
0.2  
0.4  
0.6  
0.8  
0.1  
1.0  
10.0  
100.0  
1000.0  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
190  
180  
170  
160  
150  
140  
35  
30  
25  
20  
15  
10  
5
0
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
25  
50  
75  
100  
125  
150  
, Junction Temperature (°C)  
T
, CaseTemperature (°C)  
J
C
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
700  
I
D
600  
500  
400  
300  
200  
100  
0
TOP  
4.6A  
5.4A  
20A  
BOTTOM  
40  
60  
V
80  
100  
120  
140  
160  
25  
50  
75  
100  
125  
150  
Drain-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
DS,  
J
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
4
www.irf.com  
IRFI4321PbF  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
τι (sec)  
0.312941 0.000381  
Ri (°C/W)  
0.1  
τ
J τJ  
τ
τ
Cτ  
0.02  
0.01  
τ
1τ1  
τ
2τ2  
3τ3  
1.187255 0.219458  
Ci= τi/Ri  
Ci= τi/Ri  
1.231176  
2.895  
0.01  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ∆Τ j = 25°C and  
Tstart = 150°C.  
0.1  
0.01  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
180  
160  
140  
120  
100  
80  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
TOP  
BOTTOM 1% Duty Cycle  
= 20A  
Single Pulse  
I
D
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
60  
40  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
20  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFI4321PbF  
6.0  
40  
30  
20  
10  
0
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250µA  
5.0  
4.0  
3.0  
2.0  
I
= 33A  
F
V
= 128V  
R
T
= 125°C  
= 25°C  
J
T
J
1.0  
100 200 300 400 500 600 700 800 900 1000  
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
di / dt - (A / µs)  
f
T
J
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage Vs. Temperature  
40  
3200  
2800  
2400  
2000  
1600  
1200  
800  
30  
20  
I
= 50A  
I
= 33A  
F
F
10  
0
V
= 128V  
V
= 128V  
R
R
T
= 125°C  
= 25°C  
T
= 125°C  
= 25°C  
J
400  
J
T
T
J
J
0
100 200 300 400 500 600 700 800 900 1000  
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
di / dt - (A / µs)  
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
3200  
2800  
2400  
2000  
1600  
1200  
800  
I
= 50A  
F
V
= 128V  
= 125°C  
= 25°C  
R
T
400  
J
J
T
0
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFI4321PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
Vgs(th)  
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRFI4321PbF  
TO-220AB Full-Pak Package Outline (Dimensions are shown in millimeters (inches))  
TO-220AB Full-Pak Part Marking Information  
EXAMPLE: THIS IS AN IRFI840G  
WITH ASSEMBLY  
LOT CODE 3432  
INTERNATIONAL  
ASSEMBLED ON WW 24, 2001  
PART NUMBER  
IRFI840G  
RECTIFIER  
LOGO  
124K  
32  
IN THE ASSEMBLY LINE "K"  
34  
DATE CODE  
YEAR 1 = 2001  
WEEK 24  
ASSEMBLY  
LOT CODE  
Note: "P" in assembly line position  
indicates "Lead-F ree"  
LINE K  
TO-220AB Full-Pak packages are not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 06/06  
8
www.irf.com  

相关型号:

IRFI4410ZPBF

High Efficiency Synchronous Rectification in SMPS
INFINEON

IRFI460

TRANSISTOR N-CHANNEL(Vdss=500V, Rds(on)=0.27ohm, Id=21A)
INFINEON

IRFI460D

TRANSISTOR | MOSFET | N-CHANNEL | 500V V(BR)DSS | 21A I(D) | TO-259VAR
ETC

IRFI460U

TRANSISTOR | MOSFET | N-CHANNEL | 500V V(BR)DSS | 21A I(D) | TO-259VAR
ETC

IRFI48NPBF

Power Field-Effect Transistor, 40A I(D), 55V, 0.016ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, LEAD FREE, PLASTIC, TO-220, FULL PACK-3
INFINEON

IRFI4905

HEXFET Power MOSFET
INFINEON

IRFI4905-101

Power Field-Effect Transistor, 41A I(D), 55V, 0.02ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET,
INFINEON

IRFI4905-101PBF

41A, 55V, 0.02ohm, P-CHANNEL, Si, POWER, MOSFET
INFINEON

IRFI4905-102

Power Field-Effect Transistor, 41A I(D), 55V, 0.02ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET,
INFINEON

IRFI4905-102PBF

Power Field-Effect Transistor, 41A I(D), 55V, 0.02ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET
INFINEON

IRFI4905-103

Power Field-Effect Transistor, 41A I(D), 55V, 0.02ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET,
INFINEON

IRFI4905-103PBF

Power Field-Effect Transistor, 41A I(D), 55V, 0.02ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET
INFINEON